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ABSTRACT: DNA methylation aging clocks have become an invaluable tool in biogerontology research since 

their inception in 2013. Today, a variety of machine learning approaches have been tested for the purpose of 

predicting human age based on molecular-level features. Among these, deep learning, or neural networks, is an 

especially promising approach that has been used to construct accurate clocks using blood biochemistry, 

transcriptomics, and microbiomics data—feats unachieved by other algorithms. In this article, we explore how 

deep learning performs in a DNA methylation setting and compare it to the current industry standard—the 353 

CpG clock published in 2013. The aging clock we are presenting (DeepMAge) is a neural network regressor 

trained on 4,930 blood DNA methylation profiles from 17 studies. Its absolute median error was 2.77 years in an 

independent verification set of 1,293 samples from 15 studies. DeepMAge shows biological relevance by assigning 

a higher predicted age to people with various health-related conditions, such as ovarian cancer, irritable bowel 

diseases, and multiple sclerosis.  
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INTRODUCTION 

 

Disruptive potential of AI solutions in science 

 

Deep learning algorithms are best known for their 

achievements in text, sound, and image processing. 

Thanks to their easily understood results and eye-catching 

demonstrations, neural networks have probably become 

the best-known machine learning method among 

laypeople. 

Deep learning solutions are frequently dubbed as 

artificial intelligence (AI). The futuristic, imperative, and 

slightly menacing connotations of this term feed human 

imagination, resulting in a plethora of fictional stories 

featuring AI. Reality and fiction form a feed-forward 

loop: AI concepts previously considered fantastic become 

actual feats of science and engineering, which then widens 

the spectrum of “impossible and fantastic” AI concepts 

for the next iteration. 

Generative models that write comprehensive stories, 

such as the Generative Pre-trained Transformer 3 

language model (GPT-3, https://github.com/openai/gpt-

3), self-driving cars, and digital decision-making models 

used by the military, make enticing news stories [1]. 

Meanwhile, the AI instances developed for research 

purposes are much less known to the public. This, 

however, does not indicate a lack of progress or relevance. 

On the contrary, state-of-the-art deep learning models in 
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biology, chemistry, and medicine could potentially 

disrupt the healthcare and pharmaceutical industries. 

For example, deep learning models already perform 

similarly to trained professionals in the differential 

diagnosis of brain diseases based on magnetic resonance 

imaging (MRI) scans [2]. The accuracy of the described 

AI diagnostics tool is equal to that of neuroradiologists 

(86–91% correct top three differential diagnoses), and it 

even outperforms less specialized radiologists (57% for 

general radiologists). In another recent study, a deep 

learning tool was developed to measure blood flow 

parameters based on heart MRI scans [3]. The authors 

established that these measurements determined 

prognostic value in a cohort of 1,049 cardiology patients 

followed up for a median of 605 days. An increase of one 

standard deviation in myocardial blood flow lowered 

mortality by 36%. Clinical AI systems such as these can 

be used to significantly reduce exam times and to quantify 

health risks, ultimately increasing the throughput and 

cost-effectiveness of a healthcare system. The same 

models can also be used to analyze academic data, assess 

treatment efficiency, and establish accurate reference 

knowledge [4]. 

In pharmacology, deep learning methods can be 

employed to streamline drug design. Generative Tensorial 

Reinforcement Learning (GENTRL)—a deep neural 

network generator—was used to discover a DDR1 small 

molecule inhibitor whose in vivo beneficial properties 

were established within three weeks after the experiment 

was launched [5]. Using traditional iterative design 

methods, the same target-to-hit stage of drug design 

would take months or even years.  

In biogerontology, deep learning methods have been 

used to create a number of novel age predictors, which can 

be used to develop geroprotective interventions or to help 

aging-conscious people understand and, potentially, 

affect their pace of aging. For example, age predictions 

made by a hematological deep aging clock have been 

shown to be associated with mortality risk [6]. The clock 

uses standard blood parameters measured during a typical 

check-up, such as glucose, cholesterol, and platelet count, 

which could be manipulated with lifestyle changes, 

dietary and pharmacological interventions. Based on its 

predictions, people were grouped into normal-agers, over-

agers, and under-agers, depending on whether their 

prediction error was within the ±5-year range. Over-agers 

had up to double the mortality rate of normal-agers and 

quadruple that of under-agers.  

Similar aging clocks are available for other biodata 

types, such as transcriptomes and microbiomes [7, 8]. 

Currently, the only published aging-clock solutions for 

these data dimensions are in the deep learning family [9]. 

These models allow researchers to assess potential 

geroprotective interventions from different angles and 

parse the entangled concept of organismal aging into 

discrete packages of a lower level. The tolerance of deep 

learning methods to non-linear cases instills hope that in 

the future, even more types of complex biological data 

will be interpreted within the context of aging. Among 

other deep learning models, variational autoencoders hold 

great potential, as they can create digital patients. These 

human avatars can then be used to emulate the aging 

process and test geroprotective interventions in silico [10, 

11]. 

 

DNA methylation (DNAm) aging clock progress 

 

The first aging clocks based on omics data date back to 

2013. That year, two seminal articles dedicated to DNAm 

aging clocks were published: [12] by Horvath and [13] by 

Hannum et al. Each study describes an algorithm that 

estimates human chronological age based on data 

obtained from Illumina DNAm microarrays. Their 

implementations are different, yet they share a common 

nature. Both solutions rely on the elastic net regularized 

regression method, a type of linear model in which the 

methylation levels at specific dinucleotide CpG loci are 

assigned weights and then summed to obtain a final 

prediction. 

Horvath’s model includes 353 CpG sites on Illumina 

450k and 27k DNAm array platforms, while the model 

published by Hannum et al. is based on 71 sites on 

Illumina 450k platforms. Interestingly, the CpG sites used 

by the two models have little overlap, as only six sites are 

shared between them. Despite the significant differences 

in data preprocessing, training samples, and final features, 

these aging clocks show similar performance when 

validated in a variety of experimental settings [14]. The 

error margins reported by their authors are similar as well: 

a median absolute error (MedAE) of 3.6 years for the 353 

CpG clock and a root mean square error (RMSE) of 3.9 

years for the 71 CpG clock. 

The results published in 2013 inspired many other 

researchers to develop their own implementations using 

the same concept. More recent DNAm clocks include [15] 

by Weidner et al., [16] by Lin et al., and [17] by Levine et 

al. They show that there are multiple sets of CpG sites that 

can be used to achieve comparable accuracy [9].  

All such aging clocks have proven to be invaluable 

tools for biogerontology since they offer a unique 

opportunity to quantify the aging process. This ability is 

essential for testing geroprotective interventions and 

studying age-related diseases. Further research has shown 

significant differences in the ways various DNAm clocks 

operate, more specifically the low correlation between 

their predictions and their unequal sensitivity to certain 

age-related diseases [18]. 
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This profusion of equally good DNAm clock 

solutions suggests that CpG methylation status is a 

mathematically degenerate data type. There may be 

countless non-overlapping combinations of CpG sites that 

can serve as the basis for an aging clock. Whether all 

DNAm clocks correspond to the same function of age or 

fundamentally different processes is an ongoing debate. 

In this article, we present another take on DNAm 

clocks. Our solution, DeepMAge, relies not on a linear 

regression method but a deep learning approach. Our 

neural network shows superior accuracy when compared 

to elastic net solutions, and it shows disease relevance by 

predicting higher age values for people with various 

disorders, even when linear models fail to detect any 

difference. Considering the recent feats of neural 

networks applied to other biogerontological problems, we 

hope that DeepMAge can help the community gain a 

deeper understanding of how the epigenetic landscape 

shifts over time. 

The neural network approach allows the epigenetic 

dimension of aging to be distilled and integrated with 

other types of biological information. Models such as 

DeepMAge can be treated as feature reduction methods 

that compress large, unrefined vectors into compact latent 

representations where aging trends are easier to outline. A 

combination of these representations can be used as an 

input for a multi-modal aging clock, which will account 

for multiple aging-related processes. Currently, the 

bottleneck for developing such models is the shortage of 

publicly available multi-modal datasets that would 

contain longitudinal data for multiple aging dimensions: 

gene expression values, DNA methylation levels, 

metabolic profiles, or image data [19]. 

 

MATERIALS AND METHODS 

 

Data availability 

 

This study was carried out using datasets collected from 

the publicly available Gene Expression Omnibus 

repository (www.ncbi.nlm.nih.gov/geo/).  

Overall, 32 studies were used with 6,411 DNAm 

profiles in total. Among these, 17 studies and 4,930 

samples were included in the training set. The other 15 

studies and 1,293 profiles were used in the verification set. 

Samples annotated as being in the case cohorts of their 

original studies were explored separately. All metrics for 

both the verification and training sets were calculated 

using only the samples marked as control cohorts in the 

repository.  

The exact study identifiers of the training set are: 

GSE106648, GSE125105, GSE128235, GSE19711, 

GSE27044, GSE30870, GSE40279, GSE41037, 

GSE52588, GSE53740, GSE58119, GSE67530, 

GSE77445, GSE77696, GSE81961, GSE84624, and 

GSE97362. The exact study identifiers of the verification 

set are: GSE102177, GSE103911, GSE105123, 

GSE107459, GSE107737, GSE112696, GSE34639, 

GSE37008, GSE59065, GSE61496, GSE79329, 

GSE87582, GSE87640, GSE98876, and GSE99624. 

All data used in this study were obtained from blood 

samples on Infinium Human Methylation 450K and 27K 

BeadChip platforms (manufactured by Illumina). Only 

studies with available age metadata and raw files were 

selected.  

 

DNAm profile preparation 

 

The data were downloaded as either raw intensities or files 

in the IDAT format. The lumi R package (v2.38.0) was 

used for intra-study color correction and normalization 

[20]. Only 24,538 CpG sites shared between the 450K and 

27K platforms were used, minus sex chromosome sites 

and sites with orthologous sequences on multiple 

chromosomes. 

Approximately 17% of the samples used in this 

project were associated with integer age values. Such 

samples have a de facto understated chronological age. To 

avoid introducing this bias into the model, 0.5-year counts 

were added to the integer ages. No counts were added to 

the float age values. 

 

Horvath clock replication 

 

We used the 353 regression coefficients (plus intercept) 

published in the original paper by Horvath [12] to 

reconstruct the linear regression model. The model was 

then used to estimate the logarithmically transformed age, 

as described in [12]. 

The reverse transform we used is: 

 

  𝐴𝑔𝑒 = 21 × 𝐸𝑥𝑝𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 1, 𝑖𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ≤  0 

𝐴𝑔𝑒 = 21 × 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + 20, 𝑖𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 > 0 

 

Additionally, a de novo elastic net model was trained 

using a protocol from Horvath [12]. The script we used 

can be found in the Supplementary Materials section of 

this article. 

To compare the accuracy of DeepMAge to that of the 

353 CpG clock, MedAE and mean absolute error (MAE) 

metrics are used most frequently in this article. Although 

the original paper for the 353 CpG clock uses mostly 

MedAE, we included MAE to allow comparison with 

other aging clocks that have only one of these scores 

reported. MedAE and MAE are equal to zero when the 

predicted values of age are in perfect agreement with the 

actual values. 

The formulas for MedAE and MAE are as follows: 
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𝑀𝑒𝑑𝐴𝐸 =  𝑀𝑒𝑑𝑖𝑎𝑛(|𝐴𝑔𝑒𝑡𝑟𝑢𝑒,𝑖 −  𝐴𝑔𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖|), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ (1, 𝑁), 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  

𝑀𝐴𝐸 =  
1

𝑁
∑|𝐴𝑔𝑒𝑡𝑟𝑢𝑒,𝑖 −  𝐴𝑔𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖|

𝑁

𝑖= 1

, 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

 

Deep learning 

We performed age prediction as a regression task in which 

the model takes DNAm beta vectors as input and then 

outputs a continuous age value. To allow fitting the data 

with high dependencies, we used a deep neural network 

model with multiple hidden layers. In particular, we used 

feed-forward neural networks with more than three hidden 

layers.   

Due to the high dimensionality of the input (the 

original data included 24,538 features), feature selection 

was applied before training of the final model. First, a 

neural network was trained on the original data, then deep 

feature selection [21] and gradient-based feature selection 

methods [22] were applied to find the most important 

features in terms of impact on model output. To optimize 

model parameters, we used a grid search over the model 

depth (from two to five hidden layers), a neuron count per 

hidden layer (from 128 to 1,024), an activation function 

(exponential linear unit – ELU, rectified linear unit – 

ReLU, scaled exponential linear unit – SELU), an 

optimizing algorithm (Adam, Amsgrad, and Nadam), and 

a regularization algorithm: dropout [23] (with rate from 

0.15 to 0.5) and L2 regularization (with L2 coefficient 

from 1e-6 to 0.1). Next, the best feature selection method 

was identified in terms of the target metric, i.e., MAE. 

Finally, the 1,000 most important features were fixed 

using an algorithm that calculates the 95th percentile of the 

gradients moduli based on the model input and input 

neurons (with corresponding input features), with the 

greatest gradients modulus being the most important [22]. 

The final model was trained using the 1,000 most 

important features. To optimize model parameters, we 

used a grid search with the same grid parameters as in the 

previous search. We minimized the MAE loss function 

using a backpropagation algorithm. After the optimization 

procedure, the best model had the ELU function applied 

after each layer; Adam as the optimizer of the cost 

function with a learning rate of 104; a 30% dropout 

probability at each layer; and L2 regularization with a 10-

3 coefficient. The final best neural network model 

consisted of four hidden layers with 512 neurons each. 

We trained the networks with fivefold cross-

validation (CV) to compensate for overfitting and to 

receive more robust performance metrics in both cases: 

feature selection and the final model. The Python version 

of the Keras library (https://keras.io/) with TensorFlow 

(www.tensorflow.org/) backend for neural network 

implementation was used. All experiments were 

conducted using an NVIDIA GeForce 1080Ti graphics 

processing unit. 

 

Statistical analysis 

 

The accuracy metrics for model performance included 

MAE, MedAE, Pearson’s r, RMSE, and coefficient of 

determination (R2). These metrics were calculated using 

the Python 3.6 sklearn.metrics (v.0.22.1; https://scikit-

learn.org) and scipy.stats packages (v.1.4.1; 

www.scipy.org/). 

The Mann-Whitney U test (MW test) for estimating 

the significance of differences in sample means was 

imported from the scipy.stats package (v.1.4.1; 

www.scipy.org/). 

Pathway enrichment was performed using the Gene 

Ontology web resource (http://geneontology.org/) [24]. 

To estimate the effect of body mass index (BMI) on 

age prediction, the Python statsmodels.regression. 

linear_model.OLS class from statsmodels (v0.11.0; 

www.statsmodels.org) was used.  

Data visualization was conducted with Plotly 

(v.4.5.0; https://plotly.com/) for Python and Seaborn 

(v.0.10.0; https://seaborn.pydata.org). 
 

Table 1. Accuracy metrics for DeepMAge. The accuracy 

achieved in cross-validation (CV column, MedAE = 2.24 

years) was only slightly reduced during verification 

(healthy verification column, MedAE = 2.77 years). 

Accuracy declined in the samples with various health-

related conditions (case verification column, MedAE = 

4.35 years). 

 

 CV 
Healthy 

verification 

Case 

training 

Case 

verification 

MedAE, 

years 
2.24 2.77 3.29 4.18 

MAE, years 3.21 3.80 4.74 5.08 

R2 0.96 0.93 0.88 0.82 

Pearson’s r 0.98 0.97 0.94 0.94 

RMSE, 

years 
4.55 5.44 7.51 6.24 

N 4,930 1,293 1,093 439 
 

CV = Cross-validation; MAE = Mean absolute error; MedAE = Median 

absolute error; R2 = Coefficient of determination; RMSE = Root mean 

square error; N = Number of samples in the subsample 

 

 

 

 

https://keras.io/
http://www.tensorflow.org/
https://scikit-learn.org/
https://scikit-learn.org/
http://www.scipy.org/
http://geneontology.org/
https://seaborn.pydata.org/
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RESULTS 

 

DeepMAge performance in healthy and ill individuals 

 

We trained the deep neural network DeepMAge using a 

collection of 4,930 blood DNAm profiles, obtaining a 

cross-validated MedAE of 2.24 years (Table 1) from the 

control cohorts of 17 studies (Supplementary Table 1). 

The results of DeepMAge testing on control cohorts from 

15 independent datasets (1,293 samples) were slightly less 

accurate, with a MedAE of 2.77 years (Fig. 1, 

Supplementary Fig. 1-3). The prediction distribution for 

samples from the verification set (except for people over 

70 years old) closely resembled the actual age distribution 

(Fig. 2). 

 

 
 

 

 

 

 

Figure 1. Scatter plot of 

DeepMAge predictions in 

4 data cohorts”. 

DeepMAge accurately 

predicted the chronological 

age of healthy people from 

the training set (A), healthy 

people from the 

verification set (B), and 

remained accurate in the 

aggregations of case 

cohorts from the studies 

included in the training set 

(C) and the verification set 

(D). Scatter plot in panel A 

shows the per-fold 

predictions obtained during 

CV, and the other panels 

show the predictions by the 

final model. MedAE = 

Median absolute error 

measured in years, N = 

Number of samples in a 

corresponding cohort (see 

Supplementary Figures 1-3 

for a more detailed 

visualization). 

Most surprisingly, the DeepMAge predictions for the 

aggregated case cohorts were almost as accurate as for the 

healthy cohort. Case cohorts from the studies used in the 

training sample displayed a MedAE of 3.29 years, while 

the MedAE for the case cohorts in the verification sample 

was 4.18 years (Fig. 1 and Supplementary Fig. 2). 

No significant differences between male and female 

absolute error distributions were detected with an MW 

test on the total samples. When age groups from the 

verification set were tested separately, significant sex-

related differences in the 55-65 and 65-75 age groups 

were detected (Table 2 and Supplementary Fig. 4). The 

mean errors found for women in these age ranges were 

higher (p-value < 0.05), while the ages of 65-75-year-old 

women were predicted almost 2 years more accurately in 

absolute terms (p-value < 0.01). These findings in the 

verification set went against the error distributions in the 

training set and thus were probably due to sample bias 

rather than any biologically significant factors. 

We then further inspected the specific studies with a 

case-control setting. Comparing the average prediction 

errors of the case and control cohorts, DeepMAge reacted 

only to certain conditions (Table 3). Out of 12 such 

studies, only five showed significantly elevated prediction 

errors for the case cohorts. In the study on tauopathic 

frontotemporal dementia and palsy, cases were 1.00 years 

older than controls. People with inflammatory bowel 

diseases (IBD) were predicted by DeepMAge to be 1.23 
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years older than controls. Women with ovarian cancer 

were predicted to be 1.70 years older. Multiple sclerosis 

patients were predicted to be 2.10 years older. People with 

congenital CHARGE and Kabuki syndromes were quite 

interestingly predicted to be 5.28 years younger than 

controls. Congenital hypopituitarism was associated with 

predictions 5.64 years older than predictions for controls. 

These results may indicate a faster pace of aging in people 

with these pathologies (except for CHARGE and Kabuki 

syndromes). 
 

Table 2. DeepMAge prediction errors are not significantly different for younger males and females. Sex-related 

differences in age prediction for older adults are inconsistent between the CV and the verification sets. 

 

Set 

  
Error, years Absolute Error, years 

N 

Years (20-45) (45-55) (55-65) (65-75) (20-75) (20-45) (45-55) (55-65) (65-75) (20-75) 

V
er

if
ic

a
ti

o
n

 Male +0.48 -2.50 -1.46* -4.76* -0.87* +2.97 +4.04 +3.98 +6.04* +3.68 574 

Female +0.23 -3.58 -0.06* -1.78* -0.12* +3.24 +4.48 +3.50 +4.13* +3.40 494 

N 707 62 163 136 1068 707 62 163 136 1068  

C
V

 

Male +0.62 +2.14* +0.62* +0.81* 0.97* +2.84 +3.80 +4.00 +4.89 +3.53 1452 

Female +0.65 +0.41* -0.54 * -2.17* -0.34* +2.76 +3.59 +3.77 +4.58 +3.59 2058 

N 1323 670 897 620 3510 1323 670 897 620 3510  

 

The significant differences are marked with “*” (p-value < 0.05 in the MW test). CV = Cross-validation; MW = Mann-Whitney U test; N = Number 

of samples in the age range or sex subsample. 

 

 
Figure 2. The DeepMAge prediction age distribution in the 

verification set closely resembled the real age distribution. 

Distributions were obtained using Gaussian kernel with 0.3σ 

bandwidth, where σ is the standard deviation of the age values. 

 

Comparison to the 353 CpG aging clock 

 

To gain more insight into whether deep learning offers 

any benefit compared to linear models, we used the 

published 353 CpG clock to predict age for the datasets 

we used in this project. The accuracy reported in its 

original publication [12] is a MedAE of 3.56 years, which 

is close to its reproduced accuracy in our data collection 

(MedAE = 3.51 years, Table 4). In this respect, 

DeepMAge significantly outperformed the 353 CpG 

clock with a MedAE of 2.24 years during CV and 2.77 

years during verification (Table 1).  

The correlation between predictions by the 353 CpG 

clock and DeepMAge for the verification set was 

significantly high (Pearson’s r = 0.96) for the healthy 

verification cohort (1,293 samples). The same was 

observed in the samples from the case cohorts within the 

training studies set (Pearson’s r = 0.96, 1,093 donors). 

Two studies used in our verification cohort were also 

used for verification in the original 353 CpG clock 

publication: GSE34639 (48 samples) and GSE37008 (99 

samples). In these two studies, the 353 CpG clock showed 

superior performance compared to DeepMAge (Table 4). 

We then examined the other verification datasets we had, 

which were not used in the original paper by Horvath. 

Overall, in seven out of the 15 datasets we compared, 

DeepMAge showed superior performance according to 

both MedAE and Pearson’s r. In 13 out of 15 studies 

DeepMAge performed better according to at least one 

metric used (Table 4). 

In certain cases, DeepMAge was more sensitive to 

donor conditions than the 353 CpG clock. For example, 

GSE87640 contains healthy donors (84) and donors with 

IBD (156 donors), namely ulcerative colitis and Crohn’s 

disease. DeepMAge predicted the IBD cohort to be 

significantly older (p-value < 0.001) than the healthy 

cohort, with the delta being 1.2-1.8 years, depending on 

whether the mean or median error is used (Fig. 3 and 

Table 3). This difference was not observed in the 353 CpG 

clock predictions (delta MAE = 0.3 years, p-value = 0.21). 
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Table 3. Five diseases (including ovarian cancer and multiple sclerosis) were associated with significantly higher age 

predictions (p-value (MW) < 0.05).  
 

GEO ID Mean 

error in 

control 

Mean 

error in 

cases 

p-value 

(MW) 

p-value 

(random 

MW) 

N 

control 

N case N total DeepMAge 

sample 

Case cohort 

description 

GSE53740* -0.37 +0.63 2.70E-2 1.50E-1 197 186 383 Training Neurodegenerative 

tauopathy 

GSE19711* -2.97 -1.27 9.84E-6 4.39E-1 272 264 536 Training Ovarian cancer 

GSE77696 +4.43 +3.96 1.31E-1 5.29E-2 117 261 378 Training HIV 

GSE106648* -1.84 +0.26 2.17E-8 2.52E-1 139 140 279 Training Multiple sclerosis 

GSE67530 -2.66 -1.63 1.12E-1 1.01E-1 105 39 144 Training Acute respiratory 

distress syndrome 

GSE52588 0.67 1.19 1.71E-1 4.84E-1 58 29 87 Training Down syndrome 

GSE97362* 1.24 -4.04 2.05E-3 9.30E-2 83 150 233 Training CHARGE / Kabuki 

syndrome 

GSE84624 0.54 0.73 4.39E-1 9.87E-2 24 24 48 Training Kawasaki disease 

GSE112696 4.24 4.56 3.44E-1 1.89E-1 6 6 12 Verification Myasthenia gravis 

GSE102177 1.99 1.91 4.94E-1 2.38E-1 18 18 36 Verification Maternal gestational 

diabetes 

GSE87582 -9.59 -3.79 1.08E-1 2.82E-1 1 20 21 Verification HIV 

GSE107737* -1.98 3.66 3.63E-3 1.56E-1 12 12 24 Verification Congenital 

hypopituitarism 

GSE87640* -0.20 1.03 1.24E-3 3.57E-1 84 156 240 Verification Inflammatory bowel 

diseases 

GSE99624 -1.58 -3.99 6.43E-2 3.76E-1 16 32 48 Verification Ostheoporosis 
 

pvalue (MW) is the significance of the MW test for equal mean prediction error between the case and control cohorts in each study; “*” marks the 

studies with a significant (p-value<0.05)  MW test result; p-value(random MW) is the significance of the test for a permuted sample. For the control 

samples marked as “Training,” the predictions were obtained during CV; for the case samples marked as “Training,” the predictions were obtained 

with the final model, which had not been previously exposed to these samples. The studies in which the studied condition was significantly associated 

with higher DeepMAge predictions are marked in green. CV = Cross-validation; GEO ID = Gene Expression Omnibus accession number; HIV = 

Human Immunodeficiency Virus; MW = Mann-Whitney U test;  N = Number of samples in the corresponding GEO project cohorts. 

DeepMAge predictions were significantly less 

affected by the sex of the donors. DeepMAge showed no 

significant difference between predictions for males and 

females in the total verification cohort (0-91 years, also 

see Table 2 for age group-specific differences in 

DeepMAge performance). Meanwhile, the 353 CpG 

aging clock predicted males to be on average 1.42 years 

older than females (p-value = 1.2E-8). 

We also compared the 353 CpG aging clock and 

DeepMAge in the context of the effect of obesity on 

aging. For this task, we used data from GSE37008, which 

contained 94 individuals with a wide range of BMI values 

(from 16.17 to 36.26 kg/m2). We used ordinary least 

squares regression to see if the effect of BMI on the 

predicted age was significant. Age, predicted age, and 

BMI were scaled to fit a linear model: [Prediction ~ 

Actual_Age + Is_Male + BMI] (Supplementary Fig. 5). 

The BMI regression coefficient for DeepMAge 

predictions was positive, with a p-value = 0.048. 

Meanwhile, the positive coefficient for the 353 CpG aging 

clock had a p-value = 0.19 and was much less likely to 

significantly affect age prediction. This difference in 

sensitivity toward BMI may indicate that DeepMAge 

recognizes increased body weight as an aging factor. It 

should be noted, however, that neither the 353 CpG aging 

clock nor DeepMAge showed a significant BMI effect in 

another dataset with 107 individuals—GSE105123. 

However, this may be attributed to the much narrower 

range of BMI values in that study: from 19.8 to 25.1 

kg/m2. 

 

DeepMAge CpG pathway analysis 

 

DeepMAge uses a set of 1,000 CpG sites, of which 121 

are shared with the 353 CpG clock and seven are shared 

with the 71 CpG clock (Fig, 4 and Supplementary Table 

2).  

We inspected the genes covered by the DeepMAge 

CpG sites to see if the selected features were enriched in 

specific pathways. In a Gene Ontology biological function 

annotation, 289 terms were identified as significantly 

enriched (FDR < 0.01). The most abundant terms included 

generic regulatory and signaling terms. 

More interestingly, among the 289 enriched terms, 

146 are related to tissue development and organ 

morphogenesis; 57 to neural development, neurogenesis, 

and synaptic signaling; 14 to circulatory system 

development and function; 14 to cell differentiation and 

proliferation (including that of stem cells); 10 to cross-

membrane ion transport; nine to cell motility; nine to 

transcription; and five to locomotion. The top 10 most 

significantly enriched terms (p-value < 1.76E-14) include 

four terms related to neural function and five terms related 

to organism development (Supplementary Table 3). 
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Figure 3. DeepMAge, but not the 353 CpG clock, predicted 

donors with IBD (GEO study accession GSE87640) to be on 

average 1.23 years older than the healthy donors from the 

same study (p-value = 1.24E3). Outliers outside the (-20; +20) 

prediction error window were removed from the image; The box 

is formed by the interquartile range with the median marked 

inside it. Whiskers protrude no farther than 1.5 times the 

interquartile range. GEO = Gene Expression Omnibus; IBD = 

Inflammatory bowel disease; N= Number of samples in a 

corresponding cohort. 

 

DISCUSSION 

 

In this article, we present, to the best of our knowledge, 

the first deep learning DNAm aging clock— 

DeepMAge—and compare it to Horvath’s 353 CpG aging 

clock. DeepMAge can estimate human age with a MedAE 

of 2.77 years, as demonstrated in a verification set 

containing 1,293 samples. We found that DeepMAge is 

more accurate in predicting the age of healthy individuals 

than the 353 CpG clock, which had a MedAE of 3.51 

years for the same dataset. DeepMAge is also more 

accurate than another 71 CpG DNAm aging clock 

(Supplementary Table 4, see “Comparing DeepMAge to 

the 71 CpG clock” in the Supplementary Materials section 

of this article). 

Having obtained the deep learning age predictor, we 

explored its biological relevance in several settings. 

DeepMAge produced significantly higher age predictions 

(by 1.23 years on average) for people with IBD compared 

to healthy people. This difference was not observed in the 

353 CpG clock predictions. Some other diseases that may 

be expected to affect the pace of aging produced similar 

results (e.g., multiple sclerosis and ovarian cancer) (Table 

2).  Using a dataset from our verification cohort, we also 

established higher BMI as a factor contributing to higher 

predicted age (Supplementary Fig. 5), a finding not 

supported by the 353 CpG clock.  

 

 
 

Figure 4. The DeepMAge clock shares 122 CpGs with the 

353 CpG clock and seven CpGs with the 71 CpG clock. The 

latter two were published in 2013. 

 

The sex-related differences in DeepMAge prediction 

error distributions (Table 2 and Supplementary Fig. 4) 

were only significant for the older age brackets — 55-65 

and 65-75 years — in which women were predicted to be 

older than men. It was originally hypothesized that sex-

specific aging processes, and especially age-related 

hormonal changes, might affect DeepMAge error 

distribution. However, the described error patterns are not 

consistent between the training and verification sets and 

thus are probably caused by sample bias rather than 

biological reality. 

The 1,000 features that constitute DeepMAge contain 

121 CpG sites from the original 353 CpG clock and 75 

from the one we reproduced de novo (see Supplementary 

Materials, Supplementary Tables 2, 5). The genes where 

the DeepMAge CpGs are located are enriched with those 

taking part in developmental (especially cardio- and 

neurodevelopmental) processes (Supplementary Table 3). 

We hypothesize that this may be explained by the 

antagonistic pleiotropy theory of aging [25]. According to 

this theory, genes required for the earlier stages of 

development may sustain their activity beyond their 

appropriate period of expression. This non-specific 

activity harms the organism and leads to multiple 

downstream after-effects that ultimately manifest as 

aging. Understanding the interactions in which the 
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identified genes take part during the aging process can be 

useful for rejuvenation research [26]. 

 

 
 

Table 4. In seven out of 15 verification studies, DeepMAge performed better than the 353 CpG clock 

according to two quality metrics (MedAE and Pearson’s r).  
 

GEO ID MedAE, years Pearson’s r 
N Age range, years Male ratio, % 

DeepMAge 353 CpG DeepMAge 353 CpG 

GSE107459 ** 1.63 3.43 0.79 0.68 127 18-35 0 

GSE102177 * 1.87 1.33 0.86 0.83 18 4-14 56 

GSE34639 * 1.92 0.22 0.89 0.88 48 0-1 33 

GSE105123 ** 2.06 2.87 0.47 0.38 107 19-23 58 

GSE61496 ** 2.14 3.42 0.97 0.95 310 30-74 53 

GSE87640 * 2.52 3.02 0.86 0.87 84 20-58 62 

GSE98876 ** 2.54 4.77 0.89 0.81 71 26-69 100 

GSE79329 ** 2.63 3.74 0.92 0.89 34 43-70 100 

GSE99624 ** 2.72 3.73 0.93 0.81 16 49-82 38 

GSE107737 * 3.03 3.62 0.34 0.46 12 18-29 100 

GSE37008 3.74 2.26 0.81 0.81 99 24-45 37 

GSE112696 * 3.75 2.78 0.34 0.23 6 22-27 67 

GSE59065 ** 4.35 5.01 0.95 0.94 295 22-84 48 

GSE103911 * 6.96 6.14 0.85 0.76 65 27-77 71 

GSE87582 9.59 6.41 - - 1 60 100 

Average 2.77 3.51 0.97 0.93 1293 0-84 52 
 

There were only two studies for which DeepMAge was not superior to the 353 CpG clock according to at least one metric. Considering 

the 15 studies in aggregate, DeepMAge provided superior prediction accuracy. “**” marks the studies in which DeepMAge shows 

superior performance based on both MedAE and Pearson’s r, “*” marks the studies in which DeepMAge shows superior performance 

based on only one metric. GEO ID = Gene Expression Omnibus accession number; MedAE = Median absolute error; N = Number of 

samples in the corresponding GEO project. 

It should be noted that as part of our data 

preprocessing pipeline, we added 0.5-year counts to all 

the specified ages when only full years of age were 

known. If a person is specified to be 25 years old, their 

exact age can be anywhere in the (25 years; 26years-1day) 

range. Thus, using only full years for age is an instance of 

right censoring, albeit very slight. Since 17% of our data 

collection contained integer-value ages, the issue of 

censoring was considered significant, and the counts were 

introduced. 

One may quite reasonably argue that these counts 

affect the accuracy of the 353 CpG clock to which 

DeepMAge is compared. In fact, they do. However, the 

353 CpG clock becomes less accurate when the counts are 

removed (MedAE = 3.58 instead of 3.51 years), and a 

decision was made to keep the counts when working with 

the 353 CpG clock. 

It may also be argued that since DeepMAge and the 

353 CpG clock were trained with different data 

collections, it is incorrect to compare them. To overcome 

this limitation, we trained an elastic net model following 

Horvath’s protocol using our data collection to see if a 

linear model created from scratch could outperform 

DeepMAge (see Supplementary Materials, 

Supplementary Fig. 6). This de novo elastic net displayed 

a MedAE of 3.23 years in the verification set, which is 

more accurate than the original 353 CpG clock (MedAE 

of 3.51 years) but less accurate than DeepMAge (MedAE 

of 2.77 years). 

We propose DeepMAge as the first deep learning 

DNAm aging clock that performs better than linear 

models in certain aspects. Although the biological 

relevance of DeepMAge has been determined in multiple 

case-control independent datasets, its mortality 

association is yet to be established. Newer linear models, 

such as the 2019 GrimAge trained with the primary 

purpose of predicting time-to-death, can provide 

outstanding performance for their prioritized tasks [27]. 

However, even the newer aging models are scarce in deep 

learning solutions, although there are enough grounds to 

suspect that the deep learning approach can improve their 

already impressive results [9]. 

Other limitations of DeepMAge include being trained 

on blood DNAm profiles only. Including training data 

from other tissues is likely to reduce the overall accuracy 

of the aging clock, especially if the tissue subsamples are 

unbalanced. Enabling multi-tissue functionality may 

require retraining the model. It should also be noted that 

DeepMAge has not been described in longitudinal or 

replicate settings to study its prediction stability within the 

same subject. 

Nonetheless, considering the many benefits deep 

learning algorithms can offer, we hope this study is 

followed by others. Neural networks can be used to 

explore individual DNAm landscapes in the context of 

aging, and they can potentially be used to estimate the risk 

of certain age-related events in the future given a single 

observation. Other uses may include aggregating multiple 
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sources of age-related information, including DNAm 

profiles, to gain a systemic view of the aging process of 

an individual. 

 

Conclusions 

 

Epigenetic aging has numerous quantitative models. We 

have developed DeepMAge — the first deep learning 

DNAm aging clock, which significantly outperforms 

more widespread linear models in multiple settings. 

DeepMAge is sensitive to diseases — a property that 

makes it valuable as a potential health marker. Further 

research is required to study DeepMAge reproducibility 

and robustness in independent longitudinal studies. The 

approach used to train DeepMAge may be extended to 

enable more neural network-specific algorithms and 

digitally simulate the epigenetic aging processes.  
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