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Abstract: Oxidative stress and inflammation triggered by increased oxidative stress are the cause of
many chronic diseases. The lack of anti-inflammatory drugs without side-effects has stimulated the
search for new active substances. Plant-derived compounds provide new potential anti-inflammatory
and antioxidant molecules. Natural products are structurally optimized by evolution to serve
particular biological functions, including the regulation of endogenous defense mechanisms and
interaction with other organisms. This property explains their relevance for infectious diseases and
cancer. Recently, among the various natural substances, polyphenols from extra virgin olive oil
(EVOO), an important element of the Mediterranean diet, have aroused growing interest. Extensive
studies have shown the potent therapeutic effects of these bioactive molecules against a series of
chronic diseases, such as cardiovascular diseases, diabetes, neurodegenerative disorders and cancer.
This review begins from the chemical structure, abundance and bioavailability of the main EVOO
polyphenols to highlight the effects and the possible molecular mechanism(s) of action of these
compounds against inflammation and oxidation, in vitro and in vivo. In addition, the mechanisms
of inhibition of molecular signaling pathways activated by oxidative stress by EVOO polyphenols
are discussed, together with their possible roles in inflammation-mediated chronic disorders, also
taking into account meta-analysis of population studies and clinical trials.
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1. Introduction

The increasing extension in life expectancy of humans in advanced countries matches
a higher prevalence of a number of lifestyle- and age-associated pathological conditions
such as cancer, systemic and neurodegenerative diseases, amyloid diseases, particularly
Alzheimer’s disease (AD) and Parkinson’s (PD) disease, cardiovascular diseases (CVDs)
and metabolic diseases including metabolic syndrome (MetS); the latter includes, in addi-
tion to type 2 diabetes mellitus (T2DM), CVDs and non-alcoholic hepatitis. These patholo-
gies are characterized by several common features, including, among others, derangement
of proteostasis and the redox equilibrium and a remarkable inflammatory response that
heavily impair the biochemical and functional features of the affected tissues. Moreover,
at present, these pathologies, particularly amyloid diseases, lack effective therapies; it is
then evident that, in the light of the latter aspect, prevention appears as the best tool to
reduce the risk of these pathological conditions. Accordingly, medical research has progres-
sively focused on the importance of lifestyle. Physical exercise, mental activity and diet,
intended as the complex of foods and nutrients taken daily by a person, are three pillars of a
healthy lifestyle.

The Mediterranean diet (MD) has been the subject of a huge amount of studies on
its properties to prevent different chronic-degenerative diseases from the first evidence
from the early 1960s suggesting an association between the alimentation of Mediterranean
people and their low cardiovascular mortality [1]. An increasing number of epidemiological
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and observational studies confirm that the Mediterranean diet (MD) is associated with
aging well, a condition where the prevalence of diseases including MetS, CVDs, cancer
and cognitive decline appears significantly reduced [2]. The MD can be considered as
the heritage of a complex socio-economic development of the Mediterranean populations
over past centuries, and includes practices resulting from agricultural, social, territorial
and environmental factors intimately associated with the culture and lifestyle of these
populations. Recently, modifications of the classical MD have been proposed by the
Mediterranean Diet Foundation Expert Group [3]. The new MD pyramid, in addition to the
presence of a specific content of characteristic foods (low meat/fish, high fruit, vegetables
and carbohydrates, presence of red wine, use of olive oil as main lipid source, moderate
caloric intake), also emphasizes the importance of other lifestyle-associated elements, such
as moderation, seasonality, adequate rest, conviviality, and physical exercise. The new
pyramid also reflects the changes that the MD is undergoing, at the present, within the
Mediterranean societies in relation to various geographical, cultural and socio-economic
contexts. The high value of the MD and its associated lifestyle was recognized in 2010 by
UNESCO, who inscribed the MD in the list of the Intangible Cultural Heritage of Humanity
(https://ich.unesco.org/en/RL/mediterranean-diet-00884, accessed on 2013).

An important feature of the MD is the daily consumption of a vast array of phy-
tonutrients including vitamins and plant phenols, which provides its similarities with the
Asian diet. In particular, plant polyphenols interfere with multiple signaling pathways in-
volved in protein homeostasis, in the inflammatory response, and in the regulation of both
metabolism and the antioxidant defenses [4–6], often recalling a caloric restriction (CR) reg-
imen positively affecting, among others, whole body metabolism, mitochondrial turnover,
oxidative stress and the inflammatory and neuroinflammatory response, where autophagy
plays an important role [7,8]. Polyphenols can reach these effects by counteracting, at
the molecular level, signaling pathways responsible for the cascade reactions involved in
aging [9,10]. Overall, present data support the idea that different plant polyphenols, includ-
ing those from the olive tree, are able to mimic CR effects and to modulate the expression
of pro- and anti-apoptotic factors, also through epigenetic modifications [11], thus affecting
the same, or very similar, cellular targets. Accordingly, plant polyphenols can be proposed
as a useful tool for the prevention and/or treatment of aging-associated diseases connected
with chronic inflammation or transcriptional, redox or metabolic derangement [12].

An increasing number of preclinical studies, population studies and clinical trials
suggest that adherence to the MD, with particular emphasis on its content of plant polyphe-
nols, often referred to as biophenols, reduces metabolic pathologies and aging-associated
deterioration, where derangement of redox homeostasis and an excessive inflammatory
response often play pivotal roles. Biophenols are found in many foods of plant origin that
play pivotal roles in the MD, including red wine, extra virgin olive oil (EVOO), green tea,
spices, berries and aromatic herbs. The content of polyphenols in these foods and their
bioavailability are quite low; however, the daily consumption, throughout one’s lifetime, of
these foods ensures a reduced, yet continuous, intake of polyphenols, providing a rationale
for the association between the dietary content of the latter and a significant reduction in the
incidence of aging-associated pathologies reported by many population/epidemiological
studies and clinical trials [13,14].

A wealth of recent studies has highlighted the fact that, in several aging-associated
pathologies such as amyloid diseases, CVDs and MetS, plant polyphenols do not simply
interfere with a single step of disease pathogenesis (protein/peptide aggregation, the
inflammatory response, the redox/metabolic equilibrium, the proteostasis balance); rather,
their positive biological and functional outcomes result from multi-target effects leading to
the restoration of altered homeostatic systems in cells and tissues. In addition, the chemical
similarities of these structurally distinct molecules can explain why they can induce similar
effects. Among others, the importance of natural polyphenols for health has been associ-
ated with their remarkable antioxidant power elicited through the modulation of oxidative
pathways. The latter can result from interference with enzymes, proteins, receptors, tran-
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scription factors and several signaling pathways [4,15]. The ability of plant polyphenols to
interfere with biochemical homeostasis has also been taken into consideration [14], and
epigenetic modifications of chromatin have been reported to also be involved in these
effects [16,17]. Actually, recent research is providing increasing information on the bio-
chemical, cellular and epigenetic modifications induced by several plant polyphenols and
the resulting modulation of the homeostasis of key cellular processes such as metabolism,
energy balance, redox equilibrium, proteostasis, cell signaling, the inflammatory response,
and the control of oxidative stress and of gene expression. The knowledge stemming from
these data will allow us to better understand the beneficial effects, for human wellness,
of the MD, the importance of its content in plant polyphenols and the role of the latter in
disease prevention and, possibly, therapy.

The rising interest in natural polyphenols has resulted in a large number of studies on
their medicinal efficacy, carried out not only in cultured cells but also in model organisms
and in humans. More recently, an increasing number of studies have also appeared on the
biochemical and biological effects of olive polyphenols. The polyphenols elaborated by
the olive tree (Olea europaea) are present prevalently in the leaves and drupes of the tree
and are important as phytoalexins, molecules that the plant elaborates for defense against
invasions by microbes and fungi and to discourage leaf-eating insects. EVOO contains
over 30 phenolic compounds, including the most represented oleuropein, both in the
glycated and in the aglycone (OLE) form, verbascoside, oleocanthal, hydroxytyrosol (HT),
tyrosol, and others (see next section). The healthy value of EVOO and olive leaf extracts
has been recognized for a long time and scientifically investigated in the last couple of
centuries. More recent studies have focused on the biological properties of these molecules,
including the antimicrobial, hypoglycemic, vasodilator, antihypertensive, antioxidant and
anti-inflammatory ones, whose clinical importance was first reported in 1950 [18]. These
properties have led to the inclusion of the alcoholic extract (80%) of olive leaves containing,
in addition to minor components, OLE, HT, caffeic acid, tyrosol, apigenin and verbascoside
in the European Pharmacopoeia (Ph. Eur.) [19,20].

The molecular determinants of the protection by olive polyphenols against several
aging-associated and chronic degenerative conditions, including T2DM [21–23] and non-
alcoholic fatty liver disease [24–28], have been extensively investigated in the last 20 years.
OLE, HT and other olive polyphenols protect cells against oxidative damage resulting from
redox dyshomeostasis [29,30] and an excessive inflammatory response [31], among the
main determinants of age-related pathologies such as cancer, T2DM, MetS, osteoporosis
and neurological diseases [27,32]. Most of these effects have been associated with the
ability of polyphenols to control cell signaling and pathways, to modulate the activity of
transcription factors, and to affect gene expression; these nutrigenomic properties of EVOO
polyphenols have been recently reviewed [33,34]. Finally, population studies have provided
evidence of a significant association between MD, EVOO consumption, and reduced risk of
both CVD [35] and cognitive decline [2]. A recent review of the scientific literature focused
on clinical trials and population studies has confirmed that the MD and the fortification
of the foods with olive leaf extracts protect significantly against several aging-associated
degenerative diseases and cancer [36–38]. Accordingly, plant polyphenols are increasingly
taken into consideration, as such or their molecular scaffolds, as the starting component to
develop new drugs especially designed to combat several chronic degenerative pathologies,
including aging-associated neurodegeneration [36,39].

Here, the results of studies on the polyphenols produced by the olive tree and found
in EVOO will be reviewed, with a special focus on the antioxidant and anti-inflammatory
properties of these molecules. The effects of olive polyphenols in cell and animal models
of aging-associated pathologies, including CVDs, MetS and neurodegenerative diseases,
the molecular mechanisms underlying these properties, the currently available population
studies and clinical trials, and the most recent advances in their possible use to combat
neurodegenerative diseases will also be treated.
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2. Olive Polyphenols: A Group of Molecules with Shared Chemical and Biological
Properties: Structure, Abundance and Bioavailability

Biophenols are a family of over 8000 polyphenolic structures (those presently de-
scribed) found in almost all plant families mainly as secondary metabolites, including sev-
eral hundred isolated from edible plants [36,40]. These molecules include non-flavonoids or
flavonoids; the latter are further classified as flavonols, flavononols, flavones, anthocyanins,
procyanidins, phenolic acids, stilbenes and tannins on the basis of the number of hydroxyls
in the molecule and the type and the position of other substituents [41]. The plant sources
of plant polyphenols are, among others, bark, leaves, fruits, spices, berries, vegetables,
roots, nuts and seeds, herbs, and whole grain products, from which they are transferred in
processed foods of plant origin, including EVOO, red wine, green tea, coffee and turmeric.
These compounds are characterized by a broad spectrum of biological activities and exert
positive effects in a large number of human diseases, including cancer, CVDs, T2DM and
neurodegenerative conditions, with molecular mechanisms often related to their antiox-
idant activity. In the case of EVOO, its healthy properties have been associated with its
peculiar chemical composition [42]. EVOO contains both major components (triglycerides
and other fatty acid derivatives where mainly monounsaturated fatty acids, in particular
oleic acid, are present) and minor components (over 230 different chemicals including
aliphatic and triterpenic alcohols, phytosterols, hydrocarbons, tocopherols, and polyphe-
nols) [43]. In the past, the health effects of EVOO were attributed mainly to the presence
of oleic acid; however, more recently, attention has been focused on phenolics, a class of
bioactive compounds including phenolic acids, phenolic alcohols, flavonoids, secoiridoids
and lignans [44].

In particular, olive tree polyphenols include flavonols, lignans and glycosides. Olive
glycosides are iridoids, geraniol-derived monoterpenes, whose chemical structure results
from a cyclopentane ring fused to a six-member heterocycle with an oxygen atom. In
particular, the bicyclic H-5/H-9β, β-cis-fused cyclopentanepyran ring system is the most
common structural feature and the basic skeletal ring of iridoids. Cleavage of the cyclopen-
tane ring of iridoids produces seco-iridoids, while cleavage of the pyran ring produces
iridoid derivatives [45]. Iridoids and secoiridoids, mainly in the glycated form, are found
in many medicinal plants belonging to the subclass Asteridae that includes several plant
families, particularly Oleaceae.

The polyphenols produced by the olive tree are found in the lipid fraction and in the
water fraction (dispersed as minute droplets) of olive oil mainly in the glucose-free form
(aglycones), resulting from deglycosylation by plant glycosidases during olive squeez-
ing. The most abundant secoiridoid in olive oil is 3,4-dihydroxyphenylethanol-elenolic
acid (3,4-DHPEA-EA), whose glucose-bound form is commonly known as oleuropein;
the latter is the main cause of the bitter taste of olive leaves and drupes. Other sec-
oiridoids include oleuropein derivatives, both in the glucose-bound form or as agly-
cones, such as the dialdehydic form of decarboxymethyl elenolic acid bound to either
HT (3,4-dihydroxyphenylethanol-elenolic acid dialdehyde, 3,4-DHPEA-EDA, also known
as oleacein) or to tyrosol (p-hydroxyphenylethanol-elenolic acid dialdehyde, p-HPEA-
EDA, also known as oleocanthal, or ligstroside aglycone [46,47] (Figure 1). Oleocan-
thal produces the burning sensation in the back of the throat that accompanies the con-
sumption of freshly squeezed EVOO. Olive oil also has a rich composition in simple
phenols; these include tyrosol (p-hydroxyphenylethanol, p-HPEA) and hydroxytyrosol
(3,4-dihydroxyphenylethanol, 3,4-DHPEA, DOPET), two phenolic alcohols mostly de-
rived from their secoiridoid precursors. Olive polyphenols also include verbascoside, the
caffeoylrhamnosylglucoside of HT, 1-acetoxypinoresinol and pinoresinol (two lignans).
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Olive polyphenols are considered to be responsible for some of the recognized phar-
macological properties of the olive tree (anti-atherogenic, antihepatotoxic, hypoglycemic,
anti-inflammatory, antitumoral, antiviral, analgesic, purgative and immunomodulatory
activities) [28,48,49], together with the protection against aging-associated neurodegen-
eration [29]. For these reasons, the EVOO quality depends not only on the content in
free fatty acids resulting from triacylglycerol breakdown (acidity), but also on its content
in polyphenols, the molecules responsible for its taste and for many of its healthy prop-
erties. Several factors affect the content of polyphenols in olive oil; these include olive
cultivar, environmental cues (altitude, meteorological factors and irrigation), cultivation
practices, and ripening stage of the fruits [50], together with extraction techniques, systems
to separate oil from olive pastes. The conditions of storage (temperature, time) are also of
importance, affecting the rate of oxidation/photooxidation reactions and the deposition of
suspended water particles rich in polyphenols [51]. Under optimal conditions, the content
of polyphenols in EVOO can exceed 60 mg/100 g.

The normal daily dietary intake of plant polyphenols is in the 0.1–1.0 g range; however,
the bioavailability of these molecules, including the olive ones, in humans is poor due to
reduced intestinal absorption and fast biotransformation that favors their urinary excretion.
In addition, in the case of the brain, the circulating polyphenols must also cross the blood–
brain barrier before reaching the parenchyma. With few exceptions, polyphenol aglycones
can be partially absorbed in the small intestine by passive diffusion [52] much better
than their glycated counterparts [53], although important amounts proceed to the large
intestine to be eliminated [54]. A review of many studies on polyphenol bioavailability
reported a 0 to 4.0 µmol/L plasma concentration of total metabolites produced from the
oral administration of 50 mg aglycone equivalents of a polyphenol [55]. After intestinal
absorption and passage to the lymph, most polyphenols undergo phase I and phase II
metabolism, with substantial biotransformation and production of methylated, sulphated,
hydroxylated, thiol-conjugated and glucuronide derivatives and degradation products [56].
These modifications alter the chemical properties of plant polyphenols, favor their excretion
and, possibly, provide them new biological activities [57]. The importance of the colonic
microflora for polyphenol bioavailability, due to its ability to metabolize and chemically
modify polyphenols, has been reported recently [55]. Anyway, recent studies indicate that
plant, including olive, polyphenols are absorbed in discrete amounts from the intestine
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and rapidly distributed through the blood flow to the whole organism, including the
brain, both in rats [58,59] and in humans [60,61]. Plant polyphenols do interact with, and
cross, synthetic and cell membranes. The interaction of oleuropein aglycone with synthetic
phospholipid membranes favored by the presence of anionic lipids has been reported in a
very recent study [62]. Another study reported that several polyphenols (the olive ones
were not included) protected the mitochondria against membrane permeabilization by
amyloid oligomers, suggesting some interference with oligomers’ interaction with the
membrane [63]. Finally, oleuropein aglycone (OLE) was the main polyphenol found in
breast cancer cells treated with an olive leaf extract in a recent metabolite-profiling study,
suggesting its ability to cross the plasma membrane of these cells [64].

Due to the rising interest in natural phenols as possible new drugs, strategies to im-
prove their bioavailability are under study, with encapsulation being probably the most
actively investigated, in some cases with encouraging results [65,66]. Most of these molec-
ular tools have not been tested in clinical trials, yet this strategy appears promising to
improve the efficacy of natural phenols as drugs while reducing the amount of the admin-
istered dose. Actually, accurate studies on the effective dose of olive polyphenols to be
administered daily to humans to obtain significant protection are still lacking; at any rate,
the amount of OLE and other plant polyphenols taken daily in foods appears not adequate
to ensure a dose suitable to produce short-term acute effects. However, clinical and experi-
mental evidence indicates that a continuous consumption of moderate amounts of these
molecules can be effective in the long term; this can also result in the accumulation in body
tissues of these lipophilic molecules, leading to a low-intensity continuous stimulus of cell
defenses against amyloid deposition, protein and metabolism dyshomeostasis, oxidative
stress and other alterations underlying age-associated pathologies. These effects, although
not proven experimentally, could, at least in part, explain the healthy properties of the
MD. Nevertheless, the intake of moderate amounts of olive, and other plant, polyphenols
provided by a typical MD supports the usefulness of the integration of polyphenol-enriched
olive leaf extracts and other polyphenol-enriched nutraceuticals that can intensify, in the
short term, the beneficial effects of these molecules.

3. Antioxidant and Anti-Inflammatory Properties of Olive Polyphenols in
Animal Models

It is widely recognized that oxidative and nitrosative stress as well as inflammation
are the major abnormalities underlying neurodegeneration and that antioxidant molecules,
such as olive oil polyphenols, restore neuronal function through the amelioration of the re-
dox status. Some beneficial effects of the MD have been associated with the consumption of
EVOO polyphenols; these include antioxidant, hypoglycemic, antimicrobial, antiviral, anti-
tumor, cardioprotective, neuroprotective, antiaging and anti-inflammatory activities [67,68].
It has been reported that EVOO polyphenols are protective against cognitive impairment
associated with aging and neurodegenerative diseases due to their ability to protect DNA
against oxidative stress, to inhibit mitochondrial dysfunction and to attenuate lipid peroxi-
dation by scavenging free radicals, thus sustaining endogenous antioxidant stability [69,70].
They are also able to inhibit amyloid β (Aβ) and τ protein aggregation and toxicity, the
main causes of the neurodegenerative cascade in AD [39,71,72]. EVOO polyphenols par-
ticipate in the redox balance of the cell as antioxidants and as mild pro-oxidants, with
ensuing upregulation of the antioxidant defenses of the cell. Accordingly, they can be
considered as hormetic factors. For instance, in the presence of peroxidases, HT can un-
dergo a redox cycling that generates superoxide [70], and tyrosol also increases C. elegans
lifespan by activating the heat shock response [71]. It was reported that HT reduces brain
mitochondrial oxidative stress and neuroinflammation in AD-prone transgenic mice by
the induction of Nrf2-dependent gene expression [72]. The eight-week administration
of oleuropein (60 mg/kg/day) improved mitochondrial function and reduced oxidative
stress by activating the Nrf2 pathway in SHR rats [73]. Furthermore, tyrosol (240 mg/kg)
was found to be protective against LPS-induced acute lung injury through the inhibition
of NF-κB and the activation of AP-1 and of the Nrf-2 pathway [74]. EVOO polyphenols
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also enhance Nrf-2 activation at the hepatic level and the ensuing release of antioxidant
enzymes [75]. Nrf2 is considered the principal regulator of redox homeostasis and its
activation inhibits pro-inflammatory mediators such as cytokines, COX-2 and iNOS [76].
EVOO polyphenols limit inflammation by reducing the expression/activity of the tran-
scription factors NF-κB and AP-1 [77] thanks to their free radical scavenging and radical
chain breaking capacity and to the reduced formation of ROS and RNS. Moreover, HT
inhibits the development of the inflammatory cascade following LPS and carrageenan
injection through downregulation of the levels of pro-inflammatory cytokines (TNF-α
and IL-1β), COX2, iNOS, NO, PGE2 and NF-kB and reducing DNA damage [78–80]. It
was reported that the co-injection of OLE (450 µM) with Aβ42 (50 µM) into the nucleus
basalis magnocellularis (NBM) of adult rats interfered with Aβ aggregation and signifi-
cantly counteracted Aβ toxicity against choline acetyltransferase-positive neurons of the
NBM and reduced astrocyte and microglia activation [81]. Another study reported that
OLE protects transgenic C. elegans strains, constitutively expressing Aβ3-42, by reducing
Aβ plaque load and motor deficits [82]. Interestingly, significant anti aggregation and
neuroprotective effects of a diet supplemented with OLE, HT or a mix of polyphenols from
olive mill wastewater were reported in the TgCRND8 mouse model of Aβ deposition. In
these transgenic mice, a significant improvement in cognitive functions and a significant
reduction in Aβ plaque number, size, and compactness were found in 3- and 6-month-old
mice (at the early and intermediate stage of Aβ deposition, respectively) fed for 8 weeks
with the OLE-supplemented diet [83–85]. A significant improvement in synaptic function
and a significant reduction in the number, size and compactness of both Aβ42 and its
3-42 pyroglutamylated derivative (pE3-Aβ) deposits occurred even when the treatment
was started at 10 months, when these mice display increased brain deposits of Aβ and, in
particular, of pE3-Aβ in the cortex and hippocampal areas. These data indicate that oral
diet supplementation with OLE not only results in the prevention of amyloid deposition
but also in the disaggregation of preformed plaques and in a reduction in pE3-Aβ genera-
tion [85]. The effect of OLE against Aβ peptide aggregation was dose-dependent and could
be reproduced by diet supplementation with a mix of polyphenols from olive mill wastew-
ater or by HT administered at the same dose as that of pure OLE [84,86]. Interestingly,
the treatment with OLE (50 mg/kg of diet for 8 weeks) astonishingly activated neuronal
autophagy even in TgCRND8 mice at an advanced stage of pathology. In these animals,
histone 3 acetylation on lysine 9 (H3K9) and histone 4 acetylation on lysine 5 (H4K5) were
increased in the cortex and the hippocampus; such an increase matched both a decrease in
HDAC2 expression and a significant improvement in synaptic function [85].

It is known that abnormal acetylation takes place in memory and learning disorders
such as AD, where a significant increase in HDAC2 inhibits gene expression at specific loci,
such as those involving autophagy markers [87]. In addition to the induction of an intense
and functional autophagic response in the cortex, other relevant biological effects of OLE
were uncovered in the TgCRND8 model; these include increased microglia migration to
the plaques for phagocytosis, enhanced hippocampal neurogenesis and reduced astrocyte
reaction [83,88]. OLE induced autophagy through the increase in cytosolic levels of Ca2+

and the subsequent activation of the enzyme complex AMPK by Ca2+/Calmodulin Protein
Kinase Kinase β (CaMKKβ) and the ensuing increase in phosphorylation of mammalian
target of rapamycin (mTOR) with mTOR inhibition [89]. These data support the idea that
autophagy activation by OLE and other olive polyphenols proceeds via modulation of the
AMPK–mTOR axis, similarly to data reported for other plant polyphenols [90]. TgCRND8
mice fed with a diet supplemented with OLE or HT (50 mg/kg of food) exhibited increased
levels of Beclin-1 and LC3 autophagic markers in the soma and dendrites of neurons of the
somatosensory/parietal and entorhinal/piriform cerebral cortex, together with improved
autophagosome/lysosome fusion [83,86]. Furthermore, the significant accumulation of
PAR polymers and the increase in PARP1 expression found in the cortex at the early
(3.5 months) and intermediate (6 months) stage of Aβ deposition in the TgCRND8 mice
were rescued to control values by OLE supplementation. OLE-induced reduction in PARP1
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activation was paralleled by the overexpression of SIRT1, and by a decrease in the pro-
inflammatory NF-κB and the pro-apoptotic p53 marker [88].

The ability of EVOO polyphenols to modulate the action of NF-kB was observed
both in vitro and in vivo in different tissues. In vivo, HT attenuated apoptosis in rat brain
cells by modulating the levels of caspase-3 and NF-kB p65 subunit [91]; in high-fat diet
(HFD)-fed C57BL/6 J male mice, daily doses of HT (5.0 mg/kg) attenuated the increment
of NF-κB and SREBP 1c, and increased the activity of Nrf2 and PPAR-γ in the liver [92].
In female BALB/c mice, an EVOO-supplemented diet was protective in the management
of induced systemic lupus erythematosus disease, likely through the inhibition of the
MAPK, JAK/STAT, and NF-κB pathways in splenocytes [93]. One of the most studied
upstream constituents of the NF-κB signaling pathway is the activation of the mitogen-
activated protein kinases (MAPKs) [94]. In the TgCRND8 mice, an HT-supplemented diet
modulated MAPK signaling by activating ERK and downregulating SAPK/JNK expression,
a mechanism that may underlie memory improvements in these mice [86]. These data agree
with other findings suggesting an involvement of ERK stimulation in memory formation
and synaptic plasticity. In the C57BL/mouse model of AD, the administration of HT and
its acetylated derivative significantly improved spatial memory deficits induced by the
intracerebral injection of Aβ42 plus ibotenic acid. The latter affected the Bcl-2/Bad levels,
activated caspase/cytochrome-dependent apoptosis, and downregulated pro-survival
genes also involved in memory functions (Sirt-1, CREB, and CTREB target genes), whereas
HT administration alleviated these alterations [95]. Taken together, these data suggest that
OLE and/or its metabolite, HT, can be effective to combat cellular alterations underlying
AD symptoms in the absence of undesirable side effects.

Finally, HT was shown to inhibit the toxicity associated with α-synuclein aggregation
in PD [96]; HT and OLE improved spatial working memory and energetic metabolism
in the brain of aged mice [97]; and HT decreased oxidative stress in the brain of db/db
mice, a widely used human T2DM animal model, by improving mitochondrial function
and inducing phase II antioxidative enzymes through the activation of the Nrf2–ARE
pathway [98].

To date, less data have been reported for oleocanthal. Recently, in vitro and in vivo
studies reported that oleocanthal enhances β-amyloid clearance as a potential neuroprotec-
tive mechanism [99,100].

4. Antioxidant Properties of Olive Polyphenols: Molecular Mechanisms

The overproduction of ROS correlates with lipid, protein or DNA damage involved
in the onset of degenerative diseases; accordingly, cell defenses against a rise in ROS
are fundamental [101]. Antioxidants inhibit oxidation; therefore, to react to oxidative
stress, organisms maintain complex systems of antioxidants, primarily glutathione (GSH).
Unfortunately, only a few drugs and biological molecules, such as vitamins, have been
reported to act as antioxidants, yet with possible side effects [102,103].

Nowadays, researchers are focusing their attention on the antioxidant properties of
natural compounds, without relevant side effects. In particular, the importance of the
antioxidant activity of lipophilic and hydrophilic phenols in EVOO has emerged [104].
This fraction is physiologically produced by plants to react against the injuries produced
by various pathogens or insects [28,105]. The antioxidant activity of the major phenolic
components of EVOO, OLE and HT is related to their relative bioavailability with an
appreciable level of absorption, fundamental to exert their metabolic and pharmacokinetic
properties [49]. In molecular terms, OLE and HT, with their catecholic structure, behave
as antioxidants in different ways: (i) by scavenging the peroxyl radicals and breaking
peroxidative chain reactions, generating very stable resonance structures [106]; and (ii) by
acting as metal chelators, therefore, preventing the copper sulphate-induced oxidation of
low-density lipoproteins [107]. The activity of OLE and HT as metal chelators could be
attributed to the ability of the hydroxyl groups to behave as electron donors and to the
ensuing formation of intramolecular hydrogen bonds with free radicals [32]. However,
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the scavenging activity of OLE and HT was also assessed in non-metal oxidation systems.
Indeed, data obtained in vitro highlight the ability of polyphenols to reduce the inactivation
of catalase (CAT) by hypochlorous acid (HOCl); this effect protects against atherosclerosis
following LDL oxidation by HOCl through apoB-100 chlorination [108]. Moreover, HT has
been reported to improve the redox status of the cell by increasing the levels of GSH [109].

Recently, the oxidative damage in age-related diseases turned out to be primarily
caused by reduced levels of the transcriptional Nuclear factor erythroid 2 (NF-E2)-related
factor 2 (Nrf2) [110], and it was proposed as a therapeutic target for metabolic syndromes,
including obesity, due to its behavior as a mediator of general adaptive responses of the
cell, including proteostasis and inflammation [111,112]. However, the pivotal role of Nrf2 is
involved in the regulation of protection against oxidation [113]. Following Nrf2 activation
and consequently its translocation to the nucleus, Nrf2 binds to antioxidant response
elements (ARE); after binding, it acts on the transcriptional expression of several antioxidant
enzymes, including superoxide dismutase (SOD), c-glutamylcysteine synthetase (c-GCS),
glutathione S-transferase (GST) and NADPH quinone oxidoreductase-1 (NQO1) [114].

EVOO polyphenols have been reported to interact with Nrf2 and with Nrf2-controlled
enzymes. In vivo studies showed that EVOO polyphenols increased, at the mRNA level,
the expression of Nrf2 and of its targets paraoxonase-2 (PON2), c-GCS, NQO1, and GST
in the heart tissue of senescence-accelerated mouse-prone 8, whose diet included 10%
olive oil [115]. These effects have been ascribed to HT. Indeed, a model of metabolic
alterations, the high-fat diet (HFD)-fed male mice C57BL/6J, supplemented with HT
(5.0 mg/kg), displayed a reduction in oxidative stress by restoring Nrf2 and the activity
of the peroxisome proliferator-activated receptor-α (PPAR-α) to normal levels [116]. The
same results were obtained when the same model was supplemented with the highest
dose of HT (10–50 mg/kg/day), which also resulted in an increase in GST activity in
the liver and in the muscle [117]. Finally, spontaneously hypertensive rats fed with OLE
(60 mg/kg/day) showed increased levels of Nrf2-dependent phase II enzymes, such
as NQO-1 [77]. Anyway, in spite of these and other data, the molecular mechanisms
controlled by EVOO polyphenols in terms of antioxidant activity are not still clear; in fact,
the reported effects were probably determined by the tissue localization of the enzyme and
by the different concentrations of phenols used. Indeed, differently from previous data, in
60-day-old Wistar male rats fed with 7.5 mg/kg/day HT, oxidative stress was increased
in heart tissue, probably due to the high concentration used [118]. The latter finding is
not surprising; in fact, OLE and HT exert anti-proliferative and pro-apoptotic effects on
tumor cells in vitro, inducing an accumulation of hydrogen peroxide mediated by the high
doses [119,120].

The activity of EVOO polyphenols on Nrf2 signaling and on the levels of several
antioxidant enzymes, such as γ-glutamyl-cysteinyl-ligase (γ-GCL) and SOD, was also
reported in in vitro experiments with LPS-treated macrophages [121] and cancer cells [122].
Furthermore, it is widely reported that OLE and HT act on AMPK signaling, and the latter
has been considered as an attractive therapeutic target for antioxidant activity. In fact,
AMPK signaling plays a fundamental role in the cell defense system against ROS by direct
phosphorylation of human FoxO1 (forkhead box O1) at Thr649, with the ensuing increase
in FoxO1-dependent transcription of Mn-superoxide dismutase (MN-SOD) and CAT [123].

In conclusion, the data reported in the present and in the previous paragraph convinc-
ingly support the idea that EVOO polyphenols, in particular OLE and HT, exert antioxidant
activity by interfering with different cellular pathways (Figure 2).
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5. Anti-Inflammatory Properties of Olive Polyphenols: Molecular Mechanisms

Inflammation is an essential defense mechanism of the organism by which the im-
mune system recognizes and eliminates harmful agents and infected cells and promotes
tissue repair to restore body homeostasis. This process is integrated into many coordi-
nated functions and involves transiently elevated levels of cytokines able to activate both
the innate and the adaptive immune systems. The inability to regulate an inflammatory
response has multiple detrimental consequences for the organismal homeostasis; when
the inflammatory response persists, a shift towards a long-term unresolved and uncon-
trolled immune response, known as chronic inflammation, involving macrophage- and
lymphocyte-accumulated leukocytes does occur, and this results in local or systemic dam-
age to the tissue or organs and in the degradation of normal physiologic function. Chronic
inflammation is causally associated with disease onset or progression and increases with
age. Indeed, the levels of cytokines, chemokines as well as the expression of genes involved
in inflammation are higher in older people or in patients with autoimmune diseases that
show a greater propensity to metabolic syndrome, cardiovascular disease and other chronic
conditions such as frailty, multimorbidity and a decline in physical and cognitive function.
Accordingly, interventions that target inflammatory pathways and restore a deregulated
inflammatory response are promising strategies to prevent disease progression.

Convincing evidence highlights that a regular intake of food rich in polyphenols may
reduce the risk for the growth of chronic diseases, including obesity, diabetes mellitus
and cardiovascular diseases. This healthy effect results largely from the anti-inflammatory
power of the polyphenolic compounds that is expressed by various mechanisms such as
antioxidant activity (see previous paragraph) and the modulation of signaling pathways
and transcriptional events (Figure 3).
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In a rheumatoid arthritis model, the EVOO phenolic extracts showed joint protec-
tive properties and reduced proinflammatory mediators by the inhibition of MAPK and
NF-κB signaling in activated synovial fibroblasts [124]. In this model, a polyphenolic
extract also inhibited IL-1β-induced matrix metalloproteinases, TNF-α and IL-6 produc-
tion, as well as IL-1β-induced cyclo-oxygenase-2 (COX-2) and microsomal PGE synthase-1
(mPGES-1) [125]. Research on the inflammatory responses in primary human keratinocytes
showed that HT and its acetate ester (HTy-Ac), a natural hydroxytyrosyl derivative found
in olive oil, interfere with NF-κB signaling by reducing the degradation of IκB (Inhibitor of
kB), the nuclear translocation of NF-κB, its recruitment at the promoter, and the ensuing
gene transcription. In addition, in this case EVOO polyphenols efficiently attenuated the
expression of pro-inflammatory mediators such as thymic stromal lymphopoietin (TSLP)
and the expression of several inflammation-related genes, as well as different TSLP iso-
forms and IL-8, thus restraining harmful processes set off by activated keratinocytes [126].
In endothelial cells, the EVOO phenolic fraction significantly reduced VEGF-induced angio-
genic responses and NADPH-oxidase activity dose-dependently, resulting in the inhibition
of the expression of Nox2, Nox4, MMP-2 and MMP-9 [127]. Luteolin, one of main phenolic
compounds in olive oil, was able to reduce Nox4 and p22phox expression in endothelial
cells treated with TNF-α and the TNF-α-induced adhesion of monocytes to human en-
dothelial cells, a key event in the onset of vascular inflammation. The role of luteolin as
an inhibitor of this inflammatory event was mediated by suppressing the expression of
adhesion molecules, such as MCP-1, ICAM-1 and VCAM-1, and NF-κB signaling. Similar
results were also reported with HT, tyrosol, taxifolin and OLE, which were able to inhibit
angiogenesis through their inhibition of VEGFR-2 at specific phosphorylation sites [128].

In peripheral blood mononuclear cells and in endothelial cells, HT modulated the
inflammatory process through a reduction in the levels of MMP-9, prostaglandin, PGE2
and tromboxanes (TX), by inhibiting COX-2 (but not COX-1). The mechanism suggested
for the action of HT, tyrosol and their secoiridoid derivatives (oleacein and oleocanthal) on
the inflammatory process is similar to that reported for selective inhibitors of COX-2, such
as nonsteroidal anti-inflammatory drugs (NSAIDs) [110,129,130].

Recently, a protective effect, at the intestinal level, of EVOO polyphenols, in terms
of the prevention of redox unbalance and of slowdown of the onset and progression of
chronic intestinal inflammation, has been described in the human colon adenocarcinoma
cell line (Caco-2). In these cells, the phenolic extract allowed the reversion of the oxysterols-
driven activation of JNK and p38 and the following phosphorylation of IkB. The inhibition
of the NF-kB pathway, iNOS induction and the reduction in IL-6, IL-8 and NO levels
were detected after oxysterol stimulation in the presence of the phenolic extract. HT and
its metabolites, hydroxytyrosol sulfate, 4-glucuronide and 3′-glucuronide, were able to
inhibit the endothelial activation and expression of VCAM-1 and ICAM-1 in the endothelial
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cells of the human umbilical vein or in the intestinal Caco-2 cells stimulated by LPS or
TNF-α or IL-1beta [131–135]. Further evidence has shown that olive oil polyphenols were
particularly efficient against LPS-induced inflammation in human macrophages (THP-1
cells) by restoring a normal level of some inflammatory factors such as IL-6, IL-1β and
MCP-1 [136].

Oleocanthal, in a dose-dependent manner, induced the inhibition of COX-1 and COX-2
more efficiently than ibuprofen [137]. Tyrosol and hydroxyl-isocroman compounds, a class
of ortho-diphenols present in EVOO, displayed an inhibitory effect on NO release and
on the arachidonate cascade and the eicosanoid synthesis (PGE2 and LTB4) in cultured
macrophages (RAW 264.7) stimulated by phorbol-12-myristate-13-acetate esters [136].
1-Phenyl-6,7-dihydroxy-isochroman, through the suppression of NF-κB activation and
a decrease in COX-2 synthesis, efficiently inhibited the production of TXA2, PGE2, and
TNF-α in LPS-primed human monocytes [138]. The data reported above suggest the use of
HT or its derivatives as possible innovative drugs to be used in the control of inflammation
and of the immune response.

The crucial role of the gut microbiota on the general inflammatory status and cardio-
vascular, metabolic, and even brain health is becoming more and more convincing via the
gut–brain axis. Accumulating data support the beneficial efficacy of EVOO polyphenols
on gut microbiota and intestinal immunity. EVOO polyphenols exhibit antibacterial and
bacteriostatic effects against pathogenic intestinal microflora, improve the growth of ben-
eficial bacterial strains, and indirectly increase the production of microbially produced
short-chain fatty acids (SCFAs), which exhibit anti-inflammatory effects and modulate
gene expression through epigenetic mechanisms [139–141]. Moreover, SCFAs are potent
activators of GPR43 and play an important role in blood glucose regulation [142].

Olive oil polyphenols, such as HT and other compounds generated from certain bacte-
rial species (e.g., Lactobacillus) favored by EVOO polyphenols, can act as ligands of the
aryl hydrocarbon receptor (AhR) that represent a key element in the status of mucosal
immunity and in the homeostasis of the gut barrier [143]. Furthermore, as an AhR ago-
nist, HT was shown to favor the induction of angiogenic genes in hypoxic MCF-7 cells
and to contribute to slow cancer progression and metastasis [144]. Taken together, these
data suggest a significant protective effect by EVOO polyphenols at the intestinal level,
supporting the link between diet and the pathogenesis and development of inflammatory
bowel diseases [145]. It is worth noting that Lactobacillus and Bifidobacterium are often
greatly reduced in patients with AD and in elderly people. These bacterial types, whose
populations are increased following EVOO consumption, produce γ-aminobutyric acid
(GABA), thus influencing the GABAergic firing pattern in the brain through enteric and
vagal systems [146]. In addition, EVOO may protect cognitive performance via its antibac-
terial activity towards defined pathogenic species of bacteria considered as a key element
for AD in the pathogen interaction hypothesis [147].

6. Clinical Trials Highlighting the Antioxidant and Anti-Inflammatory Properties of
Olive Polyphenols

Many clinical trials and population studies provide important data on the consis-
tent and efficacious protection resulting from a prolonged olive oil intake against the
insurgence of aging-associated pathologies, such as neurodegeneration, cardiovascular
diseases, metabolic diseases and cancer. Taking into consideration all the results from
these epidemiological studies supporting a causal link between the intake of olive oil
polyphenols and effective benefits, in November 2011 the European Food Safety Authority
(EFSA) approved two health claims regarding the salutary role of olive oil consumption.
The claims recommend the use of olive oil to substitute saturated fats to maintain regu-
lar blood cholesterol levels and to protect blood lipids from oxidation. These protective
effects can be achieved by the intake of at least 20 g of EVOO or the consumption of
5.0 mg of HT or its derived compounds every day (e.g., oleuropein complex and tyrosol)
(http://www.efsa.europa.eu/, accessed on 2012).

http://www.efsa.europa.eu/
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One of the most remarkable large dietary intervention randomized trials was the
Prevención con Dieta Mediterránea (PREDIMED) trial, carried out in Spain. This trial in-
volved 7447 participants at high cardiovascular risk, or with T2DM or≥3 major risk factors,
including smoking, hypertension, elevated LDL-C and low HDL cholesterol levels, over-
weight or obesity, or with a family history of premature coronary heart disease [148–150].
The results from this trial, at a median of 4.8 years’ follow-up, showed that the group
following the Mediterranean diet supplemented with EVOO or nuts showed a 30% lower
risk of developing cardiovascular pathologies, such as myocardial infarction, stroke, and
consequent death, with respect to the group assigned to a low-fat diet.

In a subset of the PREDIMED trial, cognitive performance was also evaluated, with
the conclusion that an EVOO-enriched MD significantly improved cognition [151–153]. In
another subset of the PREDIMED study, the breast cancer incidence was also investigated
in the same cohort. A 68% reduction in the risk of developing cancer was observed in the
EVOO group [154]. In addition, results from a subsample (n = 990) of the PREDIMED trial
indicated that a continuous intake of VOO containing a high phenolic content, instead of
other types of olive oils, was efficient in preserving LDL from oxidation and in increasing
the levels of HDL-cholesterol. A controlled, double blind, cross-over, randomized, clinical
trial using olive oils with different phenolic concentrations (from 0 mg/L for refined olive
oil, ROO, to 629 mg/L for VOO) was conducted in 30 healthy volunteers for 3 weeks,
preceded by two-week washout periods. After VOO ingestion, LDL, HT monosulfate and
homovanillic acid sulfate, but not tyrosol sulfate, levels were increased, while the concen-
trations of biomarkers of oxidative stress, including oxidized LDL (oxLDL), conjugated
dienes, and hydroxy fatty acids, decreased. ROO ingestion did not affect the levels of LDL
phenols and oxidation markers [155,156].

Another randomized, controlled, parallel-arm, clinical trial was carried out to compare
the effects of olive oil with high (EVOO) or low (ROO) polyphenol levels in patients
undergoing coronary angiography. Forty patients with at least one classic cardiovascular
risk factor were randomly divided in two groups and received 25 mL EVOO or ROO
daily for 6 weeks. At the end of treatment, the group that received high-polyphenol
olive oil had a significant reduction in plasma LDL-cholesterol and plasma CRP. This
also resulted in an increased production of inflammatory cytokines, such as IL-10, in LPS-
stimulated ex vivo whole blood. Daily uptake of EVOO in subjects under pharmacological
treatment could further improve LDL-cholesterol and markers of inflammation [157].
Similar beneficial effects have been demonstrated by “The Three-City Study”, carried out
in 2009 on 8000 elderly subjects. This first report correlated olive oil consumption with a
reduced risk of visual memory decline in a population over 65 years old [35].

The positive impact of EVOO versus low-polyphenol olive oil on markers of CVD risk
in a healthy Australian cohort was investigated in a double-blind randomized cross-over
study (OLIVAUS). The trial examined markers of CVD risk related to cholesterol transport
and metabolism, LDL oxidation, blood pressure (peripheral and central), arterial stiffness,
inflammation, and cognitive performances in 50 healthy participants subjected to three
weeks of daily administration of EVOO compared to a low-polyphenol olive oil [158].

A cross-over controlled trial (ISRCTN09220811), the EUROLIVE (Effect of Olive Oil
Consumption on Oxidative Damage in European Populations) study, was carried out in
25 healthy European men (20–59 years). The participants consumed 25 mL raw olive oil
with low or high polyphenol content daily for 3 weeks. The interventions were preceded
by a two-week washout period. Then, the effects of olive oil polyphenol intake on plasma
LDL concentrations and atherogenicity were evaluated, whereas the effects on lipoprotein
lipase (LPL) gene expression were checked in another subset study of EUROLIVE on
18 men. The data obtained from this study showed a decrease in plasma concentrations
of apo B-100 and of total and small LDL particles together with the LDL oxidation lag
time and LPL gene expression [159]. Another EUROLIVE study confirmed that olive
polyphenols increase human HDL functionality, favoring HDL-mediated cholesterol efflux
from macrophages [160].
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The association between olive oil intake and T2DM incidence in the US population
resulted from a 22-year follow-up study involving 59,930 35–65-year-old women from
the Nurses’ Health Study and 85,157 26–45-year-old women from the NHS II, free of
diabetes, CVDs and cancer at baseline. The results suggested that higher olive oil intake
was correlated with a moderately reduced risk of T2DM, while the risk increased in women
consuming other types of fats and salad dressings [161].

Another short-time study highlighted the effect of EVOO on post-prandial levels of
glucose and LDL-cholesterol. Post-prandial glycemic and lipid profiles were investigated
in 25 healthy subjects randomly assigned in a cross-over design to a Mediterranean diet
supplemented with or without 10 g EVOO/day. The results showed that EVOO improved
post-prandial glucose and LDL-cholesterol levels, suggesting an anti-atherosclerotic effect
of the MD [162]. Furthermore, the same trial revealed that EVOO consumption resulted
in high GLP-1 and gastric inhibitory peptide (GIP) levels in the circulatory system, while
in another trial with type 1 diabetes (T1D) patients, an increase in gastric emptying and
GPL-1 secretion was observed together with reduced glucose absorption through glucose–
lipid competition that can contribute to a lower glycemic response [163]. In addition, an
acute intake of EVOO resulted in a significant reduction in the levels of plasma glucose,
triglyceride, apolipoprotein B-48, and dipeptidyl peptidase-4 activity and in a significant
increase in the peripheral blood levels of insulin and glucagon-like peptide 1 (GLP-1), as
revealed by a randomized trial of 30 participants with impaired fasting glucose levels [164].

The MICOIL pilot study was published on 10 November 2020. The trial confirmed
that the long-standing benefits against cognitive impairment of polyphenol-enriched olive
oil are greater than those granted by “simple” EVOO. The clinical trial divided participants
with mild cognitive impairment (MCI) into three randomized groups. Genetic predisposi-
tion to AD was taken into account to obtain a homogenous baseline. Each group followed
a unique diet: The first group received 50 mL/day of high-polyphenol olive oil, while
following an MD. The second group received 50 mL/day of olive oil with moderate pheno-
lic content, along with an MD. The third group only followed a normal MD. Long-term
consumption of early harvest high phenolic or moderate phenolic EVOO was associated
with an important amelioration of cognitive performance, as opposed to the low phenolic
content MD, independent of the presence of genetic predisposition [165]. In 2010, a study
on 20 patients with MetS showed that the acute intake of VOO was able to reduce the
postprandial inflammatory response and the expression of several pro-inflammatory genes,
mainly by decreasing the activation of NF-kB, of the activator protein-1 transcription factor
complex AP-1, cytokines, mitogen-activated protein kinases (MAPKs) or arachidonic acid
pathways, secondary to the reduction in LPS intestinal absorption following a high-fat
meal [166,167].

To describe the exact role of olive oil in the metabolic changes reported above, a
network meta-analysis of 30 human intervention studies totalizing 7688 subjects has been
performed [168]. Using this approach, it was shown that the effect of olive oil on glycemia
and blood lipids cannot be distinguished from the impact of MD adherence. Indeed,
the administration of olive polyphenols in the dose suggested by EFSA does not modify
glycemia levels, while it ameliorates insulin sensitivity [169]. These data are in accordance
with the reported evidence of a direct action of polyphenols on the pancreas [170] and
with the improvement of insulin secretion through the anti-inflammatory activity of oleic
acid [171]. The only clear effect of the intake of a high-polyphenol olive oil was on HDL-
cholesterol levels, on LDL and nucleic acid oxidation and on the plasma antioxidant activity,
in agreement with previous meta-analyses [172].

Finally, an MD supplemented with polyphenol-rich EVOO has probiotic effects pro-
moting the growth of bacteria of the Lactobacillus and Bifidobacterium types. These data
result from different studies where overweight/obese participants and patients with HIV
or with hypercholesterolemia consumed 40–50 g/day of EVOO for 12 weeks [172–174].
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7. Conclusions and Future Perspectives

Several data highlight the ability of olive oil polyphenols to counteract aging and to
protect against the insurgence of aging-associated pathologies, such as neurodegeneration,
cardiovascular and metabolic diseases, and cancer, in part associated with derangement of
redox homeostasis and proteostasis. However, recent research supports the idea that the
health-promoting properties of olive oil polyphenols go well beyond their anti-amyloid
and antioxidant power reported previously, highlighting their multi-target effects.

The claimed benefits of olive oil polyphenols have been supported by positive and en-
couraging results from many preclinical studies both in vitro and in animal models, as well
as by population surveys and clinical trials often involving large numbers of participants.
However, to date, there are still some doubts to resolve and therefore definitive results are
lacking, even for the bioavailability of these molecules and their effective beneficial dose.
In particular, further research is needed to better describe at the molecular and genetic
levels the effects of olive polyphenols in several investigated biological systems to provide
solid and definitive proof of their positive effects in a number of human pathologies. It
must also be considered that the health benefits in humans most likely do not depend
on the consumption of a single polyphenol but are the result of a variety of synergistic
mechanisms of a combination of several polyphenols or other plant components.

Each factor affecting the bioavailability, bioaccessibility and bioactivity of polyphenols
should also be considered. This is crucial because the bioavailability of these molecules
is influenced by many factors, including phenolic structure, food processing, the food
matrix, and the organism (microbiota composition, efficiency of detoxification mecha-
nisms); furthermore, all these factors can interact with each other, modulating polyphenol
bioavailability. Moreover, the latter, and thus the efficacy of these compounds, can be
improved by administration in combination with other phytochemicals or drugs or in
polyphenol-loaded nanotechnology-based delivery systems.

Finally, it might be more relevant and interesting to investigate the relationship be-
tween EVOO polyphenols and the gut microbiota to obtain further dietary indications. In
fact, the dietary polyphenols/gut microbiota relation is a bi-directional one. On the one
hand, polyphenols can affect the composition of gut microbiota; on the other hand, the
microbiota is able to metabolize these molecules into bioactive compounds. Expanding
knowledge on the effects of dietary polyphenols on the intestinal microbiota and the rela-
tive mechanisms of action and ensuing consequences, in addition to pharmacokinetics and
pharmacodynamics of EVOO polyphenols, will be essential to better assess the effective
doses and the levels reached by these molecules in different tissues and organs following
different routes of introduction.
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