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Abstract

Gene regulatory networks are a crucial aspect of systems biology in describing molecular mechanisms of the cell. Various
computational models rely on random gene selection to infer such networks from microarray data. While incorporation of
prior knowledge into data analysis has been deemed important, in practice, it has generally been limited to referencing
genes in probe sets and using curated knowledge bases. We investigate the impact of augmenting microarray data with
semantic relations automatically extracted from the literature, with the view that relations encoding gene/protein
interactions eliminate the need for random selection of components in non-exhaustive approaches, producing a more
accurate model of cellular behavior. A genetic algorithm is then used to optimize the strength of interactions using
microarray data and an artificial neural network fitness function. The result is a directed and weighted network providing
the individual contribution of each gene to its target. For testing, we used invasive ductile carcinoma of the breast to query
the literature and a microarray set containing gene expression changes in these cells over several time points. Our model
demonstrates significantly better fitness than the state-of-the-art model, which relies on an initial random selection of
genes. Comparison to the component pathways of the KEGG Pathways in Cancer map reveals that the resulting networks
contain both known and novel relationships. The p53 pathway results were manually validated in the literature. 60% of non-
KEGG relationships were supported (74% for highly weighted interactions). The method was then applied to yeast data and
our model again outperformed the comparison model. Our results demonstrate the advantage of combining gene
interactions extracted from the literature in the form of semantic relations with microarray analysis in generating
contribution-weighted gene regulatory networks. This methodology can make a significant contribution to understanding
the complex interactions involved in cellular behavior and molecular physiology.
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Introduction

Gene regulatory networks (GRNs) are DNA-encoded regulatory

subsystems in the genome that coordinate input from activator and

repressor transcription factors to control various biological

functions, including development, cell differentiation, and re-

sponse to environmental cues. They provide a systems level

illustration of physiological function and are composed of modules

at varying hierarchical levels [1]. A GRN provides the pathways of

gene interactions within the context of location and time [2]. For

instance, when a receptor on a particular cell receives a signal and

initiates the activation of a transcription factor, the transcription

factor increases the expression of the target gene, which in turn

alters the production and activation of other pathway components

in a cascading manner, changing the behavior of the cell.

The development of microarray technology allowed the

discovery of gene regulation to move from individual interactions

to thousands of interactions in parallel [3]. However, system-level

techniques like microarrays produce large datasets, requiring

efficient computational methods to identify significant changes in

gene expression and their correlation. One area of systems biology

where these computational methods are increasingly applied is for

the inference of GRNs [4–9]. Although microarray databanks

contain a wealth of data in support of the elucidation of GRNs,

mammalian datasets are often limited by low or nonexistent

replication and too few time points to allow for reliable results.

There have been suggestions (e.g. Sı̂rbu et al. [10]) that the wealth

of biological knowledge on possible interactions available in the

literature coupled with the limits on available microarray data

warrant an attempt to implement an integration of the two to

improve reliability of GRN inferencing results.

We propose utilizing knowledge extracted from publications as

a network of interactions and then applying microarray data to

provide a measure of the quantitative effect of each of the

individual interaction components. The qualitative knowledge at

the core of our approach is provided by SemRep, a natural

PLOS Computational Biology | www.ploscompbiol.org 1 June 2014 | Volume 10 | Issue 6 | e1003666

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003666&domain=pdf


language processing system that extracts textual meaning from the

biomedical literature in the form of semantic relations called

predications (subject-relation-object triples). These predications

mostly represent mammalian and specifically human interactions,

therefore we use quantitative data provided by analysis of publicly

available human breast cancer microarray datasets using a genetic

algorithm. We compare the fitness of our model to that of a high-

performing model from the literature to determine the perfor-

mance of our technique as well as another model based on time-

delay correlation. We also compare our results to KEGG

pathways and find not only included interactions but also

interactions not included but validated in the literature. We then

modified the components of our method to be compatible with

yeast data and again compared with the state-of-the-art model.

Our method provides a novel approach to enhancing microarray

data analysis with knowledge from the literature, and is the first

such approach to incorporate semantic relations. Combining

microarray data with semantic relations provides a more accurate

model of gene interactions directing the behavior of cells, and

consequently an enriched understanding of molecular physiology.

This supports the discovery of disease mechanisms, which can then

be exploited for diagnostic and therapeutic development in

medicine.

Related work
Previous computational models used to reconstruct gene

regulatory networks from microarray data have employed

techniques such as Hidden Markov, Bayesian network, and

stochastic differential equation models [11–15]. In a Hidden

Markov Model, the real states of genes are treated as hidden

variables, and the gene expression values are observed. This

permits the states of genes at a given time t to be considered as

depending only on the previous time point t-1. A Bayesian network

is a representation of a joint probability distribution. When

applying Bayesian networks to genetic regulatory systems, nodes

are identified with genes and their expression levels, edges indicate

interactions between genes, and conditional distributions describe

these interactions. In the stochastic differential equation, the

change of expression of a given target gene over two adjacent time

points is equal to the accumulation of the weighted results of the

sigmoid function of its regulator genes plus a random error. These

computational models all reflect one or more aspects of the nature

of genes and gene regulatory networks, but computational

complexity limits the dimensionality of the modeled networks,

and sensitivity to noise in gene expression measurement largely

reduces their accuracy.

Genetic algorithms (GA) [16] have also been widely used for the

inference of gene regulatory networks [17–20]. Genetic algorithms

are inspired by Darwin’s theory of evolution. Within this

methodology, a population of candidate solutions to a problem

is created and then evolves over a specified number of generations

using phenomena such as cross-over (swapping components from

other candidates) and mutation (internal, random changes). The

best candidates are propagated through with incremental changes

in the overall structure and the final generation becomes the

solution. At each generation, fitness functions are used to

determine the fittest candidates. A genetic algorithm is a stochastic

algorithm and therefore it is highly likely to find global optima and

can easily escape local maxima. Since the genetic algorithm

execution technique is not dependent on the error surface, it is

capable of solving multi-dimensional, non-differential, non-con-

tinuous, and even non-parametrical problems, which is the nature

of gene expression data. Keedwell et al. used small random gene

subsets evaluated by an artificial neural network (ANN) that is

optimized by gradient descent to form the population of the

genetic algorithm [21]; Liu and Wu used a differential equation to

model the GRNs and genetic programming for optimization [22];

Sı̂rbu et al. compared various evolutionary algorithms for GRN

inferencing and found that Keedwell et al.’s method performs the

best overall [10], prompting us to use their method for the basis of

our model. They also note that using literature-derived knowledge

offers the potential for significant improvement over techniques

that probe component genes randomly, and our use of such

knowledge forms the basis of our deviation from the Keedwell

et al.’s model.

With the rapid rate of growth in the biology literature, text

mining is increasingly seen as indispensable in managing and

discovering new biological knowledge [23]. An active area of

research in biological text mining has been extraction of

interactions between biomolecular entities (genes, proteins, etc.)

from the research literature. Many systems, adopting various

representational means (binary interactions, events, etc.) and using

a variety of rule-based and machine learning-based techniques,

have been proposed for this task. Early systems that focused only

on co-occurrence of entities were soon replaced by systems that

relied on shallow parsing and hand-crafted syntactic rules to

extract binary interactions [24–26, among others]. These methods

generally provided high precision at the expense of lower recall, in

contrast to co-occurrence based methods. More recently, depen-

dency parsing has become the predominant syntactic tool in

extracting biological relations, as evidenced by the BioNLP Shared

Task competitions [27]. These competitions have also signaled the

increasing focus on events as the representational means for

biological relations. Most commonly, dependency relations have

formed the basis for syntactic features (shortest paths, dependency

n-grams, etc.) for machine learning methods, along with lexical

(tokens, n-grams, part-of-speech tags, etc.) and semantic (entity

types, hypernyms, etc.) features. Best machine learning approaches

have included pipeline models based on support vector machines

[28–29] as well as model combination techniques [30] and joint

inference [31]. Some rule-based systems have reported compet-

itive results in this task, as well [32]. Recently, coreference

resolution has also been beneficially integrated into several event

extraction systems [33–34].

As these text mining methods mature, they are increasingly

applied to practical needs of biologists, in tasks such as database

Author Summary

We have developed a methodology that combines
standard computational analysis of gene expression data
with knowledge in the literature to identify pathways of
gene and protein interactions. We extract the knowledge
from PubMed citations using a tool (SemRep) that
identifies specific relationships between genes or proteins.
We string together networks of individual interactions that
are found within citations that refer to the target
pathways. Upon this skeleton of interactions, we calculate
the weight of the interaction with the gene expression
data captured over multiple time points using state-of-the-
art analysis algorithms. Not surprisingly, this approach of
combining prior knowledge into the analysis process
significantly improves the performance of the analysis.
This work is most significant as an example of how the
wealth of textual data related to gene interactions can be
incorporated into computational analysis, not solely to
identify this type of pathway (a gene regulatory network)
but for any type of similar biological problem.

GRN Inference Enhanced with Literature Knowledge
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curation and pathway generation. For example, two tasks in the

recent BioNLP 2013 Shared Task competition [27] (Pathway

Curation [35] and Gene Regulation Network in Bacteria [36])

investigated the feasibility of automatically constructing such

networks from the literature alone. Given a set of relevant

biomolecular entities, the former focused on extracting pathway-

relevant events (e.g. gene expression, regulation, binding, regula-

tion), while the latter focused on constructing a gene regulation

network for the model bacterium Bacillus subtilis involving these

entities. For the latter task, participating groups could either

directly construct a regulation network for the provided entities or

extract the interactions from which such a network could be

derived using a predefined algorithm that the organizers provided.

While the results were encouraging, these tasks remain challenging

as evidenced by the limited participation and the fact that both

tasks presupposed that the entities involved were already known,

thus, addressing only a fraction of the problem of network

construction from the literature. From an opposing viewpoint,

Miwa et al. [37] focused on linking interactions in biological

pathways to supporting evidence from the literature; however,

their work does not address the task of pathway construction.

There have been several attempts at improving gene regulatory

network modeling by incorporating existing knowledge. For

example, Steele et al. used the correlation between different gene

concept profiles to calculate the probability of edges in GRNs

modeled by Bayesian networks [38]. These profiles are determined

by the occurrence of terms in the literature, using the Unified

Medical Language System (UMLS) for normalization. Gutierrez-

Rios et al. used regulatory interactions described in RegulonDB, a

database of the regulatory network of Escherichia coli K-12, to

establish the network of causal relationships to evaluate the

congruence between the literature and whole-genome expression

profiles [39]. Additionally, the literature contains examples of

efforts to combine literature-derived networks and microarray

analysis in contexts other than GRN inferencing. Duarte et al.

reconstructed the human metabolomic network depending largely

on a manual literature review combined with knowledge extracted

from genomic databases and use gene expression analysis to fill in

the gap for a subset of network components [40]. Ashley et al. used

text mining to derive biological pathways from literature relevant

to in-stent restenosis and analyzed which of these were most

relevant to the expression profiles identified by microarray analysis

of tissue samples from patients with this condition [41]. All of these

techniques either use human review to identify asserted interac-

tions or automated approaches to infer them based on co-

occurrence of terms. Our approach combines automation,

allowing for an exponentially greater survey of the literature, with

the identification of assertions in the text by SemRep, moving

beyond mere term co-occurrence and increasing the validity of the

extracted relations.

Several books, book chapters, and journal reviews are available

detailing the pros and cons of various modeling approaches for

GRN inferencing [42–47]. In addition to a description of various

approaches, Karlebach and Shamir [45] also provide a compar-

ative summary of the relative advantages of different types of

models for various features. They align GRN models along a

spectrum from logical models (e.g. Boolean networks) to contin-

uous models (e.g. linear differential equations) to single-molecule

level models (e.g. stochastic simulation models). They identify the

logical end of the spectrum as having a decreased detail, less

faithfulness to biological reality, lower data quantity needs, and

reduced ability to model dynamics, while having greater model

size, computational speed, and inferencing ability. Models at the

single-molecule level are positioned at the other end of the

spectrum, with a higher level of detail, increased faithfulness to

biological reality, greater data quantity needs, and increased

ability to model dynamics and decreased model size, computa-

tional speed, and inferencing ability. Continuous models are

positioned in the middle of the spectrum, with moderate levels of

the assessed model’s characteristics. Although not providing a

complete picture of the comparative characteristics of

Figure 1. Literature-based gene regulatory network discovery
schema. Step 1) a network is formed from semantic predications
extracted from MEDLINE by SemRep for each set of citations related to
a given pathway; Step 2) each network is filtered by predication
argument distance and frequency; Step 3) a genetic algorithm uses
gene expression data to quantify the weight of the interactions of the
gene regulatory network.
doi:10.1371/journal.pcbi.1003666.g001

GRN Inference Enhanced with Literature Knowledge
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GRN modeling techniques, they give an easily accessible

summarization.

Background
SemRep. The idea that the literature holds a wealth of data

that can be systematically used in the development of hypotheses

has been a point of discussion in biology for over a decade [48].

The challenge is facilitating the extraction of relevant informa-

tion from the literature. SemRep [49] addresses this challenge

by extracting salient content from titles and abstracts of

MEDLINE citations in the form of semantic predications,

thereby facilitating large-scale analysis of biomedical knowledge.

A semantic predication is a subject-predicate-object triple,

whose elements are largely derived from ontological knowledge

in the UMLS [50]. The subject and object arguments

correspond to concepts in the UMLS Metathesaurus and the

predicates to relations in an extended version of UMLS

Semantic Network. For example, SemRep extracts the predica-

tion in (2) from the sentence in (1):

(1) In addition to the upregulation of death receptors, p53

induced the pro-apoptotic Bcl-2 family members Bik and Bak

and downregulated the anti-apoptotic Bcl-xL protein. (PMID:

11313989)

(2) p53-STIMULATES-Bik

SemRep relies on the UMLS SPECIALIST Lexicon [51],

MedPost part-of-speech tagger [52], and a partial syntactic parser

(‘‘chunker’’) for syntactic analysis. Noun phrases identified by the

Figure 2. The KEGG p53 signaling pathway entry showing the pathway map and some reference citations. The PMIDs for each
reference citation were used to identify MeSH terms with PubMed (see section Predication network generation). http://www.genome.jp/kegg-bin/
show_pathway?hsa04115.
doi:10.1371/journal.pcbi.1003666.g002
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parser are mapped to UMLS Metathesaurus concepts by the

MetaMap program [53]. With respect to gene/protein terms,

ABGene [54] and EntrezGene [55] serve as supplementary

resources to MetaMap and the UMLS Metathesaurus, respec-

tively. To identify predicate mentions in text, SemRep uses

indicator rules that map lexical/syntactic constructions, such as

verbs, nominalizations, and modifier-head structures, to UMLS

Semantic Network relations. For example, one of those rules

stipulates that the verb induce may indicate the relation STIMU-

LATES, and this rule licenses mapping induced in the example

above to this relation. The subject and object arguments (p53 and

Bik, respectively) are recognized using MetaMap and ABGene and

are then normalized to official EntrezGene symbols. Several

studies have evaluated predications extracted by SemRep. For

example, Ahlers et al. reported 73% precision and 55% recall in

pharmacogenomics relations [56]. Another evaluation focused on

a specific linguistic structure (nominalizations) and reported 75%

precision and 57% recall [57]. The entire MEDLINE database

has been preprocessed with SemRep for efficient access, resulting

in the SemMedDB database, which contains more than 57 million

predications extracted from 21 million citations, as of June 30,

2012 [58]. By normalizing free text to semantic predications,

SemRep provides the ability to represent biomedical content as a

network of relations. In our model, the nodes of the network

represent genes and the edges represent interactions (INTER-

ACTS_WITH, INHIBITS, and STIMULATES) between the

genes.

Microarray data
The breast cancer microarray data used in our experiments

comes from NCBI’s Gene expression omnibus (GEO: http://

www.ncbi.nlm.nih.gov/geo/) [59]. GEO provides free access to

raw and processed microarray and sequencing data submitted by

researchers based on their published work. For the yeast study, we

used the cdc15 time course data from the Yeast Cell Cycle

Analysis Project website (http://genome-www.stanford.edu/

cellcycle/) originally used in [60].

KEGG
For assessment of our methodology, we use the Kyoto

Encyclopedia of Genes and Genomes (KEGG: http://www.

genome.jp/kegg/) [61], which provides gold standard sets of

molecular pathways. KEGG pathways are manually curated

networks based on a review of protein-gene and protein-protein

interactions described in the literature. It is worth noting that

KEGG pathway maps are an abbreviated representation of known

interactions, focusing on those considered to be best supported by

Table 1. Number of predications for each pathway.

Pathway Citations Predications

Raw Dist. Uniq. Norm. Freq.

p53 5726 14085 3747 2771 1287 155

Apoptosis 13797 27421 6183 5028 1382 93

Cell Cycle 40328 96696 26944 21367 7825 822

PPAR 7701 6730 1708 1388 298 14

VEGF 6102 7875 2416 1940 609 62

MAPK 41455 84611 23341 18639 5859 538

Wnt 2236 2013 685 581 181 8

TGF-beta 14868 23803 7136 5427 1620 126

mTOR 2447 2952 857 740 175 4

Jak-STAT 1121 3193 868 741 275 14

ErbB 4400 7947 2162 1864 710 67

Adherens Junction 6397 6616 1673 1334 275 3

Focal Adhesion 1169 2227 563 510 91 0

Citations: the number of citations returned from the PubMed search using related MeSH terms. Raw: the number of gene interaction predications SemRep extracted
from the returned citations. Dist.: the predications after filtering out predications with distance .1. Uniq.: the number of unique predications after eliminating
duplicates. Norm.: the number of predications after normalizing against the HUGO database. Freq.: the number of predications after filtering for a frequency of at least 2
predications.
doi:10.1371/journal.pcbi.1003666.t001

Figure 3. Example network created from semantic predica-
tions, edited for simplicity. Arrows indicate stimulation; bars
indicate inhibition; loops indicate self-stimulation or self-inhibition.
Interactions are directed, so an interaction from atm to tp53 is distinct
from one from tp53 to atm. A single interaction can represent a single
or multiple predications.
doi:10.1371/journal.pcbi.1003666.g003
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evidence and most relevant. As a consequence, the interactions in

a KEGG pathway form a subset of those in the literature, and it is

necessary to assess separately the validity of interactions not in the

KEGG pathway. A KEGG pathway can be accessed as a

downloadable kgml file or an online map, which have slight

differences regarding which genes are included and which

interactions are specified. To mediate these differences we use

both formats for our assessment and consider whether genes and

interactions are included in either version.

Methods

We infer gene regulatory networks in three steps, illustrated in

Figure 1.

N Network generation relies on SemRep and results in an initial

predication-based network.

N Network filtering and normalization involves normalizing gene

names to formal gene symbols and selecting the most reliable

interactions from the predication network.

N Effect quantification uses a genetic algorithm with an ANN fitness

function on microarray data to quantify gene-gene interaction

strength in the network created in previous steps.

To facilitate the establishment and assessment of the system

model, we select the well-studied disease breast cancer as the

starting point, due to the availability of relevant citations,

microarray data, and established KEGG pathways. The 13

pathways contained in the KEGG Pathways of Cancer (human)

map (http://www.genome.jp/kegg-bin/show_pathway?hsa05200)

were used to guide the predication network generation and also in

evaluating the resulting GRNs. These pathways are the p53 (see

Figure 2), Apoptosis, Cell Cycle, PPAR, VEGF, MAPK, Wnt, TGF-beta,

mTOR, jak-STAT, ErbB, Focal Adhesion, and Adherens Junction

pathways.

Predication network generation
In the first step, predication network generation, predications

containing gene-gene interactions (INTERACTS_WITH, STIM-

ULATES, and INHIBITS predications) are extracted from the

MEDLINE citations that supported manual curation of each

KEGG pathway; these citations are listed in the pathway entry on

the KEGG website. These predications are augmented with those

from additional relevant citations, which we identify by first

extracting the Medical Subject Heading (MeSH) terms for each

citation identified in KEGG and then manually refining that list to

eliminate non-specific terms such as Humans, Male, or Biological

Models. The resulting MeSH terms formed the basis of our

PubMed searches. The terms that occurred in a significant

distribution across the citations were grouped with an ‘‘OR’’ in the

query when they were roughly equivalent or part of a set of

different subtopics. As an example, the query for p53 citations was

‘‘(Tumor Suppressor Protein p53[mh] OR Genes, p53[mh]) AND

(Apoptosis[mh] OR Signal Transduction[mh] OR (Phosphorylation[mh]

AND (Neoplasms[mh] OR Neoplasm Proteins[mh] OR Tumor Mar-

kers[mh]))) AND physiology[sh] AND metabolism[sh].’’ This procedure

was repeated to provide a citation list for each pathway. The

number of citations for each pathway is given in Table 1 in

‘Citation’ column. The predications extracted from these citations

were then retrieved from SemMedDB. The number of resulting

predications for each pathway is shown under the column heading

‘Raw’ in Table 1.

Network filtering and normalization
To improve the reliability of our approach, we used

three predication filtering mechanisms, explained below. These

mechanisms result in a smaller set of predications extracted for

each pathway, which forms subnetworks. These subnetworks,

together, serve as the predication network. Figure 3 provides an

example of a subnetwork created from predications related to p53.

This example has been pruned to provide a small network for

simplicity.

Argument-predicate distance filtering
Argument-predicate distance is the number of intervening noun

phrases between an argument and its predicate in the sentence

from which they were extracted. It has been shown that smaller

argument distance leads to higher precision in extracting

interactions [62]. In the example below, both Bax and pro-

caspase-3 are potential objects for p53 activity.

(3) Furthermore, the up-regulation of p53 promoted Bax

expression, which led to the activation of pro-caspase-3 and

Figure 4. Genetic algorithm for effect quantification. An initial
set of 2000 chromosomes, each containing the full complement of
genes paired with every other gene, is created with an initial random
assignment of interaction weights. The fitness of a chromosome is
compared against the expression profile in the microarray data. The
fittest 20% of chromosomes are replicated into the next generation,
and the complement of the population is formed by random crossover
and point mutation of interaction weights of members of the current
generation. After 200 generations, the fittest candidate chromosomes
are identified. ANN = artificial neural network.
doi:10.1371/journal.pcbi.1003666.g004
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eventually to apoptosis in MCF10A-ras cells. (PMID:

5566875)

Bax has an object distance of 1 since it is the first noun phrase

subsequent to the predicate ‘promoted’ and pro-caspase-3 has a

distance of 2. Preferring an argument-predicate distance of 1

selects the predication p53 STIMULATES Bax, while eliminating

the predication p53 STIMULATES pro-caspase-3. In our experi-

ments, we limit both the predicate-subject distance and the

predicate-object distance to 1, which decreased the number of

predications to approximately 27% of the initial number of

predications on average. The number of predications for each

pathway after filtering using argument-predicate distance of 1 is

shown in Table 1 (under ‘Dist.’).

Normalization
After argument-distance filtering is applied, we normalize the

set of predications by removing duplicate predications and

mapping the subjects and objects to formal gene symbols based

on the standard gene name dataset (HUGO, http://www.

genenames.org/). If a predication argument cannot be mapped

to a formal gene symbol, the predication is pruned. The numbers

of predications after duplicate removal and normalization are

given in Table 1 (under ‘Uniq.’ and ‘Norm.’, respectively).

Document frequency filtering
Document frequency for a predication is the number of citations

in which the predication occurs. Document frequency filtering is

based on the hypothesis that the confidence credential of a

predication is in direct ratio to its occurrence in documents. In our

experiments, we discard all predications that occur in fewer than

two articles. The result is shown in Table 1 (‘Freq.’). Note that

network filtering discards all relevant predications for the Focal

Adhesion pathway, which was not considered in subsequent steps.

Effect quantification
In the final step we quantify gene-gene interaction strength in

the network generated in previous steps, using a genetic algorithm,

depicted in Figure 4. In the initial population of chromosomes,

each chromosome contains a candidate set of interactions between

all genes in the pathway. The predication network determines the

initial gene-gene interactions, while the strength of interaction is

initially randomly generated for each of the 2000 chromosomes in

the population. Then for each generation, the fittest candidates

are replicated into the next generation and the balance of

the population is filled through reproduction of the current

generation, using random crossover and mutation to introduce

novel diversity into the population. We compute the fitness of a

chromosome, as compared to the time series microarray data,

using an artificial neural network. These procedures are described

in more detail in the following subsections.

Genetic algorithm
With the genetic algorithm used to infer the gene regulatory

networks, we train the weights of the inbound interactions for

every gene separately. A population of chromosomes is created

where each chromosome is represented as a matrix of interaction

weights between each possible pairing of genes identified from the

predications. Each weight, valued between 21 (greatest inhibition)

and +1 (greatest stimulation), indicates the strength of interaction.

A weight of zero indicates no interaction. The predications in the

network define which genes have interactions and whether the

interaction is inhibitory or stimulatory, but do not contribute to

the determination of the weight. The absence of an interaction is

represented in the matrix with a weight of zero but is not altered

Figure 5. Population and chromosome weight matrix. A population of 2000 chromosomes is initially generated and maintained at each new
generation. Each chromosome contains a matrix of interaction weights between every pairing of genes. P = population, C = chromosome, G = gene,
w2,1 = the weight of the interaction from gene 1 to gene 2.
doi:10.1371/journal.pcbi.1003666.g005

Figure 6. Artificial neural network fitness function. Each
contributory gene’s expression in the current time point is magnified
by its weight of interaction with the target gene. The sum of these
contributions determines the expression level of the target gene at the
subsequent time point. t indicates the time point in the microarray
dataset, n is the number of genes in the pathway, w!ji is the weight of
the interaction between gene i and gene j, gt

i is the gene expression
value in the microarray set for gene i at time point t.
doi:10.1371/journal.pcbi.1003666.g006
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through subsequent generations. The direction of the interaction is

maintained from the subject-object relation in the predication. We

randomly generate 2000 chromosomes that contain different

weights for the interactions in the predication network. The gene

structure in each chromosome is the same, as well as the non-

interacting/zero-weighted gene pairs, but the weights representing

the strength of inhibition or stimulation of pairs found in the

predications are varied. The population of chromosomes is then

evaluated with the fitness function in Equation 1, and the fittest 20

percent of the chromosomes are copied into the next generation

directly. The rest (80 percent) of the chromosomes for the next

generation are generated by crossover at a specific (randomly

selected) gene pairing between pairs of randomly selected

chromosomes in the current generation with a mutation rate of

0.25 percent. This mutation rate approximates those commonly

used to facilitate convergence of the chromosomes toward a fittest

result and to avoid excessive intergenerational fluctuation. After

evolving for 200 generations (an empirically determined limit), the

chromosome with the highest fitness value is selected as the final

result.

Fitness test function
In our experiments, we use an artificial neural network (ANN)

to model the interaction of the genes in each pathway. In this

model, the gene expression level of a given gene at a given time

point is a function of all other genes at the previous time point (see

Figure 5). In a comparative study by Sı̂rbu et al., this model

outperformed 4 other recent GRN models (GA + evolutionary

strategy, differential evolution + Akaike’s Theoretic criterion,

genetic local search, and an iterative algorithm based on GA) in a

combined score of 6 performance measures (data fit, parameter

quality, noise, sensitivity, specificity, and scalability) [10]. We

follow the most common implementation of such a model, using a

nonlinear weighted sum. Equation (1) shows the fitness test

function based on the ANN model.

fii~
2

1ze

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXR

r~1

XT{1

t~1
(~ggtz1

i {gtz1
i )2

(T{1)|R

vuut
ð1Þ

where

~ggtz1
i ~K(

Xn

j~1
~wwjig

t
j ) ð2Þ

and T indicates the number of time points in the microarray

dataset, R is the number of microarray replicates at each time

point, r is the current replicate, n is the number of genes in the

pathway, K is the activation function, w!ji is the weight of the

interaction between gene j and gene i, and gt
i is the gene

expression value in the microarray set for gene i at time point t.

Since the difference of the expression value of a gene over each

time course is considered to be a direct function of only the joint

effect of other genes in the pathway and the gene expression values

used have been normalized between 21 and 1, we use a linear

function as the activation function, effectively dropping the term.

A visual representation of the ANN model is presented in Figure 6.

Table 2. Number of predications for yeast cell cycle pathway.

Citations Predications

Raw Unique Normalized

3480 1567 1387 260

Citations: the number of citations returned from the PubMed search using related MeSH terms. Raw: the number of gene interaction predications SemRep extracted
from the returned citations. Unique: the number of unique predications eliminating duplicates. Normalized: the number of predications after normalizing against the
Entrez database.
doi:10.1371/journal.pcbi.1003666.t002

Table 3. Genes from KEGG P53 Pathway.

cdkn2a casp1 cntn2 foxn3 mdm4 psmd10 tnfsf10

apaf1 casp8 crk gadd45a mtor pten tp53

atm ccnb1 csh2 h2afx myc rchy1 tp73

axin1 ccnd1 daxx hipk2 mycn rhd ube2s

bak1 ccng1 e2f1 igfbp3 nanog s100b ybx1

bax cdk2 efemp1 ing1 parp1 serpina2 znf331

bcl2 cdk5 egf jun pcna sirt1

bcl6 cdk9 eif2ak2 mapk1 pin1 stat3

bik cdkn1a ep300 mapk14 pmaip1 stk11

birc5 cflar epha2 mapk8 pml tnf

brca1 chek1 ets1 mapk9 pold1 tnfrsf10a

bub1 chek2 fasn mdm2 ppm1d tnfrsf10b

List of genes included in the KEGG P53 pathway.
doi:10.1371/journal.pcbi.1003666.t003
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Inference of yeast cell cycle GRN
MEDLINE contains many more citations related to human

genes than yeast genes. A simple PubMed search for ‘‘yeast and

gene’’ returns a little more than 86,000 citations while the query

‘‘human and gene’’ returns over a million. When combining either

species term with ‘‘cell cycle’’ (a concept with a heavy amount of

research done in yeast), there are over 96,000 citations related to

human and just over 15,000 for yeast. In addition to this

limitation, SemRep was designed to identify human genes and

uses Entrez Gene database entries specific to humans for genes

and proteins. Although this led to an initial study with human

genes, we made modifications to SemRep to support a study with

yeast. This required changing the data source to the Entrez Gene

fungi dataset that contains Saccharomyces species and processing

relevant citations (resulting from the PubMed query ‘‘Sacchar-

omyces[mh] AND cell cycle[major]’’) to extract predications. All

subsequent procedures were consistent with the breast cancer

study except that the predications were not filtered by argument

distance or document frequency due to the lower initial number of

predications. The number of citations and predications at each

step are given in Table 2.

Results

Evaluating a gene regulatory network inference model for

human data is challenging, since there is no gold standard

providing a complete reference of gene connectivity. Therefore,

we evaluated the implementation of our approach using breast

cancer in two ways: (1) comparing the accuracy of the model

against the highest-performing model reported in the literature, (2)

comparing the resulting networks to KEGG pathways and

literature that formed the basis for their extraction, paying

particular attention to the p53 pathway. Comparison to a KEGG

pathway provides an assessment of the contribution of our natural

language processing techniques (i.e., SemRep).

Comparison of model accuracy
As a measure of accuracy of the model, we determine how well

the model fits the data, in line with previous research [21]. For this

purpose, we use microarray data from a human breast cancer

experimental set (GEO: GSE29917), which contains expression

values for 7 time points and 6 replicates (two microarrays are

missing from the set for a total of 40 microarrays). We compare the

accuracy of our model with that of the Repeated Genetic

Algorithm with Neural Network model described by Keedwell et

al. [21], the best performing model in a recent comparison of

evolutionary algorithms [10] and the basis for the interaction

quantification component of our algorithm. Since we use the same

algorithm for interaction quantification, the comparison helps

isolate the effect of literature-derived knowledge on GRN

inference. We downloaded their source code to be able to run

their algorithm on our data, with only minimal modification for

data format differences. Additionally we included a second

comparison model, with a different type of algorithm

(time-delayed Spearman Rank-correlation or TDSRC) to help

identify any biases in our methodology [63]. This model was

included by Gupta et al. as a part of a composite model and

available for download and use within MatLab. For this

comparison, we limit the microarray data to 78 genes included

in the KEGG P53 pathway (listed in Table 3). We use a leave-one-

out approach based on time points, sequentially using gene

expression values for each time point as test data against models

trained with values from all of the other time points. Fitness is

defined as the standard deviation of predicted values from the

average microarray expression of all 6 replicates in the test set.

Because the microarrays for 2 different replicates at two different

Figure 7. Comparison of fitness to microarray data. Fitness of our model is compared to that of the Keedwell et al. model and the TDSRC
model on our microarray dataset. Fitness is significantly better (p,0.05) in 4 out of 6 time points and for all time points combined (overall).
doi:10.1371/journal.pcbi.1003666.g007
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timepoints were missing, the total number of microarrays was 40.

The root mean square error (RMSE) combines fitness for all genes

in the given test set. Figure 7 shows the root mean square errors

over the 78 genes for each time point for each model. We used a

paired t-test to assess the statistical significance of the differences

between models. The p-values for each comparison are included

in Figure 7. Our model shows improvement at every test data set/

time point over the Keedwell et al. model and is significantly

different (p,0.05) in 4 out of 6 time points and for all time points

combined (overall p = 8.2661028). The RSP model performed

significantly worse than both of the other models. This demon-

strates that our model is significantly better in terms of fitting the

microarray data.

Assessment of interactions
We assessed the value of gene regulatory networks generated by

our approach by comparing them to KEGG pathways, both the

kgml format downloaded from the KEGG website and manually

using the search function in the online pathway map. Nodes,

representing genes, and edges, representing interactions, were

independently compared and the results are shown in Table 4.

The ‘Predication’ column represents the number of nodes and

edges in the network generated by our approach after removing

any genes that were not included in the microarray set, the

‘KEGG’ column provides the equivalent information for the kgml

network, ‘Common’ indicates the intersection of our results and

the corresponding kgml network, and ‘New’ provides interactions

exclusive to our results. As the numbers indicate, new nodes and

edges significantly outnumber those in common between the two

networks. The p53 pathway had the highest ratio of common

edges compared to the kgml network (19:65, 29.2%), so was

chosen for further validation at the predication level.

A comparison was made for each of the new interactions with

the online KEGG p53 signaling pathway map. 49 of the 92

interactions contained a gene not included in the map, 7 had both

genes present but no interaction, and 9 existed in the map but

were not included in the kgml version.

We also validated each new interaction in the resulting p53

network against the literature in three ways: a) whether the

literature asserts an interaction between the two at either a gene or

protein level (i.e., the precision of our natural language processing

techniques), b) whether we capture correctly the direction of the

effect, i.e. stimulatory or inhibitory, as compared to the weight

generated by GRN analysis of the microarray data, and c)

combining the two above, whether we capture correctly both the

presence of the interaction and the direction. In addition to

assessing the accuracy of SemRep in capturing relevant interac-

tions, this validation allows us to establish the specific contribution

of using semantic predications over term co-occurrence. The

comparison was limited to citations from which the predications

were extracted, ranging from 1 to 87 citations for each interaction.

Although there may exist another citation that would validate the

resulting interaction, this approach was taken to limit the man-

hours required to a reasonable amount while still allowing a

reasonable possibility for validation. As seen in Table 5, 78.3% of

the new interactions in the resulting p53 network (Figure 8) were

asserted in at least one of the source citations. When comparing

the sign of the interaction weight to the direction of the effect

provided in the source literature, 76.4% were consistent. Those

interactions that were both consistent with the literature and were

weighted in the appropriate direction numbered 55 out of 92

(59.8%).

We additionally focused on those interactions having a weight

with absolute value .0.1 (Table 5, bottom), exploring the

hypothesis that stronger interactions should be less affected by

noise. Within these interactions a total of 32 interactions (84.2%)

were stated in the literature and 34 (87.5%) were correct in the

direction of effect, yielding 28 (73.7%) correct on both counts.

Finally, we investigated whether argument-predicate distance

filtering had a detrimental effect on the results, since long distance

syntactic dependencies are common in biomedical literature [64].

For this purpose, we focused on the Jak-STAT pathway and

checked whether any of the 27 KEGG interactions, none of which

appeared in our predication network, could be derived from the

initial set of unfiltered, non-normalized predications. We found

three such predications for the Jak-STAT pathway; one (Jak1

INTERACTS_WITH PTPN11) was eliminated due to argument-

distance filtering, while the other two (Jak1 INTERACTS_WITH

Table 5. Literature validation of newly included interactions.

Validation Type Count

All results Interaction stated 72 (78.3%)

No interaction stated 20 (21.7%)

Correct sign 75 (76.4%)

Inverse sign 17 (23.6%)

Correct sign and interaction 55 (60%)

Wrong sign or interaction 37 (40%)

Weights .0.1 Interaction stated 32 (84.2%)

No interaction stated 6 (15.8%)

Correct sign 34 (87.5%)

Inverse sign 4 (12.5%)

Correct sign and interaction 28 (73.7%)

Wrong sign or interaction 10 (26.3%)

Each interaction was evaluated against source literature to evaluate its accuracy. Evaluation included whether an interaction between the indicated genes was actually
contained in the sentence, and whether the resulting sign (2/inhibits or +/stimulates) corresponded to the assertion in the sentence. The upper half includes every
interaction regardless of weight, whereas the lower half refers to only interactions with weight .0.1.
doi:10.1371/journal.pcbi.1003666.t005
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STAT1 and GRB2 INTERACTS_WITH PTPN11) passed the

argument-distance filter but not the document frequency filter.

Note that the former (Jak1 INTERACTS_WITH PTPN11)

occurred in a single document and, therefore, would also be

eliminated in the subsequent document frequency filtering step,

had it passed the predicate-argument distance filter.

Performance on yeast data
We compared the performance of our model against that of

Keedwell et al. in the same manner as mentioned in our results

section Comparison of model accuracy, but now on the yeast cell-

cycle dataset, which contains 24 time points. Figure 9 shows

the root mean-square errors for each time interval for the two

models. We assessed statistical significance of the differences

between models by calculating the p-values (included in

Figure 9) using a paired t-test. Using the yeast data, our

model had increased fitness at every interval over the Keedwell

et al. model, but this time every difference was significantly

different (p,0.05).

Discussion

In this work, we augmented microarray data with literature

knowledge to infer gene regulatory networks, replacing the

random selection of component genes generally used in similar

modeling efforts. We use SemRep to extract information from

the literature, which forms the backbone of the network. State-

of-the-art genetic algorithm-based analysis of the microarray

data was used to determine the strengths of the effects between

gene-gene interactions in the network. Our model provides

better fitness than the state-of-the-art model used as the basis

for the genetic algorithm and fitness function components of

our model and the difference between error rate of the models

is statistically significant (p,0.05), demonstrating that litera-

Figure 8. The resulting gene regulatory network for the p53 pathway. Interactions are defined by predications extracted from MEDLINE
citations and weighted based on microarray data. Red node color signifies induction or activation of p53 while blue signifies suppression or
deactivation and yellow indicates genes that do not act directly onto p53. Red arrows show induction/activation. Blue arrows show inhibition. Size of
a node corresponds to the number of connections to other nodes.
doi:10.1371/journal.pcbi.1003666.g008
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ture-derived knowledge provides a significant advantage over

random selection of genes in this task, as suggested in [10].

Another advantage of our approach is that it maximizes the

best possible networks without being limited to relationships

that are already well established and considered important by a

curator, as would be the case if a standard interaction database

were used. These pathways provide targets for novel thera-

peutic interventions and a mechanistic understanding of

current therapeutic approaches with poorly understood mech-

anisms.

Interactions identified by our model not included in
KEGG

Although some of the genes in the KEGG pathways did not

appear in the results due to the strict filtering process, the

presence of essential member genes in the resulting predication

networks (for example, TP53, MDMD2, BAX, CDKN1A,

GADD45A, and CDK2 in the p53 network) and known

interactions (p53 STIMULATES Gadd45a, E2F1 STIMULATES

cdkn2a, and RCHY1 INHIBITS tp53) demonstrate the potential

of this technique to replicate ‘‘known’’ pathways. Perhaps

more importantly, we were able to identify new interactions

that were not included in the KEGG maps, which is not

surprising since these maps are curated and therefore provide

only the most thoroughly established and important interac-

tions as determined by the curators.

Two of the highest-weighted new interactions included in

the resulting p53 pathway but not in the kgml file are p53

STIMULATES BIK and MDM2 INHIBITS CDKN1A. The

weight of the interaction between p53 and BIK was very

strongly stimulatory at 0.977. BIK (BCL-2 interacting killer) is

not included in the KEGG P53 pathway map. It is a pro-

apoptotic protein discovered in 1995 and interacts strongly

with BCL-2 and BCL-xL [65]. P53 has been shown to induce

expression of BIK under certain conditions, especially in breast

cancer cells, as in our microarray dataset [66]. Our p53

pathway result also included an interaction between MDM2 an

CDKN1A with a weight of 20.987, i.e., very strongly

inhibitory. MDM2 is shown to inhibit p53 in the KEGG p53

map but there is only an indirect inhibitory action of MDM2

on CDKN1A through P53 (by diminishing p53’s activation of

CDKN1A). However, a direct interaction as a negative

regulator of CDKN1A is present in the literature [67],

supporting our result.

Limitations and future directions
A major limitation of this method is the accumulation of

system errors. As shown in Table 5, the accuracy of

interactions identified using SemRep with the filtering used

in our method is 78.3% overall and 84.2% for significantly

weighted interactions (.0.1). The reproducibility of the

microarray data between platforms and even with different

Table 6. Precision of yeast interactions.

Weight threshold Predicted In Biogrid Precision

Genes Interactions Genes Interactions Genes Interactions

0 349 520 346 147 0.991 0.283

0.001 349 300 346 90 0.991 0.300

0.01 349 244 346 72 0.991 0.295

0.1 349 67 346 21 0.991 0.313

Each gene and interaction predicted by our model was compared against interactions contained in the Biogrid dataset. Predicted: number of genes and interactions
predicted by our model. In Biogrid: number of genes and interactions predicted by our model and found in the Biogrid dataset. Precision: number found/number
predicted.
doi:10.1371/journal.pcbi.1003666.t006

Figure 9. Comparison of fitness to yeast cell cycle microarray data. Fitness of our model is compared to that of the Keedwell et al. model on
a yeast cell cycle microarray dataset. Fitness is significantly better (p,0.05) over all points.
doi:10.1371/journal.pcbi.1003666.g009
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algorithms on the same platform has been determined to be as

low as 50–60% [68]. At a result, the accuracy of both the

structure and the weights of the resulting GRNs is limited if

viewed at the most precise level of granularity. The training of

the weights is also limited by an insufficient time course in the

microarray data, especially for large numbers of arguments

(i.e. genes in a pathway). Although it is beyond our means to

improve microarray reproducibility or experimental design of

publicly available datasets, improvements to SemRep with

regard to gene and protein interactions can potentially

improve results and the incorporation of multiple microarray

datasets as training data may be able to overcome some of the

inherent limitations. Additionally, although these limitations

affect the use of these techniques for determining the precise

quantitative nature of interactions, this is true generally of such

studies, and does not prevent their use for hypothesis

generation.

Currently our network backbone is limited to genes included

in the predications, but this set could be expanded by

incorporating genes from the microarrays that are similar to

the genes provided by the predications, using an ensemble of

machine learning techniques such as support vector machines,

random forests, and prediction analysis of microarrays. This

approach of classifying genes from the microarray into each

pathway would additionally reduce bias in the technique by

not limiting interactions to what is already known. It would be

valuable to maintain a distinction between the literature-based

genes and the expansion set because a significant expansion in

the final resulting networks would suggest that what is known

in these pathways is only a fraction of what is waiting to be

discovered.

Another technique to extend the set of genes would be to

adopt more sophisticated predication filtering mechanisms.

The current mechanisms were effective in significantly

reducing the computational complexity; however, our limited

analysis of the effect of argument-distance filtering showed that

some relevant predications were also eliminated due to

filtering. A potentially useful approach would be to train a

classifier that can identify ‘good’ predications, based on

predication features, such as the predicate type, indicator

types, etc. Predicate-argument distance could also serve as a

feature for such a classifier.

Additionally, although we used interactions from KEGG

to evaluate our GRN, such interactions from this and

similar databases could be incorporated into our interaction

network to augment the proposed interactions from literature

with established interactions, expanding the utility of prior

knowledge.

Although our current method of selecting source citations

for predication extraction yielded usable results, there are

many possible permutations in the method and a systematic

comparison of source citations and their resulting networks

should be explored. Our current search method facilitates the

generation of hypothetical member genes for established

pathways, but this approach can also be used to generate

novel pathways by specifying a gene set and/or biological

functions in the predication citation search, thereby providing

an appropriate predication network.

SemRep representation of biomolecular interactions (sub-

ject-predicate-object triples) is simple, intuitively accessible and

lends itself easily to downstream applications. On the other

hand, more complex representations, particularly event repre-

sentation (as discussed in Related work section), have been

gaining in popularity in the BioNLP community, mostly due to

available corpora [69] and shared task competitions [27]. An

obvious question is whether such complex representations

could provide an advantage over or could complement

SemRep representation in the task of gene regulatory network

inference. It seems very likely that generating a seed network

from more complex representations would require some non-

trivial post-processing along the lines of the algorithm

described by Bossy et al. [36]. Since that algorithm essentially

breaks down complex relations to simpler SemRep-style

triples, it seems safe to assume that SemRep representation

can adequately capture the complexity of biomolecular

interactions. However, this needs further testing and

validation.

To assess the precision of interactions for the yeast study, we

performed an automated comparison using Cytoscape (http://

www.cytoscape.org) against a Biogrid (http://thebiogrid.org)

yeast interaction dataset. We used the Biogrid Saccharomy-

ces_cerevisiae-3.2.109 tab file, which contains 339,921 inter-

actions and experimental information from multiple database

sources including Saccharomyces Genome Database, MINT,

IntAct, and Pathway Commons. As seen in Table 6, although

346 out of 349 genes are found in the reference set, only 147

out of 520 interactions are included. That is a relatively low

precision of 28%, which only increases to 31% for interactions

weighted 0.1 or higher. This is not particularly meaningful

without appropriate context. Since this is a relatively straight-

forward and easily undertaken evaluation approach, it would

be worthwhile to conduct a study applying the same evaluation

across various published models to see how precision compares

among them.

Conclusions
We present a methodology of gene regulatory network

inference that combines literature knowledge and microarray

data. Using SemRep, we extract gene and protein interactions

from citations related to the pathways included in the KEGG

Pathways of Cancer. These predications are linked together to

form a network and a genetic algorithm is used on a breast

cancer time sequence microarray dataset to determine the

weight of contribution of each stimulating or inhibiting gene on

its target, thereby providing a weighted gene regulatory

network. Our model performs significantly better than compa-

rable models in terms of fitness of predictive output to

microarray results. The resulting networks contain both

interactions included in the appropriate KEGG pathways and

interactions not included but validated through a literature

search. The accuracy of these interactions increases from 60%

overall to 74% when minimally-weighted interactions are

excluded. Our model also performed better in terms of fitness

against a comparison model when modified for yeast predica-

tions and microarray data. This approach offers significant

potential in elucidating new interactions in existing pathways as

well as the possibility of identifying novel pathways. In a

broader sense, it also provides a blueprint for incorporating

automatically extracted knowledge from literature with large-

scale biological analysis. Incorporating such knowledge under-

pins more accurate understanding of both normal and disturbed

molecular physiology, leading to advances in diagnosis and

treatment of disease.

Supporting Information

Table S1 PubMed queries for each pathway. The query

submitted to PubMed for each pathway in the breast cancer study

GRN Inference Enhanced with Literature Knowledge

PLOS Computational Biology | www.ploscompbiol.org 14 June 2014 | Volume 10 | Issue 6 | e1003666

http://www.cytoscape.org
http://www.cytoscape.org
http://thebiogrid.org


is provided. Each search provided a citation list relevant to the 13

pathways in the KEGG Pathways of Cancer map. mh: MeSH

heading. sh: subject heading.
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