
Received: 21 May 2021 | Revised: 12 August 2021 | Accepted: 4 October 2021

DOI: 10.1002/gepi.22434

RE S EARCH ART I C L E

Robust estimates of heritable coronary disease risk
in individuals with type 2 diabetes

Christopher Grace1,2 | Jemma C. Hopewell3 | Hugh Watkins1,2 |

Martin Farrall1,2 | Anuj Goel1,2

1Division of Cardiovascular Medicine,
Radcliffe Department of Medicine,
University of Oxford, Oxford, UK
2Wellcome Centre for Human Genetics,
University of Oxford, Oxford, UK
3Nuffield Department of Population
Health, University of Oxford, Oxford, UK

Correspondence
Anuj Goel, Division of Cardiovascular
Medicine, Radcliffe Department of
Medicine, University of Oxford, Oxford
OX3 9DU, UK.
Email: anuj.goel@cardiov.ox.ac.uk

Funding information

British Heart Foundation,
Grant/Award Numbers: FS/14/55/30806,
RE/13/1/30181; TriPartite
Immunometabolism Consortium
[TrIC]‐Novo Nordisk Fonden,
Grant/Award Number:
NNF15CC0018486; Wellcome Trust,
Grant/Award Numbers: 090532/Z/09/Z,
201543/B/16/Z, 203141/Z/16/Z; FP7
Health, Grant/Award Number: HEALTH‐
F2‐2013‐601456; Stockholms Läns
Landsting, Grant/Award Number:
560283; BHF‐DZHK VIAgenomics,
Grant/Award Number: SP/19/2/344612;
European Community Sixth Framework
Program, Grant/Award Number: LSHM‐
CT‐2007‐037273

Abstract

Type 2 diabetes (T2D) is an important heritable risk factor for coronary artery

disease (CAD), the risk of both diseases being increased by metabolic syn-

drome (MS). With the availability of large‐scale genome‐wide association data,

we aimed to elucidate the genetic burden of CAD risk in T2D predisposed

individuals within the context of MS and their shared genetic architecture.

Mendelian randomization (MR) analyses supported a causal relationship be-

tween T2D and CAD [odds ratio (OR) = 1.13 per log‐odds unit 95% confidence

interval (CI): 1.10–1.16; p= 1.59 × 10−17]. Simultaneously adjusting MR ana-

lyses for the effects of the T2D instrument including blood pressure, dyslipi-

daemia, and obesity attenuated the association between T2D and CAD

(OR= 1.07, 95% CI: 1.04–1.11). Bayesian locus‐overlap analysis identified

44 regions with the same causal variant underlying T2D and CAD genetic

signals (FDR < 1%) at a posterior probability >0.7; five (MHC, LPL, ABO, RAI1

and MC4R) of these regions contain genome‐wide significant (p< 5 × 10−8)

associations for both traits. Given the small effect sizes observed in genome‐
wide association studies for complex diseases, even with 44 potential target

regions, this has implications for the likely magnitude of CAD risk reduction

that might be achievable by pure T2D therapies.
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1 | INTRODUCTION

The pandemic (Unnikrishnan et al., 2017; Zheng
et al., 2018) of type 2 diabetes (T2D) is having an in-
creasing impact on morbidity and mortality in high and
medium income countries, with over 1 million deaths per
year (Khan et al., 2020). The diagnostic high blood glucose
levels that result from lack of insulin production by the
pancreatic islets, or insulin resistance, put patients at risk
of micro‐vascular diseases such as nephropathy and re-
tinopathy. Diabetics are also at increased risk of macro‐
vascular diseases including coronary artery disease (CAD),
one of the leading causes of mortality in the world with 8.9
million deaths in 2017 (Cade, 2008; “Global, regional, and
national age‐sex‐specific mortality for 282 causes of death
in 195 countries and territories, 1980‐2017: a systematic
analysis for the Global Burden of Disease Study
2017”, 2018; Sarwar et al., 2010). An extensive literature
review (Einarson et al., 2018) reported that one‐fifth of
patients with T2D also suffer from CAD; a similar trend
was observed in the United Kingdom based on primary
care data (Lautsch et al., 2019). This comorbid connection
is supported by recent drug trials of compounds that lower
blood glucose levels, which report a reduction in the
number of CAD‐associated events as a welcome side
benefit of these diabetes therapies. For instance, the alpha‐
glucosidase inhibitor acarbose (Chiasson et al., 2003) is
associated with a substantial (49%) relative risk reduction
[hazard ratio: 0.51, 95% confidence interval (CI):
0.28–0.95, p= 0.03] of cardiovascular events in patients
with T2D (including peripheral vascular disease, stroke,
heart failure) compared with placebo. Empagliflozin, an
inhibitor of sodium–glucose cotransporter 2 (Zinman
et al., 2015), is reported to have a lower rate (14% risk
reduction) of primary cardiovascular events, a composite
of death from cardiovascular causes as well as nonfatal
myocardial infarction or nonfatal stroke, compared with
standard treatment. Although these risk reductions are
clinically welcome, they may follow concomitant reduc-
tions in other CAD risk factors, for example, blood pres-
sure, rather than reflecting some direct normoglycaemic
mechanism.

T2D and CAD are typical common complex diseases
with substantial polygenic components that have been ex-
amined in numerous genome‐wide association studies
(GWAS); the most recent published large‐scale GWAS meta‐
analysis reported 243 and 161 genome‐wide significant
(GWS) independently associated variants associated with
T2D (Mahajan et al., 2018) and with CAD respectively (van
der Harst & Verweij, 2018). Such data provide opportunities
to probe for shared heritable, and thus potentially causal,
links between diseases. For instance, based on earlier data,
Bulik‐Sullivan et al. reported a genetic correlation of 0.39

(95% CI: 0.24–0.53) between T2D and CAD in a linkage
disequilibrium (LD) score regression analysis (Bulik‐Sullivan
et al., 2015). Contemporaneous attempts (Ahmad et al., 2015;
Benn et al., 2012; Gan et al., 2019; Jansen et al., 2015; Merino
et al., 2017; Ross et al., 2015; Tikkanen et al., 2016; Zhao
et al., 2017) to compare genetically and epidemiologically
measured risk found variable increases in CAD risk (up to
1.63‐fold per T2D log‐odds) reflecting shared inherited and
potentially environmental susceptibility. However, under-
standing the intricate relationship of obesity, lipid traits and
hypertension with T2D and CAD remains a challenge that
has only been partially resolved (Goodarzi & Rotter, 2020).

It is becoming increasingly apparent that variants as-
sociated with common complex diseases like T2D and
CAD can show pleiotropic associations with other heri-
table phenotypes, specifically metabolic syndrome (MS)
(Eckel et al., 2005; Kaur, 2014) traits such as obesity or
dyslipidaemia (Hackinger & Zeggini, 2017), revitalizing
the ‘common soil’ hypothesis (Stern, 1995). In this study,
we have probed the extensive new GWAS meta‐analysis
data (Mahajan et al., 2018; van der Harst & Verweij, 2018),
to explore the nature of the link between T2D and CAD
heritable risk. We have applied a series of complementary
statistical genetic methods based upon genetic association
summary statistics, including Mendelian randomization
(MR) analysis taking into account pleiotropic metabolic
confounders. We also performed a systematic locus‐by‐
locus assessment of T2D and CAD to quantify and identify
the loci that are driven by the same likely causal variant.
These common driver loci can give clues to intersecting
pathways between the two diseases.

2 | METHODS

2.1 | Participating cohorts

T2D genetic association summary statistics (Mahajan
et al., 2018) were extracted from a meta‐analysis (un-
adjusted for BMI) of 32 GWAS studies comprising 74,124
cases and 824,006 controls of European ancestry, per-
formed by the DIAGRAM consortium. Briefly, T2D case
status was established by means of patient questionnaire
and medical record data, with an age‐of‐onset >35 years
and exclusion of glutamic acid decarboxylase (GAD)
antibody‐positive individuals.

CAD genetic association summary statistics (van der
Harst & Verweij, 2018) were extracted from a meta‐
analysis of UK Biobank and CARDIoGRAMplusC4D
(Nikpay et al., 2015) 1000 Genomes GWAS (involving
48 studies) that in total included 122,733 cases and 424,528
controls. Case status included various CAD diagnoses;
myocardial infarction, acute coronary syndrome, chronic
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stable angina with a revascularization procedure and an-
giographic evidence of >50% coronary stenosis. CAD cases
had a mean age of approximately 60 years.

Genetic association summary statistics for MS traits
[body mass index (BMI) (Yengo et al., 2018), waist‐hip
ratio (WHR) (Pulit et al., 2019), systolic and diastolic
blood pressure (SBP, DBP) (Evangelou et al., 2018),
fasting blood glucose (without diabetics) (Dupuis
et al., 2010) and serum lipids (Teslovich et al., 2010)
(high‐density lipoprotein (HDL), triglycerides (TG)] were
downloaded from public websites (Table S1).

This study constitutes a de novo analysis of anonymized
summary‐level genetic data from published meta‐analyses in
which each of the contributing studies secured ethics ap-
proval from their respective authorities; all participants had
provided written informed consent (Mahajan et al., 2018;
Nikpay et al., 2015; van der Harst & Verweij, 2018).

2.2 | Cross‐trait LD score regression

Alleles and direction of susceptibility effect (scaled as log
odds‐ratios) for the T2D and CAD data sets were aligned to
the Hapmap3 set of 1.2 million variants. The genetic cor-
relation of variant effects between T2D and CAD was then
estimated using cross‐trait LD score regression (Bulik‐
Sullivan et al., 2015) using European LD scores computed
using 1000 Genomes data bundled with the software.

2.3 | Selection of instrumental variables

243 lead variants with genome‐wide significant associa-
tions (i.e., p< 5 × 10−8) were extracted from the DIA-
GRAM meta‐analysis, log odds‐ratio estimates (betas)
and effect/reference allele identities were collated for our
analysis. Among the 243 variants identified, 224 were
selected as instrumental variables (IVs) (Mahajan
et al., 2018) for this study; proxies (LD r2 > 0.8) for the
remaining 19 T2D variants were unavailable in the CAD
meta‐analysis (Table S2). Per single‐nucleotide poly-
morphism (SNP) estimates of liability heritability for IVs
were calculated using the INDI‐V online tool (Witte
et al., 2014) assuming a 10% population prevalence for
T2D. F‐statistics to assess the strength of IVs were cal-

culated using the formula ( )( )F =
n k

k

R

R

− − 1

1−

2

2 where

n= sample size, k= the number of IVs, and R2 = the total
SNP heritability summed across K IVs (Burgess &
Thompson, 2011; Cragg & Donald, 1993).

Summary statistics (betas and their standard errors
and effect/reference allele identity) of the IVs for MS
CAD risk factors (BMI, WHR, SBP, DBP, fasting blood

glucose and serum lipids (HDL and TG)) were aligned
(i.e., ‘beta flipped’) to the increasing T2D risk allele for
MR analyses (Tables S2 and S5).

2.4 | Instrumental variable sensitivity
analysis

The PhenoScanner database (Kamat et al., 2019; Staley
et al., 2016) was interrogated for evidence of pleiotropy
between T2D associated variants and MS (Eckel
et al., 2005) traits; obesity, blood pressure, glucose and
lipids, with a p‐value threshold of 1 × 10−5 and a LD r2

threshold of 0.8 to identify proxy variants (Tables S3
and S4). In total, 93 of 224 IVs showed evidence of
pleiotropy with at least one metabolic trait and were re-
moved in the sensitivity analysis.

2.5 | MR analysis

The causal effect of T2D (in the role of risk phenotype)
on CAD (as outcome phenotype) was first analysed in a
standard, random‐effect (Jack Bowden et al., 2017), in-
verse variance weighted (IVW) (Burgess et al., 2013) MR.
This univariate method performs a meta‐analysis of the
ratios of the outcome (i.e., CAD) variant effect sizes di-
vided by the risk phenotype (i.e., T2D) effect sizes;
standard errors (SEs) of the outcome effect sizes were
used as weights. These ratios provide causal estimates for
the effect of the risk factor on the outcome.

IVW assumes that all IVs used in the analysis do not
violate IV assumptions. To test the validity of the IVs, sen-
sitivity analyses were performed using the MR Egger
(Bowden et al., 2015), weighted median (Bowden
et al., 2016), weighted mode (Hartwig et al., 2017) and
MRPRESSO (Verbanck et al., 2018) methods. MR Egger
(Bowden et al., 2015; Burgess & Thompson, 2017) detects
invalid IVs due to directional pleiotropy, (where the IV in-
fluences both the risk and outcome phenotypes directly) or
violation of the InSIDE assumption (or both). The InSIDE
assumption is that the direct effect of the IV on the exposure
is independent on the direct effect on the outcome and must
be true for the MR Egger test to be valid (Bowden
et al., 2015). The weighted median (Bowden et al., 2016)
provides a robust estimator of causal effect that allows for up
to 50% of the IVs being invalid; the median MR method is
insensitive to outlier outcome betas. The weighted mode
(Hartwig et al., 2017) method has been shown to be robust if
the majority of the IVs are valid (Hartwig et al., 2017). MR‐
PRESSO (Verbanck et al., 2018) detects and corrects for
outliers with horizontal pleiotropy within the list of Instru-
mental variables.
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We extended the MR using 176 IVs/proxy IVs
available in all of the MS traits to simultaneously
evaluate single or multiple MS traits (Evangelou
et al., 2018; Pulit et al., 2019; Teslovich et al., 2010;
Yengo et al., 2018) with T2D in a CAD risk outcome
model (Table S5). A stepwise model selection proce-
dure using the Akaike information criterion (AIC)
(Akaike, 1974) was performed to identify a parsimo-
nious subset of informative risk factors to be included
with T2D in the MR model. This method takes a sa-
turated model (including all MS traits), and finds the
model that minimizes the AIC estimator by system-
atically removing and adding traits from the model.
AIC is derived from the likelihood score of the model.

To perform the MR analysis we used the R package
TwoSampleMR version 0.5.5 with R version 4.0.3. The
stepwise model selection used the R stats package ver-
sion 4.03.

2.6 | Shared genetic determinants
between T2D and CAD

The LDetect (Berisa & Pickrell, 2016) method was used to
split the genome into 1,703 discrete segments that are in
approximate linkage equilibrium based on European
participants in the 1000 Genomes database (Auton
et al., 2015). The gwas‐pw (Pickrell et al., 2016) method
was used to undertake a Bayesian analysis to assess
whether T2D and CAD share a common underlying ge-
netic signal. This method calculates the likelihood whe-
ther a genomic region contains a variant influencing only
T2D susceptibility (Model 1), only CAD (Model 2), a
shared variant that influences both T2D and CAD (Model
3) or contains two independently associated variants
(Model 4). Loci reporting a posterior probability of

association in Model 3 (PPA3) > 0.7 and harbouring
suggestive (FDR< 1%) T2D and CAD associations of
variant were assembled. The FDR< 1% threshold was
calculated from the T2D summary GWAS using Simes
method (Stata10.1), the corresponding p‐value threshold
was p< 2.2 × 10−5; this threshold also controls the CAD
GWAS FDR to <1%.

3 | RESULTS

3.1 | Genome‐wide genetic correlation
between T2D and CAD

A cross‐trait LD score regression analysis based on a Hap-
map 3 set of genome‐wide variants detected a highly sig-
nificant (p<3.11 × 10−75) genetic correlation between CAD
and T2D of moderate strength (rg = 0.40, 95% CI: 0.36–0.44).

3.2 | MR analysis—causal role of T2D
on CAD

Analysis of 224 IVs in a standard random‐effect IVW
MR test showed a highly significant (p < 1.59 × 10−17)
association with an odds ratio (OR) of 1.13 for CAD per
log odds unit of T2D susceptibility (Table 1, Figure S1).
The T2D GWAS was based on an effective sample size
of 231,456 participants (Mahajan et al., 2018), the total
SNP heritability for the 224 instruments and the cor-
responding F‐statistic were calculated as 12.4% and
146.1, respectively. An Egger horizontal pleiotropy test
was significant (p < 0.003) suggesting a violation of the
IV assumption due to directional pleiotropy (that
the genetic variant does not directly influence the
outcome phenotype) (Figure S2). The ORs estimated by

TABLE 1 Results of the T2D‐CAD
MR analysis and senstitivity tests

MR test OR for CAD [95% CI] p‐value IVs (n)

All IVs IVW—fixed 1.13 [1.11−1.14] 2.78 × 10−71 224

IVW—random 1.13 [1.10−1.16] 1.59 × 10−17

Weighted median 1.09 [1.06−1.12] 6.05 × 10−9

Weighted mode 1.09 [1.06−1.12] 1.28 × 10−7

Pleiotropic IVs IVW—fixed 1.10 [1.08−1.12] 6.48 × 10−19 131

Removed IVW—random 1.10 [1.06−1.14] 1.86 × 10−7

Weighted median 1.07 [1.03−1.10] 2.09 × 10−4

Weighted mode 1.06 [0.99−1.14] 0.11

Note: See Tables S3 and S4 for details of the pleiotropic phenotypes and variants. n denotes the number
of IVs.

Abbreviations: CAD, coronary artery disease; CI, confidence interval; IV, instrumental variant; IVW,
inverse variance weighted; MR, Mendelian randomization; OR, odds ratio; T2D, type 2 diabetes.
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the weighted median and mode MR methods, tests that
are partially robust to pleiotropy, were very similar
(OR = 1.09), but slightly attenuated in comparison
with the IVW effect size (Table 1).

3.3 | Sensitivity analyses—excluding
pleiotropic variants

When pleiotropic variants identified by PhenoScanner
were removed, the IVW signal was marginally weaker
(OR= 1.10, 95% CI: 1.06–1.14) although still highly sig-
nificant (p< 1.86 × 10−7) (Table 1, Figure S3); the total
SNP heritability for the 131 pleiotropy‐filtered instruments
was 5.6% with an F‐statistic = 104.7. MR Egger pleiotropy
test was again significant (p< 0.03) indicating the pre-
sence of residual directional pleiotropy (Figure S4). OR

estimates from the weighted median was marginally
smaller (OR= 1.07, 95% CI: 1.03–1.10, p< 2.09 × 10−4).

MR Egger analyses suggest that some of the IVs used
in this analysis violate the null directional pleiotropy IV
assumption. The difference between the standard IVW
and weighted median and mode MR odds‐ratios, indicate
that some of the IVs are invalid due to either horizontal
pleiotropy or mutual confounding.

MR‐PRESSO identified 12 variants that were sig-
nificantly heterogeneous and after excluding the outlier
instruments, the results were consistent with standard IVW
(OR=1.14, 95% CI: 1.11–1.16, p<2.51 × 10−24) (Table S6).

3.4 | MR analysis of T2D and associated
metabolic traits

To investigate potential conflation of T2D and associated
MS genetic influences on CAD risk, the IVW MR model
was expanded to simultaneously test multiple traits. The
effect of a common set of IVs (n= 176, SNP‐
heritability = 8.5%, F‐statistic = 122.5) was estimated for
T2D in conjunction with one or several additional traits
using a weighted multiple regression model with the
intercept fixed at zero. When individual MS traits were
included in the model, T2D causal estimates fell in the
range OR= 1.10–1.15 (Table 2), these estimates are si-
milar to that derived from the standard (univariate) IVW
MR analysis (Table 1). The influence of MS traits on CAD
showed consistent directional effects, that is, HDL being
protective, OR= 0.74, while the others showed deleter-
ious effects. Significant ORs were observed for all of the
MS traits except for DBP and glucose (p> 0.35).

TABLE 2 Bi‐variate MR analyses

Trait Trait T2D effect on CAD MS trait effect on CAD

MS trait h2 F MS units OR [95% CI] p‐value OR [95% CI] p‐value

DBP 0.21 9.1 mm Hg 1.13 [1.10–1.17] 3.68 × 10−15 1.01 [0.99–1.04] 0.353

SBP 0.21 9.1 mm Hg 1.11 [1.08‐1.15] 5.97 × 10−11 1.02 [1.01–1.04] 8.38 × 10−3

HDL 1.46 8.4 per SD 1.10 [1.07–1.13] 2.32 × 10−10 0.74 [0.66–0.84] 2.14 × 10−6

TG 2.02 11.7 per SD 1.11 [1.08–1.14] 4.15 × 10−14 1.41 [1.28–1.54] 6.17 × 10−12

BMI 1.27 58.2 per SD 1.13 [1.10–1.16] 8.13 × 10−15 1.16 [1.02–1.32] 0.023

WHR 0.63 25.0 per SD 1.11 [1.08–1.15] 1.14 × 10−10 1.38 [1.13–1.68] 1.93 × 10−3

Glucose 2.48 6.7 mmol/l 1.15 [1.11–1.19] 1.13 × 10−12 0.91 [0.75–1.12] 0.381

Note: Analysis was performed using 176 instrumental variables of individual MS traits in addition to T2D. h2 reports the heritability and F reports the strength
of the IVs used for the given MS trait. T2D effect on CAD denotes the IVW MR estimate of the causal effect of T2D on CAD, when a single MS trait is added to
the model. MS trait effect on CAD: The estimate of the effect (scaled in MS units) of the MS trait on CAD risk.

Abbreviations: BMI, body mass index; CAD, coronary artery disease; CI, confidence interval; DBP, diastolic blood pressure; Glucose, fasting glucose; HDL,
high‐density lipoprotein cholesterol; MR, Mendelian randomization; MS, metabolic syndrome; OR, odds ratio; SBP, systolic blood pressure; T2D, type 2
diabetes; TG, triglycerides; WHR, waist‐hip ratio.

TABLE 3 Results of a parsimonious MR model selection
procedure minimizing the Akaike information criterion (AIC)

Covariate Units OR [95% CI] p‐value

T2D per log odds 1.07 [1.04–1.11] 9.73 × 10−6

TG per SD 1.32 [1.20–1.45] 2.67 × 10−8

BMI per SD 1.18 [1.06–1.33] 4.82 × 10−3

WHR per SD 1.25 [1.03–1.51] 2.65 × 10−2

SBP mm Hg 1.03 [1.00–1.05] 3.05 × 10−2

DBP mm Hg 0.97 [0.94–1.01] 1.43 × 10−1

Abbreviations: BMI, body mass index; CI, confidence interval; DBP: diastolic
blood pressure; MR, Mendelian randomization; OR, odds ratio; SBP, systolic
blood pressure; T2D, type 2 diabetes; TG, triglycerides; WHR, waist‐hip
ratio.
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In addition to testing the effect of including in-
dividual MS traits, we assessed the impact of multiple
traits in a multiple regression model (Table 3). Two
models were analysed; a saturated model (Table S7a)

including all MS traits and a parsimonious model
(Table 7b) identified by applying a stepwise model se-
lection procedure and the Akaike information criterion
(AIC) (Table S7c). The T2D causal estimates were very
similar in both the saturated (OR= 1.07, p= 0.002) and
parsimonious model (OR= 1.07, p= 9.7 × 10−6) and si-
milar to those estimated in the weighted median and
mode analyses (Table 1).

The parsimonious model included representative
traits from the three pillars of MS, blood pressure, dys-
lipidaemia and obesity, reflecting the correlation between
closely related phenotypes (Tables 3 and S7b).

Comparing the effect of T2D IVs on CAD using dif-
ferent models, we detected a significant causal associa-
tion ranging from OR= 1.13 using all IVs to OR= 1.07
after model selection (Figure 1).

3.5 | Pair‐wise comparison of
loci—GWAS‐PW analysis

Of the 1,703 approximately genetically independent re-
gions showing association, there were 47 regions har-
bouring both T2D and CAD GWS variant(s) (Table S8). A
simulation with 100,000 permutations estimated the un-
biased p‐value for≥ 47 overlaps as p< 3 × 10−5 (Figure S5)
suggesting there are more overlapping GWS loci than by
chance. A gwas‐pw analysis suggested that only 5 out of 47
GWS overlapping loci (MHC, LPL, ABO, RAI1 and MC4R)
showed evidence (PPA3≥ 0.7) of sharing the same un-
derlying causal variant (Table 4). Overall, we found a total
of 44 regions where the PPA3> 0.7 and both CAD and
T2D GWAS studies had some level of genetic association
(FDR<1%, Table S8, Figure S6).

FIGURE 1 Comparison of causal effects of T2D on CAD. IVW
(224) is the causal estimate derived from a univariate random‐effect
IVW MR analysis including 224 IVs. IVW (131) is the univariate
causal estimate for 131 IVs non‐pleiotropic variants. AIC T2D is the
causal estimate from the parsimonious MR with MS covariates
model after AIC stepwise selection. Weighted median and weighted
mode are the corresponding sensitivity analyses for the 224 and 131
analyses. AIC, Akaike information criterion; CAD, coronary artery
disease; IV, instrumental variable; IVW, inverse variance weighted;
MR, Mendelian randomization; T2D, type 2 diabetes

TABLE 4 GWAS‐PW results

Chromosome
Start
(bp hg19)

End
(bp hg19)

PPA
Model 3

PPA
Model 4

Locus
name

6 30,798,168 31,570,931 0.93 0.07 MHC

8 19,492,840 20,060,468 0.99 0.01 LPL

9 135,298,917 137,028,444 0.77 0.23 ABO

17 16,412,352 18,855,987 0.81 0.18 RAI1

18 57,631,234 59,020,370 0.98 0.02 MC4R

9 20,464,018 22,205,246 0.00 1.00 9p21a

Note: Overlapping genome‐wide significant loci in both T2D and CAD with same causal SNP (PPA Model
3 > 0.7). PPA Model 3 is the posterior probability that the genetic associations for both diseases are
consistent with a shared causative variant. PPA Model 4 is the posterior probability that the genetic
associations for the two diseases are consistent with different causative variants.

Abbreviations: CAD, coronary artery disease; GWAS, genome‐wide association studies; PPA, posterior
probability of association; SNP, single‐nucleotide polymorphism; T2D, type 2 diabetes.
aThis locus represents an exemplar of a locus containing different T2D and CAD causal variants.
Complete set of results in Table S8.
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4 | DISCUSSION

Observational epidemiological studies have consistently
reported an increased risk of cardiovascular disease in
T2D patients (Einarson et al., 2018; Lautsch et al., 2019).
Although some clinical trials indicate a reduction in CAD
risk following careful glycaemic control in diabetics
(Chiasson et al., 2003; Zinman et al., 2015), others show
more complex or contrasting results (Holman et al., 2017).
A recent study of insulin‐treated patients suggested how
an overall beneficial effect on CAD risk could be partly
neutralized due to effects of insulin increasing oxidative
stress in arterial vessel walls (Akoumianakis et al., 2020).
Some drugs that affect multiple biochemical and cellular
pathways, give rise to disparate physiological effects, for
instance, empagliflozin is an effective treatment to reduce
glucose levels but it is also associated with a lowering of
blood pressure to mechanistically entangle the therapeutic
benefits in terms of CAD risk (Zinman et al., 2015). Whilst
this is clinically welcome, it confounds attempts to un-
derstand the direct causal nature of each component of
risk reduction, knowledge needed to guide expectations
for the impact of new diabetes treatments on cardiovas-
cular disease risk.

To counter this ‘beneficial entanglement’, there are
advantages in studying naturally acquired genetic de-
terminants of diabetes and coronary susceptibility as they
are allocated randomly during development so are in-
dependent of environmental factors that could confound
observational associations (Smith & Ebrahim, 2003).
However, the explosion in GWAS data has revealed the
wide‐spread presence of human pleiotropy (Hackinger &
Zeggini, 2017), where a gene influences several see-
mingly unrelated or loosely related phenotypes; circum-
stances that need careful consideration here given the
complex inter‐relationships of MS traits acting as con-
founder, mediator or pleiotropic and their clinical se-
quelae (Sanderson et al., 2019). With that in mind, we
use contemporary MR approaches to provide robust
causal estimates of the relationship between diabetes and
coronary disease risk, with genetic burden estimates
ranging from 6% to 9% per log odds unit of T2D sus-
ceptibility. Our analyses were all based on T2D genetic
instruments that comfortably surpassed by an order of
magnitude the ‘rule of thumb’ F‐statistic >10 criterion
adopted to flag potential weak instrument bias (Burgess
& Thompson, 2011).

There have been several previous MR reports to
characterize the genetic burden of CAD in type 2 dia-
betics (Ahmad et al., 2015; Benn et al., 2012; Gan
et al., 2019; Jansen et al., 2015; Merino et al., 2017; Ross
et al., 2015; Tikkanen et al., 2016; Zhao et al., 2017). For
instance, Ross et al. (Ross et al., 2015) reported a

substantial causal estimate for T2D (OR= 1.63, 95% CI:
1.23–2.07) on CAD risk in a multivariate model including
LDL in addition to the MS traits HDL, TC, TG and BMI
with 59 instrumental SNPs that explain 4.6% T2D liability
(F‐statistic = 87.4 with an effective sample size =
106,953). This represents a predicted relative risk of CAD
for a hypothetical 2.72‐fold increase in T2D risk. Apply-
ing the same transformation, (Ross et al., 2015) our
multivariate model (Table 3) allowing for MS con-
founding predicts a lower causal estimate with greater
precision (OR= 1.42, 95% CI: 1.24–1.62), assuming a
population prevalence for T2D and CAD of 10% and 5%,
respectively.

Selecting perfect instrumental variables for an idea-
lized MR analysis is perhaps an unrealizable goal given
the complex interactions of molecular processes within
cells set off by genetic variation. Horizontal pleiotropy
(Tyler et al., 2009), originally dubbed mosaic pleiotropy
(Hadorn, 1961) implies a shared molecular link between
two phenotypes mediated through the presence of a
specific allele, an evolutionary efficient and pervasive
consequence of molecular multitasking. A simple statis-
tical test for a non‐zero intercept that extends the stan-
dard IVW MR method is sensitive to the presence of
directional pleiotropy in IVs. This Egger test was sig-
nificant (p< 0.003) for an unfiltered analysis of 224 in-
struments indicating an imbalance of pleiotropic effects
(Bowden et al., 2015; Burgess & Thompson, 2017).
Therefore, we undertook weighted median, mode and
MR‐PRESSO tests that provide some protection from
pleiotropy; these analyses generated consistent estimates
of causal effects OR= 1.09 (95% CI: 1.06–1.12). To com-
plement these robust estimates, our modelling of
MS‐mediated pleiotropy shrank the MR estimate slightly
to OR= 1.07 although only a few are strong
(F‐statistic > 10) instruments for their respective MS trait.

In the first wave of GWAS in 2007, a novel locus on
chromosome 9p21 was reported to show association to
both T2D (Diabetes Genetics Initiative of Broad Institute
of Harvard and MIT, Lund University, and Novartis In-
stitutes of BioMedical Saxena et al., 2007; Zeggini
et al., 2007) and CAD (McPherson et al., 2007). Broadbent
et al. (Broadbent et al., 2008) in a fine‐mapping study
showed that although the lead associated SNPs were in
close physical proximity, they were located on either side
of a recombination hotspot and in approximate linkage
equilibrium, and regression modelling of comorbid cases
confirmed their statistical independence. When we ap-
plied gwas‐pw to the present GWAS data in a control (i.e.,
confirmatory) analysis, the 9p21 locus showed a posterior
probability of association of 1.0 for Model 4 of in-
dependent causal variants (Table 4), confirming the sta-
tistical independence of the two genetic signals.
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We found that only 5 out of 47 genetically in-
dependent loci showing GWS associations to both T2D
and CAD had Model 3 posterior probabilities of over
70% for sharing of same causal variant. GWAS has been
instrumental in identifying variants associated with
diseases and specific biological experiments are needed
to pinpoint causal genes. These five loci (MHC, MC4R,
LPL, ABO and RAI1) show strong associations with
relevant phenotypes and have been well characterized
in the literature and, as a result, the likely causal genes
are considered known. It has been reported that loss‐of‐
function mutations in the coding sequence of MC4R
gene increases the predisposition to obesity. Con-
versely, gain‐of‐function variants significantly lower
BMI and lower odds of T2D and CAD (Lotta
et al., 2019). Protein altering changes to LPL gene has
been shown to be associated with higher triglyceride
levels and presence of CAD (Khera et al., 2017). How-
ever, the regulation of this gene is insulin dependent
and hence LPL level changes according to insulin levels
and sensitivity (Taskinen, 1987). It has been observed
in a large prospective cohort that people with O blood
group have a lower risk of developing T2D and higher
risk with AB+ group (Fagherazzi et al., 2015). Fur-
thermore, the risk of developing CAD is lower in in-
dividuals with O blood group (Chen et al., 2016). These
GWS loci that are driven by the same causal variant as
highlighted in our gwas‐pw analysis and reported in the
literature suggest a common mediating pathway be-
tween the gene and both T2D and CAD. Relaxing the
GWS threshold to include FDR <1% loci revealed a
significant excess of Model 3 loci, 1.4‐fold more over-
laps than expected by chance (Figure S6) providing a
valuable resource of potential target regions. Unlike
MR approaches where we have the flexibility to assess
the relevance of MS traits on the estimated causal ef-
fect, gwas‐pw only compares regional distribution of
summary statistics between two diseases for co‐
localization. Functional genomic progress will enable
the link between likely causal gene for these loci and
how they intersect with different MS traits.

Sullivan et al (Bulik‐Sullivan et al., 2015) reported a
cross‐trait LD Score regression correlation between T2D
and CAD of 0.39 and with availability of updated sum-
mary statistics, we observed a very similar moderate
correlation of 0.40. Genetic correlations may be indis-
tinguishable from signed pleiotropy (Bulik‐Sullivan
et al., 2015), situations where a variant induces a
change in two phenotypes in a consistent direction. Our
extended MR analysis found that the effects of MS traits
on T2D IVs on average, affect CAD risk in a consistent
signed manner demonstrating the orchestrated effects of
T2D variation on MS and CAD.

In summary, our study using large scale GWAS
summary statistics based on hundreds of thousands of
participants shows that inherited T2D susceptibility is
associated with a robust albeit modest increase in CAD
susceptibility, indicating a causal link between the two
diseases. The link appears to be independent of MS
susceptibility with MR estimates that reflect lifelong ex-
posure including a prediabetes phase. Given that the
genetic signals observed for common diseases have small
to modest effect sizes, even with a significant excess in
loci that overlap between the two diseases, the antici-
pated benefits of diabetes treatments specifically on re-
ducing CAD risk may therefore be similarly modest in
scale, with implications for clinical trial design in terms
of follow‐up timelines and sample size.

ACKNOWLEDGEMENTS
We are grateful to the GIANT, GlobalBP Gen, MAGIC,
Global Lipids, CARDIoGRAMplusC4D & DIAGRAM con-
sortia for making the summary statistics publicly available.
PROCARDIS was supported by the European Community
Sixth Framework Program (LSHM‐CT‐2007‐037273), As-
traZeneca, the Swedish Research Council, the Knut and
Alice Wallenberg Foundation, the Swedish Heart‐Lung
Foundation, the Torsten and Ragnar Soderberg Founda-
tion, the Strategic Cardiovascular Program of Karolinska
Institutet and Stockholm County Council, the Foundation
for Strategic Research and the Stockholm County Council
(560283). This study was supported by British Heart
Foundation (J.C.H., FS/14/55/30806), Wellcome Trust core
award (090532/Z/09/Z, 203141/Z/16/Z, 201543/B/16/Z);
EU 7th Framework HEALTH‐F2‐2013‐601456 (CVGe-
nes@Target), the TriPartite Immunometabolism Con-
sortium [TrIC]‐Novo Nordisk Foundation's Grant number
NNF15CC0018486, VIAgenomics (SP/19/2/344612) and the
NIHR Oxford Biomedical Research Centre. M. F., J. C. H.
and H. W. are members of the Oxford BHF Centre of Re-
search Excellence (RE/13/1/30181). The views expressed
are those of the author(s) and not necessarily those of the
NHS, the NIHR or the Department of Health.

CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.

DATA AVAILABILITY STATEMENT
All data used in this manuscript are publicly available.
T2D: https://diagram-consortium.org/downloads.html
CAD: https://www.cardiomics.net/download-data
Lipids: http://csg.sph.umich.edu/willer/public/lipids2010/
BMI, WHR: https://portals.broadinstitute.org/collaboration
/giant/index.php/GIANT_consortium_data_files
Fasting glucose: https://magicinvestigators.org/downloads/
Blood pressure: http://ldsc.broadinstitute.org/ldhub/

58 | GRACE ET AL.

https://diagram-consortium.org/downloads.html
https://www.cardiomics.net/download-data
http://csg.sph.umich.edu/willer/public/lipids2010/
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://magicinvestigators.org/downloads/
http://ldsc.broadinstitute.org/ldhub/


ORCID
Christopher Grace http://orcid.org/0000-0002-
8082-7504
Jemma C. Hopewell https://orcid.org/0000-0002-
3870-8018
Hugh Watkins https://orcid.org/0000-0002-5287-9016
Anuj Goel https://orcid.org/0000-0003-2307-4021

REFERENCES
Ahmad, O. S., Morris, J. A., Mujammami, M., Forgetta, V.,

Leong, A., Li, R., Turgeon, M., Greenwood, C. M.,
Thanassoulis, G., Meigs, J. B., Sladek, R., & Richards, J. B.
(2015). A Mendelian randomization study of the effect of type‐
2 diabetes on coronary heart disease. Nature Communications,
6, 7060. https://doi.org/10.1038/ncomms8060

Akaike, H. (1974). A new look at the statistical model
identification. IEEE Transactions on Automatic Control, 19(6),
716–723. https://doi.org/10.1109/TAC.1974.1100705

Akoumianakis, I., Badi, I., Douglas, G., Chuaiphichai, S.,
Herdman, L., Akawi, N., Margaritis, M., Antonopoulos, A. S.,
Oikonomou, E. K., Psarros, C., Galiatsatos, N., Tousoulis, D.,
Kardos, A., Sayeed, R., Krasopoulos, G., Petrou, M.,
Schwahn, U., Wohlfart, P., Tennagels, N., … Antoniades, C.
(2020). Insulin‐induced vascular redox dysregulation in
human atherosclerosis is ameliorated by dipeptidyl peptidase
4 inhibition. Science Translational Medicine, 12(541),
eaav8824. https://doi.org/10.1126/scitranslmed.aav8824

Auton, A., Abecasis, G. R., Altshuler, D. M., Durbin, R. M.,
Abecasis, G. R., Bentley, D. R., Chakravarti, A., Clark, A. G.,
Donnelly, P., Eichler, E. E., Flicek, P., Gabriel, S. B.,
Gibbs, R. A., Green, E. D., Hurles, M. E., Knoppers, B. M.,
Korbel, J. O., Lander, E. S., Lee, C., … Wong, B. (2015). A
global reference for human genetic variation. Nature,
526(7571), 68–74. https://doi.org/10.1038/nature15393

Benn, M., Tybjaerg‐Hansen, A., McCarthy, M. I., Jensen, G. B.,
Grande, P., & Nordestgaard, B. G. (2012). Nonfasting glucose,
ischemic heart disease, and myocardial infarction: A
Mendelian randomization study. Journal of the American
College of Cardiology, 59(25), 2356–2365. https://doi.org/10.
1016/j.jacc.2012.02.043

Berisa, T., & Pickrell, J. K. (2016). Approximately independent
linkage disequilibrium blocks in human populations.
Bioinformatics, 32(2), 283–285. https://doi.org/10.1093/
bioinformatics/btv546

Bowden, J., Davey Smith, G., & Burgess, S. (2015). Mendelian
randomization with invalid instruments: Effect estimation and
bias detection through Egger regression. International Journal
of Epidemiology, 44(2), 512–525. https://doi.org/10.1093/ije/
dyv080

Bowden, J., Davey Smith, G., Haycock, P. C., & Burgess, S. (2016).
Consistent estimation in Mendelian randomization with some
invalid instruments using a weighted median estimator.
Genetic Epidemiology, 40(4), 304–314. https://doi.org/10.
1002/gepi.21965

Bowden, J., Del Greco, M. F., Minelli, C., Davey Smith, G.,
Sheehan, N., & Thompson, J. (2017). A framework for the
investigation of pleiotropy in two‐sample summary data

Mendelian randomization. Statistics in Medicine, 36(11),
1783–1802. https://doi.org/10.1002/sim.7221

Broadbent, H. M., Peden, J. F., Lorkowski, S., Goel, A., Ongen, H.,
Green, F., Clarke, R., Collins, R., Franzosi, M. G., Tognoni, G.,
Seedorf, U., Rust, S., Eriksson, P., Hamsten, A., Farrall, M.,
Watkins, H., & Procardis, c (2008). Susceptibility to coronary
artery disease and diabetes is encoded by distinct, tightly
linked SNPs in the ANRIL locus on chromosome 9p. Human
Molecular Genetics, 17(6), 806–814. https://doi.org/10.1093/
hmg/ddm352

Bulik‐Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A.,
Day, F. R., Loh, P. R., Reprogen, C., Psychiatric Genomics, C.,
Genetic Consortium for Anorexia Nervosa of the Wellcome
Trust Case Control Consortium, Duncan, L., Perry, J. R.,
Patterson, N., Robinson, E. B., Daly, M. J., Price, A. L., &
Neale, B. M. (2015). An atlas of genetic correlations across
human diseases and traits. Nature Genetics, 47(11), 1236–1241.
https://doi.org/10.1038/ng.3406

Burgess, S., Butterworth, A., & Thompson, S. G. (2013). Mendelian
randomization analysis with multiple genetic variants using
summarized data. Genetic Epidemiology, 37(7), 658–665.
https://doi.org/10.1002/gepi.21758

Burgess, S., & Thompson, S. G. (2011). Avoiding bias from weak
instruments in Mendelian randomization studies. International
Journal of Epidemiology, 40(3), 755–764. https://doi.org/10.
1093/ije/dyr036

Burgess, S., & Thompson, S. G. (2017). Interpreting findings from
Mendelian randomization using the MR‐Egger method.
European Journal of Epidemiology, 32(5), 377–389. https://
doi.org/10.1007/s10654-017-0255-x

Cade, W. T. (2008). Diabetes‐related microvascular and
macrovascular diseases in the physical therapy setting.
Physical Therapy, 88(11), 1322–1335. https://doi.org/10.2522/
ptj.20080008

Chen, Z., Yang, S. H., Xu, H., & Li, J. J. (2016). ABO blood group
system and the coronary artery disease: An updated
systematic review and meta‐analysis. Scientific Reports, 6,
23250. https://doi.org/10.1038/srep23250

Chiasson, J. L., Josse, R. G., Gomis, R., Hanefeld, M., Karasik, A., &
Laakso, M. (2003). Acarbose treatment and the risk of
cardiovascular disease and hypertension in patients with
impaired glucose tolerance: The STOP‐NIDDM trial. Journal
of the American Medical Association, 290(4), 486–494. https://
doi.org/10.1001/jama.290.4.486

Cragg, J. G., & Donald, S. G. (1993). Testing identifiability and
specification in instrumental variable models. Econometric
Theory, 9(2), 222–240. https://doi.org/10.1017/S02664666
00007519

Dupuis, J., Langenberg, C., Prokopenko, I., Saxena, R., Soranzo, N.,
Jackson, A. U., Wheeler, E., Glazer, N. L., Bouatia‐Naji, N.,
Gloyn, A. L., Lindgren, C. M., Mägi, R., Morris, A. P.,
Randall, J., Johnson, T., Elliott, P., Rybin, D., Thorleifsson, G.,
Steinthorsdottir, V., … Oostra, B. A. (2010). New genetic loci
implicated in fasting glucose homeostasis and their impact on
type 2 diabetes risk. Nature Genetics, 42(2), 105–116. https://
doi.org/10.1038/ng.520

Eckel, R. H., Grundy, S. M., & Zimmet, P. Z. (2005). The metabolic
syndrome. Lancet, 365(9468), 1415–1428. https://doi.org/10.
1016/s0140-6736(05)66378-7

GRACE ET AL. | 59

http://orcid.org/0000-0002-8082-7504
http://orcid.org/0000-0002-8082-7504
https://orcid.org/0000-0002-3870-8018
https://orcid.org/0000-0002-3870-8018
https://orcid.org/0000-0002-5287-9016
https://orcid.org/0000-0003-2307-4021
https://doi.org/10.1038/ncomms8060
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1126/scitranslmed.aav8824
https://doi.org/10.1038/nature15393
https://doi.org/10.1016/j.jacc.2012.02.043
https://doi.org/10.1016/j.jacc.2012.02.043
https://doi.org/10.1093/bioinformatics/btv546
https://doi.org/10.1093/bioinformatics/btv546
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1002/sim.7221
https://doi.org/10.1093/hmg/ddm352
https://doi.org/10.1093/hmg/ddm352
https://doi.org/10.1038/ng.3406
https://doi.org/10.1002/gepi.21758
https://doi.org/10.1093/ije/dyr036
https://doi.org/10.1093/ije/dyr036
https://doi.org/10.1007/s10654-017-0255-x
https://doi.org/10.1007/s10654-017-0255-x
https://doi.org/10.2522/ptj.20080008
https://doi.org/10.2522/ptj.20080008
https://doi.org/10.1038/srep23250
https://doi.org/10.1001/jama.290.4.486
https://doi.org/10.1001/jama.290.4.486
https://doi.org/10.1017/S0266466600007519
https://doi.org/10.1017/S0266466600007519
https://doi.org/10.1038/ng.520
https://doi.org/10.1038/ng.520
https://doi.org/10.1016/s0140-6736(05)66378-7
https://doi.org/10.1016/s0140-6736(05)66378-7


Einarson, T. R., Acs, A., Ludwig, C., & Panton, U. H. (2018).
Prevalence of cardiovascular disease in type 2 diabetes: A
systematic literature review of scientific evidence from across
the world in 2007–2017. Cardiovascular Diabetology, 17(1), 83.
https://doi.org/10.1186/s12933-018-0728-6

Evangelou, E., Warren, H. R., Mosen‐Ansorena, D., Mifsud, B.,
Pazoki, R., Gao, H., Ntritsos, G., Dimou, N., Cabrera, C. P.,
Karaman, I., Ng, F. L., Evangelou, M., Witkowska, K.,
Tzanis, E., Hellwege, J. N., Giri, A., Velez Edwards, D. R.,
Sun, Y. V., Cho, K., … Lind, L. (2018). Genetic analysis of over
1 million people identifies 535 new loci associated with blood
pressure traits. Nature Genetics, 50(10), 1412–1425. https://doi.
org/10.1038/s41588-018-0205-x. Retrieved from https://www.
ncbi.nlm.nih.gov/pubmed/?term=30224653

Fagherazzi, G., Gusto, G., Clavel‐Chapelon, F., Balkau, B., &
Bonnet, F. (2015). ABO and Rhesus blood groups and risk of
type 2 diabetes: Evidence from the large E3N cohort study.
Diabetologia, 58(3), 519–522. https://doi.org/10.1007/s00125-
014-3472-9

Gan, W., Bragg, F., Walters, R. G., Millwood, I. Y., Lin, K., Chen, Y.,
Guo, Y., Vaucher, J., Bian, Z., Bennett, D., Lv, J., Yu, C.,
Mahajan, A., Clarke, R. J., Li, L., Holmes, M. V., McCarthy, M. I.,
Chen, Z., & China Kadoorie Biobank Collaborative, G. (2019).
Genetic predisposition to type 2 diabetes and risk of subclinical
atherosclerosis and cardiovascular diseases among 160,000
Chinese adults. Diabetes, 68(11), 2155–2164. https://doi.org/10.
2337/db19-0224

Global, regional, and national age‐sex‐specific mortality for 282
causes of death in 195 countries and territories, 1980‐2017:
A systematic analysis for the Global Burden of Disease
Study 2017. (2018). Erratum: Department of Error. Lancet,
392(10159), 1736–1788. https://doi.org/10.1016/s0140-
6736(18)32203-7

Goodarzi, M. O., & Rotter, J. I. (2020). Genetics insights in the
relationship between type 2 diabetes and coronary heart
disease. Circulation Research, 126(11), 1526–1548. https://doi.
org/10.1161/circresaha.119.316065

Hackinger, S., & Zeggini, E. (2017). Statistical methods to detect
pleiotropy in human complex traits. Open Biology, 7(11),
https://doi.org/10.1098/rsob.170125

Hadorn, E. (1961). Developmental genetics and lethal factors (U.
Mittwoch, Trans.). Methuen and John Wiley & Sons.

Hartwig, F. P., Davey Smith, G., & Bowden, J. (2017). Robust
inference in summary data Mendelian randomization via the
zero modal pleiotropy assumption. International Journal of
Epidemiology (London), 46(6), 1985–1998. https://doi.org/10.
1093/ije/dyx102

Holman, R. R., Coleman, R. L., Chan, J., Chiasson, J. L., Feng, H.,
Ge, J., Gerstein, H. C., Gray, R., Huo, Y., Lang, Z.,
McMurray, J. J., Rydén, L., Schröder, S., Sun, Y.,
Theodorakis, M. J., Tendera, M., Tucker, L., Tuomilehto, J.,
Wei, Y., … ACE Study, G. (2017). Effects of acarbose on
cardiovascular and diabetes outcomes in patients with
coronary heart disease and impaired glucose tolerance
(ACE): A randomised, double‐blind, placebo‐controlled trial.
Lancet Diabetes Endocrinol, 5(11), 877–886. https://doi.org/10.
1016/s2213-8587(17)30309-1

Jansen, H., Loley, C., Lieb, W., Pencina, M. J., Nelson, C. P.,
Kathiresan, S., Peloso, G. M., Voight, B. F., Reilly, M. P.,

Assimes, T. L., Boerwinkle, E., Hengstenberg, C.,
Laaksonen, R., McPherson, R., Roberts, R.,
Thorsteinsdottir, U., Peters, A., Gieger, C., Rawal, R., …
Schunkert, H. (2015). Genetic variants primarily associated
with type 2 diabetes are related to coronary artery disease risk.
Atherosclerosis, 241(2), 419–426. https://doi.org/10.1016/j.
atherosclerosis.2015.05.033

Kamat, M. A., Blackshaw, J. A., Young, R., Surendran, P.,
Burgess, S., Danesh, J., Butterworth, A. S., & Staley, J. R.
(2019). PhenoScanner V2: An expanded tool for searching
human genotype‐phenotype associations. Bioinformatics, 35,
4851–4853. https://doi.org/10.1093/bioinformatics/btz469

Kaur, J. (2014). A comprehensive review on metabolic syndrome.
Cardiology Research and Practice, 2014, 943162. https://doi.
org/10.1155/2014/943162

Khan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D.,
Mustafa, H., & Al Kaabi, J. (2020). Epidemiology of type 2
diabetes—Global burden of disease and forecasted trends.
Journal of Epidemiology and Global Health, 10(1), 107–111.
https://doi.org/10.2991/jegh.k.191028.001

Khera, A. V., Won, H. H., Peloso, G. M., O'Dushlaine, C., Liu, D.,
Stitziel, N. O., Natarajan, P., Nomura, A., Emdin, C. A.,
Gupta, N., Borecki, I. B., Asselta, R., Duga, S., Merlini, P. A.,
Correa, A., Kessler, T., Wilson, J. G., Bown, M. J., Hall, A. S., …
Kathiresan, S. (2017). Association of rare and common
variation in the lipoprotein lipase gene with coronary artery
disease. Journal of the American Medical Association, 317(9),
937–946. https://doi.org/10.1001/jama.2017.0972

Lautsch, D., Wang, T., Yang, L., & Rajpathak, S. N. (2019).
Prevalence of established cardiovascular disease in patients
with type 2 diabetes mellitus in the UK. Diabetes Therapy, 10,
2131–2137. https://doi.org/10.1007/s13300-019-00698-9

Lotta, L. A., Mokrosiński, J., Mendes de Oliveira, E., Li, C.,
Sharp, S. J., Luan, J., Brouwers, B., Ayinampudi, V.,
Bowker, N., Kerrison, N., Kaimakis, V., Hoult, D.,
Stewart, I. D., Wheeler, E., Day, F. R., Perry, J.,
Langenberg, C., Wareham, N. J., & Farooqi, I. S. (2019).
Human gain‐of‐function MC4R variants show signaling bias
and protect against obesity. Cell, 177(3), 597–607. https://doi.
org/10.1016/j.cell.2019.03.044

Mahajan, A., Taliun, D., Thurner, M., Robertson, N. R.,
Torres, J. M., Rayner, N. W., Payne, A. J., Steinthorsdottir, V.,
Scott, R. A., Grarup, N., Cook, J. P., Schmidt, E. M.,
Wuttke, M., Sarnowski, C., Mägi, R., Nano, J., Gieger, C.,
Trompet, S., Lecoeur, C., … McCarthy, M. I. (2018). Fine‐
mapping type 2 diabetes loci to single‐variant resolution using
high‐density imputation and islet‐specific epigenome maps.
Nature Genetics, 50(11), 1505–1513. https://doi.org/10.1038/
s41588-018-0241-6

McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A.,
Roberts, R., Cox, D. R., Hinds, D. A., Pennacchio, L. A.,
Tybjaerg‐Hansen, A., Folsom, A. R., Boerwinkle, E.,
Hobbs, H. H., & Cohen, J. C. (2007). A common allele on
chromosome 9 associated with coronary heart disease. Science,
316(5830), 1488–1491. https://doi.org/10.1126/science.
1142447

Merino, J., Leong, A., Posner, D. C., Porneala, B., Masana, L.,
Dupuis, J., & Florez, J. C. (2017). Genetically driven
hyperglycemia increases risk of coronary artery disease

60 | GRACE ET AL.

https://doi.org/10.1186/s12933-018-0728-6
https://doi.org/10.1038/s41588-018-0205-x
https://doi.org/10.1038/s41588-018-0205-x
https://www.ncbi.nlm.nih.gov/pubmed/?term=30224653
https://www.ncbi.nlm.nih.gov/pubmed/?term=30224653
https://doi.org/10.1007/s00125-014-3472-9
https://doi.org/10.1007/s00125-014-3472-9
https://doi.org/10.2337/db19-0224
https://doi.org/10.2337/db19-0224
https://doi.org/10.1016/s0140-6736(18)32203-7
https://doi.org/10.1016/s0140-6736(18)32203-7
https://doi.org/10.1161/circresaha.119.316065
https://doi.org/10.1161/circresaha.119.316065
https://doi.org/10.1098/rsob.170125
https://doi.org/10.1093/ije/dyx102
https://doi.org/10.1093/ije/dyx102
https://doi.org/10.1016/s2213-8587(17)30309-1
https://doi.org/10.1016/s2213-8587(17)30309-1
https://doi.org/10.1016/j.atherosclerosis.2015.05.033
https://doi.org/10.1016/j.atherosclerosis.2015.05.033
https://doi.org/10.1093/bioinformatics/btz469
https://doi.org/10.1155/2014/943162
https://doi.org/10.1155/2014/943162
https://doi.org/10.2991/jegh.k.191028.001
https://doi.org/10.1001/jama.2017.0972
https://doi.org/10.1007/s13300-019-00698-9
https://doi.org/10.1016/j.cell.2019.03.044
https://doi.org/10.1016/j.cell.2019.03.044
https://doi.org/10.1038/s41588-018-0241-6
https://doi.org/10.1038/s41588-018-0241-6
https://doi.org/10.1126/science.1142447
https://doi.org/10.1126/science.1142447


separately from type 2 diabetes. Diabetes Care, 40(5), 687–693.
https://doi.org/10.2337/dc16-2625

Nikpay, M., Goel, A., Won, H. H., Hall, L. M., Willenborg, C.,
Kanoni, S., Saleheen, D., Kyriakou, T., Nelson, C. P.,
Hopewell, J. C., Webb, T. R., Zeng, L., Dehghan, A., Alver, M.,
Armasu, S. M., Auro, K., Bjonnes, A., Chasman, D. I.,
Chen, S., … Samani, N. J. (2015). A comprehensive 1,000
Genomes‐based genome‐wide association meta‐analysis of
coronary artery disease. Nature Genetics, 47(10), 1121–1130.
https://doi.org/10.1038/ng.3396

Pickrell, J. K., Berisa, T., Liu, J. Z., Segurel, L., Tung, J. Y., &
Hinds, D. A. (2016). Detection and interpretation of shared
genetic influences on 42 human traits. Nature Genetics, 48(7),
709–717. https://doi.org/10.1038/ng.3570

Pulit, S. L., Stoneman, C., Morris, A. P., Wood, A. R.,
Glastonbury, C. A., Tyrrell, J., Yengo, L., Ferreira, T.,
Marouli, E., Ji, Y., Yang, J., Jones, S., Beaumont, R., Croteau‐
Chonka, D. C., Winkler, T. W., Giant, C., Hattersley, A. T.,
Loos, R., Hirschhorn, J. N., … Lindgren, C. M. (2019). Meta‐
analysis of genome‐wide association studies for body fat
distribution in 694 649 individuals of European ancestry.
Human Molecular Genetics, 28(1), 166–174. https://doi.org/10.
1093/hmg/ddy327

Ross, S., Gerstein, H. C., Eikelboom, J., Anand, S. S., Yusuf, S., &
Pare, G. (2015). Mendelian randomization analysis supports
the causal role of dysglycaemia and diabetes in the risk of
coronary artery disease. European Heart Journal, 36(23),
1454–1462. https://doi.org/10.1093/eurheartj/ehv083

Sanderson, E., Davey Smith, G., Windmeijer, F., & Bowden, J.
(2019). An examination of multivariable Mendelian
randomization in the single‐sample and two‐sample
summary data settings. International Journal of
Epidemiology, 48(3), 713–727. https://doi.org/10.1093/ije/
dyy262

Sarwar, N., Gao, P., Seshasai, S. R., Gobin, R., Kaptoge, S.,
Di Angelantonio, E., Ingelsson, E., Lawlor, D. A., Selvin, E.,
Stampfer, M., Stehouwer, C. D., Lewington, S., Pennells, L.,
Thompson, A., Sattar, N., White, I. R., Ray, K. K., & Danesh, J.
(2010). Diabetes mellitus, fasting blood glucose concentration,
and risk of vascular disease: A collaborative meta‐analysis of
102 prospective studies. Lancet, 375(9733), 2215–2222. https://
doi.org/10.1016/s0140-6736(10)60484-9

Saxena, R., Voight, B. F., Lyssenko, V., Burtt, N. P., de Bakker, P. I.,
Chen, H., Roix, J. J., Kathiresan, S., Hirschhorn, J. N.,
Daly, M. J., Hughes, T. E., Groop, L., Altshuler, D.,
Almgren, P., Florez, J. C., Meyer, J., Ardlie, K.,
Bengtsson Boström, K., … Purcell, S. (2007). Genome‐wide
association analysis identifies loci for type 2 diabetes and
triglyceride levels. Science, 316(5829), 1331–1336. https://doi.
org/10.1126/science.1142358

Smith, G. D., & Ebrahim, S. (2003). ‘Mendelian randomization’: can
genetic epidemiology contribute to understanding
environmental determinants of disease? International
Journal of Epidemiology, 32(1), 1–22. https://doi.org/10.1093/
ije/dyg070

Staley, J. R., Blackshaw, J., Kamat, M. A., Ellis, S., Surendran, P.,
Sun, B. B., Paul, D. S., Freitag, D., Burgess, S., Danesh, J.,
Young, R., & Butterworth, A. S. (2016). PhenoScanner: A
database of human genotype‐phenotype associations.

Bioinformatics, 32(20), 3207–3209. https://doi.org/10.1093/
bioinformatics/btw373

Stern, M. P. (1995). Diabetes and cardiovascular disease: The
“common soil” hypothesis. Diabetes, 44(4), 369–374. https://
doi.org/10.2337/diab.44.4.369

Taskinen, M. R. (1987). Lipoprotein lipase in diabetes. Diabetes/
Metabolism Reviews, 3(2), 551–570. https://doi.org/10.1002/
dmr.5610030208

Teslovich, T. M., Musunuru, K., Smith, A. V., Edmondson, A. C.,
Stylianou, I. M., Koseki, M., Pirruccello, J. P., Ripatti, S.,
Chasman, D. I., Willer, C. J., Johansen, C. T., Fouchier, S. W.,
Isaacs, A., Peloso, G. M., Barbalic, M., Ricketts, S. L., Bis, J. C.,
Aulchenko, Y. S., Thorleifsson, G., … Dominiczak, A. F.
(2010). Biological, clinical and population relevance of 95 loci
for blood lipids. Nature, 466(7307), 707–713. https://doi.org/
10.1038/nature09270

Tikkanen, E., Pirinen, M., Sarin, A. P., Havulinna, A. S.,
Männistö, S., Saltevo, J., Lokki, M. L., Sinisalo, J.,
Lundqvist, A., Jula, A., Salomaa, V., & Ripatti, S. (2016).
Genetic support for the causal role of insulin in coronary heart
disease. Diabetologia, 59(11), 2369–2377. https://doi.org/10.
1007/s00125-016-4081-6

Tyler, A. L., Asselbergs, F. W., Williams, S. M., & Moore, J. H.
(2009). Shadows of complexity: What biological networks
reveal about epistasis and pleiotropy. BioEssays, 31(2),
220–227. https://doi.org/10.1002/bies.200800022

Unnikrishnan, R., Pradeepa, R., Joshi, S. R., & Mohan, V. (2017).
Type 2 diabetes: Demystifying the global epidemic. Diabetes,
66(6), 1432–1442. https://doi.org/10.2337/db16-0766

van der Harst, P., & Verweij, N. (2018). Identification of 64 novel
genetic loci provides an expanded view on the genetic
architecture of coronary artery disease. Circulation
Research, 122(3), 433–443. https://doi.org/10.1161/circresaha.
117.312086

Verbanck, M., Chen, C. ‐Y., Neale, B., & Do, R. (2018). Detection of
widespread horizontal pleiotropy in causal relationships
inferred from Mendelian randomization between complex
traits and diseases. Nature Genetics, 50(5), 693–698. https://
doi.org/10.1038/s41588-018-0099-7

Witte, J. S., Visscher, P. M., & Wray, N. R. (2014). The contribution
of genetic variants to disease depends on the ruler. Nature
Reviews Genetics, 15(11), 765–776. https://doi.org/10.1038/
nrg3786

Yengo, L., Sidorenko, J., Kemper, K. E., Zheng, Z., Wood, A. R.,
Weedon, M. N., Frayling, T. M., Hirschhorn, J., Yang, J.,
Visscher, P. M., & Giant, C. (2018). Meta‐analysis of genome‐
wide association studies for height and body mass index in
approximately 700000 individuals of European ancestry.
Human Molecular Genetics, 27(20), 3641–3649. https://doi.
org/10.1093/hmg/ddy271

Zeggini, E., Weedon, M. N., Lindgren, C. M., Frayling, T. M.,
Elliott, K. S., Lango, H., Timpson, N. J., Perry, J. R.,
Rayner, N. W., Freathy, R. M., Barrett, J. C., Shields, B.,
Morris, A. P., Ellard, S., Groves, C. J., Harries, L. W.,
Marchini, J. L., Owen, K. R., Knight, B., … Hattersley, A. T.
(2007). Replication of genome‐wide association signals in
UK samples reveals risk loci for type 2 diabetes.
Science, 316(5829), 1336–1341. https://doi.org/10.1126/
science.1142364

GRACE ET AL. | 61

https://doi.org/10.2337/dc16-2625
https://doi.org/10.1038/ng.3396
https://doi.org/10.1038/ng.3570
https://doi.org/10.1093/hmg/ddy327
https://doi.org/10.1093/hmg/ddy327
https://doi.org/10.1093/eurheartj/ehv083
https://doi.org/10.1093/ije/dyy262
https://doi.org/10.1093/ije/dyy262
https://doi.org/10.1016/s0140-6736(10)60484-9
https://doi.org/10.1016/s0140-6736(10)60484-9
https://doi.org/10.1126/science.1142358
https://doi.org/10.1126/science.1142358
https://doi.org/10.1093/ije/dyg070
https://doi.org/10.1093/ije/dyg070
https://doi.org/10.1093/bioinformatics/btw373
https://doi.org/10.1093/bioinformatics/btw373
https://doi.org/10.2337/diab.44.4.369
https://doi.org/10.2337/diab.44.4.369
https://doi.org/10.1002/dmr.5610030208
https://doi.org/10.1002/dmr.5610030208
https://doi.org/10.1038/nature09270
https://doi.org/10.1038/nature09270
https://doi.org/10.1007/s00125-016-4081-6
https://doi.org/10.1007/s00125-016-4081-6
https://doi.org/10.1002/bies.200800022
https://doi.org/10.2337/db16-0766
https://doi.org/10.1161/circresaha.117.312086
https://doi.org/10.1161/circresaha.117.312086
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1038/nrg3786
https://doi.org/10.1038/nrg3786
https://doi.org/10.1093/hmg/ddy271
https://doi.org/10.1093/hmg/ddy271
https://doi.org/10.1126/science.1142364
https://doi.org/10.1126/science.1142364


Zhao, W., Rasheed, A., Tikkanen, E., Lee, J. J., Butterworth, A. S.,
Howson, J., Assimes, T. L., Chowdhury, R., Orho‐Melander,
M., Damrauer, S., Small, A., Asma, S., Imamura, M.,
Yamauch, T., Chambers, J. C., Chen, P., Sapkota, B. R.,
Shah, N., Jabeen, S., … Saleheen, D. (2017). Identification of
new susceptibility loci for type 2 diabetes and shared
etiological pathways with coronary heart disease. Nature
Genetics, 49(10), 1450–1457. https://doi.org/10.1038/ng.3943

Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and
epidemiology of type 2 diabetes mellitus and its complications.
Nature Reviews Endocrinology, 14(2), 88–98. https://doi.org/10.
1038/nrendo.2017.151

Zinman, B., Wanner, C., Lachin, J. M., Fitchett, D., Bluhmki, E.,
Hantel, S., Mattheus, M., Devins, T., Johansen, O. E.,
Woerle, H. J., Broedl, U. C., Inzucchi, S. E., & Empa‐Reg
Outcome, I. (2015). Empagliflozin, cardiovascular outcomes,
and mortality in type 2 diabetes. New England Journal of

Medicine, 373(22), 2117–2128. https://doi.org/10.1056/
NEJMoa1504720

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

How to cite this article: Grace, C., Hopewell, J.
C., Watkins, H., Farrall, M., & Goel, A. (2022).
Robust estimates of heritable coronary disease risk
in individuals with type 2 diabetes. Genetic
Epidemiology, 46, 51–62.
https://doi.org/10.1002/gepi.22434

62 | GRACE ET AL.

https://doi.org/10.1038/ng.3943
https://doi.org/10.1038/nrendo.2017.151
https://doi.org/10.1038/nrendo.2017.151
https://doi.org/10.1056/NEJMoa1504720
https://doi.org/10.1056/NEJMoa1504720
https://doi.org/10.1002/gepi.22434



