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Nucleic acid fragments found in blood circulation originate mostly from dying cells and
carry signs pointing to specific features of the parental cell types. Deciphering these clues
may be transformative for numerous research and clinical applications but strongly
depends on the development and implementation of robust analytical methods.
Remarkable progress has been achieved in the reliable detection of sequence
alterations in cell-free DNA while decoding epigenetic information from methylation and
fragmentation patterns requires more sophisticated approaches. This review discusses
the currently available strategies for detecting and analyzing the epigenetic marks in the
liquid biopsies.
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INTRODUCTION

The pools of circulating nucleic acids found in biological fluids have been extensively studied in
recent decades, primarily due to the minimally invasive sampling procedures that promise a number
of apparent practical benefits. First, an opportunity to identify molecular changes that underlie
pathological processes associated with cell death occurring in distant tissues from a simple blood
draw. Second, real-time monitoring of the alterations through a sequential sampling series without
disturbing the pathological foci. Third, cell-free nucleic acids in blood circulation are believed to
represent a cumulative pool of fragments originating from different sources in the body, allowing for
a snapshot of alterations that occur at various locations with increased cell turnover or active release
(1–3), a key feature for cancer investigation in the light of tumor heterogeneity.

Currently, these fundamental properties of cell-free DNA (cfDNA) analysis are translated to
several applications in clinical oncology, generally termed as liquid biopsy, namely, molecular tumor
profiling (4–6), therapy response monitoring (7–9), minimal residual disease (MRD) and
recurrence detection (10–12), as well as early cancer diagnostics (representing a highly desirable
but still elusive output) (13). Most of these clinical aims can be partially achieved through careful
analysis of somatic mutations present in the tumor fraction of cfDNA (circulating tumor DNA,
ctDNA) (14–16). The recent technological advances in the field fostered ultra-sensitive variant
detection methods that nevertheless should be thoroughly validated in extensive independent
studies before being fully adopted for reliable clinical use (17–20).

Aside from sequence alterations, tumorigenesis is characterized by early occurring and further
extensive genome-wide epigenetic changes that tune expression programs in favor of tumor-specific
phenotypes (21–23). Variations in CpGmethylation, histonemodifications, and chromatin remodeling
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occur mainly in a patterned and cell-type-specific fashion, making
these processes vast sources of attractive cancer biomarkers.
However, in contrast to sequence alterations, these changes are
not encoded in DNA sequence and have to be extracted from cell-
free DNA with indirect methods. Here we are going to briefly
summarize currently available approaches and future prospects of
cfDNA epigenetic analysis for cancer diagnostics.
BIOLOGY OF CIRCULATING DNA

The current understanding of cfDNA biology (3, 24, 25) and
particularly epigenetics (26) has been recently reviewed
elsewhere. However, to further discuss analytical methods, we
have to emphasize some critical points. It is believed that the bulk
of cell-free nucleic acids is formed as a byproduct during the
course of cell death scenarios (27). The contribution of different
cell types is still a matter of debate, as is the balance between
active and passive release mechanisms and the possible
functional roles being attributed to cfDNA subfractions by
some researchers (3, 24, 25). Nevertheless, there seems to be a
consensus on the high complexity of cfDNA pools found in
biological fluids, which makes the tracing of sequence alterations
and epigenetic marks found in cfDNA back to the cells of origin a
challenging task.

The exact paths that DNA molecules may follow on their
ways from the nucleus and mitochondria to the blood are not
fully understood. The median cfDNA length of only ~165 bp
reported in most studies (28–30) suggests that high molecular
weight genomic DNA encounters nucleases during the shedding
to the bloodstream. Surprisingly, despite being present in higher
copy numbers in cells, mitochondrial DNA seems less accessible
in plasma (31). This could be explained by the circular structure
of mtDNA or its even higher fragmentation (32) due to the lack
of nucleosomal structure and histone-mediated protection from
nucleases in contrast to nuclear DNA. At the same time, mtDNA
levels in plasma may provide clues on some pathological
conditions, including cancer (33–37). Recent research
highlights the roles of extrachromosomal DNA (ecDNA) in
tumor progression (38–40). Often highly amplified and
oncogene-enriched ecDNA molecules are detectable in blood
plasma and may serve as an additional source of novel
biomarkers after the development of appropriate analytical
methods (41–43).

The turnover of cfDNA in blood seems to be rapid, with a
half-life range of approximately 0,5-3 hours and a bias towards
slower elimination of protein-bound DNA (44–46). If these
estimates are true, any cfDNA test represents a nearly real-
time snapshot of the cellular genomes. The sequence alterations
and aberrant methylation that occurred in tumors seem to be
apparently stable in ctDNA, while the inconsistency in alteration
detection between tissue specimens and circulating DNA is most
likely explained by the biological complexity of cancers and
technical constraints (47–50). However, further studies are
required to support the stability of tumor-specific alterations in
cfDNA, especially aberrant methylation.
Frontiers in Oncology | www.frontiersin.org 2
PRINCIPLES OF DETECTION
AND CHALLENGES

The detection of tumor-specific changes is the key for most
cfDNA applications in oncology, but it is complicated by
individual variability of ctDNA fraction, heterogeneity of
cancer genomes, and the limited amount of cfDNA usually
available for analysis. Our simulations suggest that the reliable
detection of a single point mutation is theoretically limited by a
ctDNA fraction of 0,1% for typically sampled cfDNA amounts
(Figure 1). In contrast, the detection of aberrant cytosine
methylation may result in higher overall sensitivity due to the
tendency of the densely clustered CpG sites to share the same
methylation state at least at the distances of up to 50-100
nucleotides (2, 54–57). Consequently, tumor-derived DNA
fragments from differentially methylated regions (DMRs)
technically carry a number of point epimutations in contrast to
single nucleotide substitutions. It increases the theoretical
probability of tumor DNA detection with epigenetic
methylation-based assays (Figure 1). Moreover, the ensemble
nature of epigenetic changes in cancer leads to a patterned
structure of DMRs across the genome that further
multiplicates the number of tumor-specific markers available
for detection (22, 58).

The rate of cfDNA release from the tumor, or cfDNA
shedding, is another crucial factor for successful cancer
detection. The ability to release cfDNA varies significantly
among individuals and cancer types (16). The proposed
explanations of the variability in ctDNA shedding kinetics
among tumor types include distinct anatomical features
(blood-brain barrier, organ capsules, vascularization), mitotic/
cell death rates, metabolic characteristics, and the predominant
cell death mechanisms (59, 60). Tumor clinicopathological
parameters significantly associated with the increased ctDNA
shedding are higher tumor stage, nodal metastases, solid
adenocarcinoma pattern, tumor necrosis, larger primary tumor
diameter or volume, and frequent mitosis in tissue specimens
(61). The detection of ctDNA was considerably higher in certain
malignancies like pancreatic, ovarian, colorectal, bladder,
gastroesophageal, breast, melanoma, hepatocellular, and head
and neck cancers. In contrast, ctDNA was detected in only <50%
of the primary brain, renal, prostate, or thyroid cancers (62). A
recently proposed mathematical model of cfDNA shedding
suggests that the probability of a false negative for a particular
actionable mutation clonally present in tumors with diameters of
1 and 2 cm is 82 and 9.3%, respectively (at 99% specificity) (63).

Taking the above-mentioned into consideration, minimizing
DNA loss and suppressing analytical errors during all steps of
analysis is crucial for robust identification of lower tumor
fractions. The recovery and purity of cfDNA during the
preanalytical step are strongly dependent on careful protocol
selection and validation (64–67). For instance, undesirable
lymphocyte gDNA contamination can be avoided by either
minimizing time before plasma separation to less than 4 hours
or storage in stabilizer-containing tubes (68). It has been shown
that size-selection in favor of shorter fragments (90-150 bp
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range) can enrich tumor fraction and consequently increase the
sensitivity of upstream variant detection (28), which logically
implies that the opposite is also true and suggests that the DNA
size distribution should be controlled during sample processing.

Methylation-Based Approach
Methylation of cytosines serves as an additional layer of
instructive annotations for hard-coded genetic information in a
cell-type-specific manner (69). Genome-wide cataloging of
methylation patterns typical for normal and pathological
tissues may result in a reference atlas that could be used for
tissue-of-origin deconvolution from cfDNA methylation and
revealing tumor localization (1, 2, 51, 70–72). However, the
heterogeneity of cell types comprising most tissues increases
noise and complicates identifying common specific patterns (1).
An opposite idea, finding a universal methylation signature
shared by multiple cancer types, may result in the development
Frontiers in Oncology | www.frontiersin.org 3
of pan-cancer early detection tests (52). Notably, the methylation
profiles of cfDNA fraction derived from normal tissues must be
taken into account as an inevitable background when
determining DMRs. Despite the experimental wide-range
approaches driving the field of liquid biopsy research, the
analysis of limited marker sets is still more feasible in a
practical setting due to lower costs and more straightforward
interpretation. The genome-wide analysis of tumor-specific
methylation, however, may yield novel candidates for
designing narrow assays based on PCR or targeted sequencing
of a small number of DMRs (73), thus expanding the selection of
epigenetic cancer biomarkers such as methylation of SHOX2 and
SEPT9 loci among others (74–77).

The two primary forms of modified cytosine in the human
genome are 5-methylcytosine (5mC) and 5-hydroxymethylcytosine
(5hmC). The latter can be considered not only as a product of 5mC
oxidation by TET dioxygenases during demethylation but also as an
FIGURE 1 | Theoretical simulations of the detection probability of single tumor-specific alteration (point mutation (grey) or differentially methylated region (DMR, red)) in
cfDNA. Monte Carlo simulations were performed in R (see Supplementary Text for details) with the following assumptions: a DMR is represented by 6 co-methylated
CpG sites (51); at least 5 observations of any alteration is required to classify the sample as cancer positive (adjustment for DNA loss during sample preparation and
detection errors intrinsic to analytical methods); alterations are independent. Density plots at the bottom panels show the distributions of sampled cfDNA amounts in
the four recent studies (16, 30, 52, 53) [3286 samples total, of which 1716 were from healthy individuals (blue) and 1570 from cancer patients (light blue)].
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independent epigenetic mark of the loci being activated (78–81).
Nevertheless, these modifications are not directly detectable by
most of the widespread sequencing or PCR-based methods, which
makes some type of 5mC/5hmC-discriminating modification or
enrichment a necessary step in the protocols. Chemical bisulfite
conversion of unmethylated C to U underlies most PCR-based
methods, methylation arrays, and sequencing approaches (82).
Further development resulted in bisulfite-based oxBS-seq and
TAB-seq protocols that differentiate between 5mC and 5hmC
(83, 84). However, the related DNA loss of up to 90% (85–87) is
a crucial obstacle for the analysis of low-input cfDNA samples.
Another drawback intrinsic to the tactic of unmodified cytosine to
uracil conversion is the reduced complexity of the output DNA
sequence, which perplexes probe design and bioinformatic analysis
(88, 89). The recently proposed conversion methods rely on
enzymatic or combined treatments, which are reported to be less
disruptive for DNA integrity. Particularly, TET dioxygenases can
convert 5mC and 5hmC further to 5-carboxylcytosine (90), which
can be either converted to dihydrouracils in TAPS protocol or
protected from APOBEC-mediated deamination of C to U in EM-
seq (91–93). Both methods with some modifications allow for 5mC
and 5hmC discrimination.

Alternative approaches to methylation analysis rely on affinity
enrichment, for instance, with 5mC-antibodies as proposed in
cfMeDIP-seq (94, 95). Notably, the direct comparison suggests
higher sensitivity of this method compared to sequence variant
analysis (96), and further studies confirmed its utility for the
detection of low-shedding renal (97) and intracranial tumors
(98). In the 5hmC-Seal hydroxymethylcytosine, residues are
selectively labeled with biotin and further captured on avidin
beads (99, 100). The feasibility of this method for cancer detection
was demonstrated in several studies (101–103). Moreover, a
combination of cfMeDIP-seq and 5hm-Seal for simultaneous
5mC and 5hmC profiling in pancreatic cancer improved the
prediction accuracy (104). MBD-seq takes advantage of the
methyl-binding proteins such as MBD2 to capture methylated
DNA (105–107). The protocol has been modified for low DNA
input and showed performance similar to bisulfite sequencing
(108), but its utility for cfDNA analysis has not been thoroughly
evaluated. In contrast to most conversion strategies, affinity-based
enrichment for methylated sequences may be more cost-effective
at a whole-genome scale in applications where single-base
resolution is not required since it allows to sequence
predominantly methylated regions. On the other hand, it does
not selectively target regions of interest and requires specific
statistical tools capable of analyzing enrichment data.

Fragmentation-Based Approach
Genome-wide cfDNA sequencing revealed a biased
fragmentation pattern that correlates with chromatin
organization levels from nucleosomal occupancy to high order
3D structure (109–111). These observations can be explained by
more efficient cleavage of accessible DNA in open-chromatin
regions in contrast to better-protected protein-bound DNA in a
closed inactive conformation. In turn, the changes in chromatin
accessibility reflect shifts in transcription regulation (112), thus
Frontiers in Oncology | www.frontiersin.org 4
indirectly connecting cfDNA fragmentation features to gene
expression programs in parental cells. Moreover, for reasons
that are still unclear, circulating tumor DNA fragments tend to
be shorter than cfDNA originating from normal tissues (28–30,
113, 114). It can be related to globally altered methylation and
histone modifications [epigenetic changes that may alter the
tightness of DNA wrapping around the nucleosomes (24, 115,
116)] or to aberrant mechanisms of DNA fragmentation in
tumors and their microenvironments. Moreover, some
researchers associate the observed difference with immune
activity (114). Either way, cfDNA fragmentation features reflect
massive epigenetic changes in tumor cells and may be considered
as novel types of tumor markers (117, 118).

Several enzymes that are likely responsible for cfDNA
fragmentation have been recently extensively studied in murine
models (119–121). Generally, they could be attributed to three
types based on localization (24). The first ones act in the cells of
cfDNA origin during active cell death (e.g., apoptosis), with the
caspase-activated DNase being one of the most widely known.
Other nucleases cleave DNA during phagocytosis or in the
extracellular space (e.g., deoxyribonuclease 1, deoxyribonuclease
1 like 3), and some secreted enzymes retain activity in the blood.
Evidence suggests moderate sequence specificity of the enzymes
acting in blood and apoptotic cells (119, 120), while tissue and
macrophage-localized nucleases seem to introduce additional
diversity to preferred ctDNA end sequences in cancer (122). As
a result, cfDNA sampled from the bloodstreammay bear the signs
of consecutive exposure to a number of nucleases.

To date, several strategies have been proposed to apply these
concepts for tumor detection. Cristiano et al. investigated cfDNA
fragmentation in cancer patients at a whole genome scale (30).
Their classifier predicted tumor types based on the ratios of
longer and shorter fragments in the bins across the genome
sequenced with low coverage. Analysis of cfDNA fragmentation
focused on tumor-specific transcription factor binding sites
revealed patterns that may reflect critical changes in tumor
cells’ epigenetic regulation (117). Another consequence of non-
random cfDNA fragmentation is an uneven distribution of the
ends of fragments across the genome. It has been shown that the
preferred DNA end coordinates may be characteristic of the tissue
of origin (123). Moreover, accounting for the orientation of
fragments may facilitate the detection of tissue-specific cfDNA
fraction (124). The sequence specificity of nucleases involved in
cfDNA formation can also be exploited to detect tumor presence.
For instance, a biased distribution and increased diversity of
sequence motifs were described in the ends of cfDNA fragments
in patients with liver cancer (122). The technical loss of short
(<100 bp) and degraded (nicked, partially single-stranded) DNA
fragments during sample preparation for next-generation
sequencing results in their underrepresentation in the final
library. Similar issues in handling ancient DNA are addressed
mostly by certain enzymes’ ability to ligate single-stranded
templates (125, 126). Based on these developments and original
ideas, novel methods are constantly proposed to increase the
recovery of shorter cfDNA fragments enabling precise profiling of
fragment size distributions (127–130).
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CONCLUSIONS AND PROSPECTS

The presence of tumor-derived DNA molecules in the plasma of
cancer patients allows tumor detection and profiling with non-
invasive blood tests. In practice, it is complicated by several
biological factors that affect reproducibility and require
ultrasensitive assays for reliable detection. Various ctDNA
analysis strategies are optimal in different clinical scenarios due
to the diversity of underlying biological and methodological
foundations. Despite only a fraction of liquid biopsy capabilities
being utilized in clinical cancer care by now, some prospects may
be extrapolated. The detection of somatic mutations in ctDNAmay
reveal the genomic profile of the tumor, facilitating prognosis,
response monitoring, and targeted therapy selection, making
mutation-based ctDNA analysis techniques arguably the most
widely adopted to date (131). MRD detection may also be based
on tumor-specific mutations detection (132). With the
development of novel targeted therapies and accumulation of the
knowledge interconnecting clinical outcomes and genomic
biomarkers, the practice of ctDNA mutation-based analysis will
expand, supporting clinical decisions for more cancer types beyond
lung, breast, gastric, and colon cancers. At the same time, rigorous
attention should be given to interpreting mutations that may occur
in normal tissues (133), especially during clonal hematopoiesis
(134). Beyond the analysis of tumor-specific sequence alterations in
ctDNA, epigenetic marks may be favorable for many applications
Frontiers in Oncology | www.frontiersin.org 5
due to their cell-type specificity and patterned nature. The
landscape of available epigenetic-based cfDNA assays is
represented mainly by cytosine methylation tests targeting a
narrow set of well-established differentially methylated loci or
more complex wide-range approaches that infer from ensembles
of individual methylation markers [Figure 2 and Supplementary
Table 1; recently reviewed in detail in (135, 136)]. Recent extensive
early detection efforts are based on the analysis of the broad panels
of differentially methylated regions (51, 52), and this strategy may
result in reliable screening tests. Analysis of methylationmarkers in
cfDNA can also facilitate prognosis, recurrence monitoring, and
management of cancers of unknown primary (137–140). The rising
field of cfDNA fragmentomics has already yielded some promising
approaches with comparable overall performance. Further
developments in the field may include targeted fragmentation
assays focused on the differentially fragmented regions and novel
methods of deciphering epigenetic marks from fragment size
distributions, end motifs, or new fragmentomic features.
Although the fragmentation-based ctDNA analysis is still far
from adoption for routine clinical use itself, it may be
incorporated as an additional dimension to mutation-based or
methylation-based liquid biopsy assays (28, 141). Furthermore, the
possibility to improve tumor detection and characterization may lie
in the simultaneous analysis of multiple marker types available
from liquid biopsies, including proteins, circulating RNAs, tumor
cells, and vesicles.
FIGURE 2 | The recent studies reporting the application of epigenetic cfDNA assays for the detection of various tumor types are represented as areas under the
ROC curves (AUCs) indicated in the respective publications. “Pan-cancer” category includes unified tests aimed at the detection of several cancer types; “other”
category includes esophagus, bile duct, blood, central nervous system, gastric, kidney, ovarian, and urothelial cancers. The reported stages of cancers are grouped
into two categories: “early” — pre-diagnosis or stage I or stage II and “all” — any other combination of stages or unspecified. The number of cancer patients involved
in each study is plotted as the areas of the circles. Color represents the number of genomic loci included into each assay: red denotes narrow assays involving 20
loci or less, blue indicates whole-genome assays or larger targeted panels (more than 20 regions). Underlying data summarized in Supplementary Table 1.
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Cancer diagnostics may greatly benefit from the
comprehensive characterization of hallmark events occurring
in the early stages of tumorigenesis. As our understanding of
these processes expands, future research in liquid biopsy may
focus on identifying signs of premalignant growths’ progression
in cell-free DNA. The interception of metastases is another
crucial component of improving cancer management that can
be further enhanced by liquid biopsy. We suppose that
epigenetic-based approaches to the analysis of cfDNA features
will play an increasingly important role in translating
fundamental findings to clinical settings.
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