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In cycling cells, new centrioles are assembled in the vicinity of pre-existing centrioles.
Although this canonical centriole duplication is a tightly regulated process in animal cells,
centrioles can also form in the absence of pre-existing centrioles; this process is termed de
novo centriole formation. De novo centriole formation is triggered by the removal of all pre-
existing centrioles in the cell in various manners. Moreover, overexpression of polo-like
kinase 4 (Plk4), a master regulatory kinase for centriole biogenesis, can induce de novo
centriole formation in some cell types. Under these conditions, structurally and functionally
normal centrioles can be formed de novo. While de novo centriole formation is normally
suppressed in cells with intact centrioles, depletion of certain suppressor proteins leads to
the ectopic formation of centriole-related protein aggregates in the cytoplasm. It has been
shown that de novo centriole formation also occurs naturally in some species. For
instance, during the multiciliogenesis of vertebrate epithelial cells, massive de novo
centriole amplification occurs to form numerous motile cilia. In this review, we
summarize the previous findings on de novo centriole formation, particularly under
experimental conditions, and discuss its regulatory mechanisms.
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INTRODUCTION

Centrioles are organelles that organize centrosomes and cilia. They are cylindrical structures with a
nine-fold radial symmetry of triplet or doublet microtubules. The centrosome, which consists of the
centriole and the pericentriolar material (PCM)—a matrix of proteins surrounding the
centriole—acts as a microtubule-organizing center (MTOC) in the cell. In addition, it plays a
pivotal role in the formation of the mitotic spindle, subsequent chromosome segregation, and
cytokinesis. The centriole also serves as a basal body in the formation of cilia and flagella.

In cycling somatic cells, new centrioles (daughter centrioles) are formed at the proximal end of
pre-existing centrioles (mother centrioles). This process is referred to as “centriole duplication”, and
occurs only once during the cell cycle; only one daughter centriole is formed from its mother
centriole. At the end of mitosis, the daughter centrioles are disengaged from the mother centrioles
and are converted into functional centrosomes, acquiring the ability to assemble new centrioles in the
daughter cells. In this way, the number of centrosomes in a cell is constantly maintained at two
(Figure 1A) (Loncarek and Bettencourt-Dias, 2018; Nigg and Holland, 2018).

In the context of canonical centriole duplication, the three proteins, polo-like kinase 4 (Plk4),
SCL/TAL1 interrupting locus (STIL), and spindle assembly 6 homolog (SAS-6), have been identified
as conserved essential factors for daughter centriole assembly (Figure 1B) (Arquint and Nigg, 2016).
Loss of either of these proteins inhibits centriole duplication, while their overexpression results in the
formation of multiple daughter centrioles from a single mother centriole (overduplication). Plk4
(Plk4 or Sak in Drosophila and ZYG-1 in Caenorhabditis elegans) is a serine/threonine kinase that
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localizes around the mother centriole and acts as a master
regulator of centriole biogenesis (Bettencourt-Dias et al., 2005;
Habedanck et al., 2005; Kleylein-Sohn et al., 2007). Plk4 directly
binds to and phosphorylates STIL (anastral spindle 2 [Ana2] in
Drosophila and SAS-5 in Caenorhabditis elegans) during the G1/S
phase, thereby facilitating the STIL/SAS-6 interaction and the
formation of a cartwheel structure (the basis for centriole
assembly) (Dzhindzhev et al., 2014; Ohta et al., 2014; Arquint
et al., 2015; Kratz et al., 2015; Moyer et al., 2015). SAS-6 is a
component of the cartwheel structure, and its self-assembly is a
basis for the nine-fold symmetric structure of the centriole
(Nakazawa et al., 2007; Kitagawa et al., 2011; van Breugel
et al., 2011).

Plk4 localizes in a ring around the mother centriole prior to
the assembly of daughter centrioles in the G1 phase. In
invertebrate cells, spindle defective 2 (Spd-2; centrosomal

protein 192 [Cep192] in human) is responsible for the
centriolar localization of ZYG-1 in Caenorhabditis elegans,
while asterless (Asl; Cep152 in human) is responsible for the
centriolar localization of Plk4/Sak in Drosophila (Delattre et al.,
2006; Pelletier et al., 2006; Dzhindzhev et al., 2010). In
mammalian cells, Cep192 and Cep152, which localize in a ring
around the mother centriole, cooperatively recruit Plk4 to the
centriole (Kim et al., 2013; Sonnen et al., 2013). Following the G1/
S transition, Plk4 is distributed on a single focus around the
mother centriole, and co-localizes with STIL/SAS-6, leading to
the formation of the cartwheel structure (Figure 1B) (Kim et al.,
2013; Ohta et al., 2014).

After cartwheel formation, centrosomal P4.1-associated
protein (CPAP; SAS-4 in Drosophila and Caenorhabditis
elegans) facilitates the formation of the centriole microtubule
wall (Pelletier et al., 2006; Kohlmaier et al., 2009; Schmidt et al.,
2009; Tang et al., 2009). Cep135 (Bld10 in Drosophila) seems to
connect SAS-6 with CPAP for the stabilization and elongation of
the centriole wall (Lin Y.-C. et al., 2013). Centriolar proteins
including Cep120 (Lin Y.-N. et al., 2013; Comartin et al., 2013),
Centrobin (Gudi et al., 2011, 2015), POC1 (Keller et al., 2009) and
Cep295 (Ana1 in Drosophila) (Chang et al., 2016; Saurya et al.,
2016), also positively regulate centriole elongation. In contrast,
the centriolar coiled-coil protein 110 (CP110)/Cep97 protein
complex acts as a cap at the distal end of centrioles to restrict
centriole elongation in human cells (Spektor et al., 2007;
Kohlmaier et al., 2009; Schmidt et al., 2009; Tang et al., 2009).

It has also been established that numerous species utilize an
alternative pathway for centriole biogenesis, which is driven
without pre-existing centrioles in the cell (de novo pathway).
In addition to its occurrence under physiological conditions in
various species, de novo centriole formation can be induced
artificially under experimental conditions in eukaryotic cells.
While centriole duplication via the canonical pathway has
been extensively studied in recent years, the mechanisms
regulating the de novo pathway remain largely unexplored. In
this review, we will summarize the findings of recent studies on de
novo centriole formation under experimental conditions and
discuss the regulatory mechanisms of the de novo pathway in
comparison with the canonical pathway.

DE NOVO CENTRIOLE FORMATION
FOLLOWING REMOVAL OF THE RESIDENT
CENTRIOLES
In animal somatic cells with centrioles, new centrioles can be
formed through the de novo pathway following the removal of all
resident centrioles (Figure 2A). In early studies, this
phenomenon was observed in Chlamydomonas cells (Marshall
et al., 2001). Marshall et al. used a mutant with defective centriole
segregation to generate acentriolar cells, and found that new
centrioles were formed de novo in those cells. In Chinese hamster
ovary cells arrested in the S phase, physical removal of all
centrioles by laser ablation induced de novo centriole
formation. After removing the centrioles, foci containing the
PCM proteins γ-tubulin and Pericentrin (PCM cloud) initially

FIGURE 1 | Canonical centriole duplication cycle. (A) Centriole
duplication cycle in animal somatic cells. Canonical centriole duplication
begins at the G1/S transition. New centrioles (daughter centrioles) are formed
from the proximal end of the pre-existing centrioles (mother centrioles).
Each pair of mother and daughter centrioles acts as the core of a single
centrosome. Two centrosomes function as bipolar spindle poles in mitosis. At
the mitotic exit, daughter centrioles are disengaged from themother centrioles
and convert into functional centrosomes. Thus, just two centrosomes always
exist in a cell. (B) Evolutionarily conserved proteins involved in canonical
centriole duplication in vertebrate cells. In the G1 phase, Plk4, a master kinase
for centriole biogenesis, localizes in a ring-like pattern at the proximal end of
the mother centriole along with Cep192 and Cep152, which cooperatively
recruit Plk4. At the G1/S transition, Plk4 is re-distributed on a single focus
around the mother centriole. Then, Plk4 binds to and phosphorylates STIL,
facilitating STIL/SAS-6 interaction. SAS-6 in turn self-assembles to form a
cartwheel structure, the basis for centriole assembly, perpendicularly to the
mother centriole wall. Following the cartwheel formation, CPAP and other
centriolar proteins promote the elongation of the daughter centriole.
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FIGURE 2 | De novo centriole formation under experimental conditions. (A) Removal of all the pre-existing centrioles triggers de novo centriole formation. (a)When
all the pre-existing centrioles are physically removed by laser ablation or microsurgery, new centrioles are formed de novo in the cytoplasm. (b) Long-term inhibition of
centriole duplication by chronic treatment with centrinone (a Plk4 inhibitor) or Plk4 protein degradation decreases the number of centrioles in cycling cells. After the cells
lose all centrioles, the restoration of Plk4 activity or levels leads to de novo centriole formation. (c) STIL/SAS-6 transgene expression in STIL/SAS-6 knockout
acentriolar cells triggers de novo centriole formation. In each case, a random number of centrioles are formed de novo. Many of the centrioles formed de novo are
structurally and functionally indistinguishable from intact centrioles. Additionally, the de novo pathway depends on Plk4, STIL, and SAS-6 as well as the canonical
pathway does. (B) Overexpression of Plk4 or its upstream factor can induce de novo centriole formation. (Upper) In Drosophila unfertilized eggs, which do not have a
centriole, overexpression of Plk4/Sak or Asl induces de novo centriole amplification. (Lower) Expression of Plk4ΔSCF (an undegradable mutant of Plk4) in human cultured
cells leads to de novo centriole formation, in addition to centriole overduplication from the pre-existing centrioles. High levels of Plk4/Sak overexpression in Drosophila
primary spermatocytes also induce de novo formation and overduplication of centrioles.
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appeared. This was followed by the appearance of centrioles with
a normal ultrastructure within the PCM cloud (Khodjakov et al.,
2002). It has been reported that de novo centriole formation can
occur similarly in human cultured cells. Human cells in which all
centrioles had been removed by laser ablation or microsurgery
assembled new centrioles de novo in the S phase (Figure 2Aa) (La
Terra et al., 2005; Uetake et al., 2007). Notably, de novo centriole
formation was suppressed as far as at least one centriole remained
in the cell (La Terra et al., 2005).

Several studies demonstrated de novo centriole formation
through the generation of acentriolar cells by genetic
manipulation or drug treatment. Centrinone, a selective and
reversible inhibitor of Plk4 enables the easy removal of
centrioles in various mammalian cell types. Inhibition of
centriole duplication via long-term treatment with centrinone
generates cell populations that are predominantly free of
centrioles. Subsequent washout of centrinone can induce de
novo centriole formation by restoring the activity of Plk4
(Figure 2Ab) (Wong et al., 2015). De novo centriole formation
can also be observed using a system that induces reversible
degradation of the Plk4 protein. Introducing the plant-derived,
auxin-inducible degron system into mammalian cells enables the
rapid degradation of target proteins by treatment with the plant
hormone auxin [indole-3-acetic acid (IAA)] (Nishimura et al.,
2009). Following the addition of IAA to cells with an auxin-
inducible degron-tagged, endogenous Plk4 gene for several days
to induce the degradation of the Plk4 protein, the number of
centrioles in the cell was found to decrease with each cell cycle.
After the complete loss of centrioles, restoration of Plk4 protein
levels by IAA washout led to de novo biogenesis of new centrioles
in the cytoplasm (Figure 2Ab) (Lambrus et al., 2015). Similarly,
de novo centriole formation induced by the removal of resident
centrioles has been observed in cultured cell lines of Drosophila
melanogaster. Loss of centrioles by long-term treatment with
Plk4/Sak RNAi, followed by the restoration of Plk4/Sak
expression, results in the de novo assembly of new centrioles
in Drosophila cell lines (Rodrigues-Martins et al., 2007b;
Dzhindzhev et al., 2010; Nabais et al., 2021).

Cell lines in which essential factors for centriole duplication,
such as SAS-6 and STIL, are knocked out, do not have centrioles.
Wang et al. established an experimental system to observe de novo
centriole formation by inducing the expression of the SAS-6
transgene in SAS-6−/− cell lines (Wang et al., 2015). Similarly,
expressing the STIL transgene in STIL-knockout human cell lines
or mouse embryonic fibroblasts can induce de novo centriole
formation (Figure 2Ac) (Castiel et al., 2011; David et al., 2014; Liu
et al., 2018).

Depleting Cep295 prevents newly formed centrioles from
acquiring the ability to duplicate, and also destabilizes their
structure (Izquierdo et al., 2014). Cells lacking the tubulin
family members delta-tubulin or epsilon-tubulin generate
unstable centrioles that lack triplet microtubules (Wang et al.,
2017). Long-term loss of these factors leads to degradation of the
unstable centrioles during mitosis and continuous centriole
duplication failure, giving rise to acentriolar cells. Many of
these acentriolar cells assemble centrioles de novo during the S
phase. These centrioles formed through the de novo pathway are

also unstable and disappear after mitosis (Izquierdo et al., 2014;
Wang et al., 2017).

As above, de novo centriole formation can be induced by
removing resident centrioles through various approaches. The
number of newly-formed centrioles through the de novo pathway
is random in the first cycle, thus suggesting that cells do not
possess a system for maintaining the strict control of this number,
unlike in canonical centriole duplication (Khodjakov et al., 2002;
La Terra et al., 2005; Lambrus et al., 2015; Wong et al., 2015).
After de novo centriole formation takes place, the number of
centrioles in the cell gradually returns to normal values (Wong
et al., 2015). This may be partly due to the death of cells with an
excessive number of centrosomes through abnormal mitosis.
Studies using electron microscopy (EM) revealed that de novo
centriole formation is prone to ultrastructural errors (Khodjakov
et al., 2002; Wang et al., 2015), while some of the centrioles
formed de novo appear to be equivalent to intact centrioles with
triplet microtubules (Khodjakov et al., 2002; La Terra et al., 2005;
Uetake et al., 2007; Lambrus et al., 2015; Wang et al., 2015).
Centriole/centrosome proteins Plk4, STIL, SAS-6, CPAP,
Centrin, Cep135, Cep152, Cep192, Pericentrin, Cep164, and
centrosomal Nek2-associated protein 1 (Cep250/C-Nap1) are
recruited to the centrioles formed de novo. This finding
suggested that they are indistinguishable from intact centrioles
in terms of their main components (Lambrus et al., 2015).
Moreover, the centrioles formed de novo can duplicate and
recruit PCM to form microtubule asters, indicating that they
have the ability to grow as functional mother centrioles (La Terra
et al., 2005; Lambrus et al., 2015). Regarding the relationship with
the cell cycle, de novo centriole formation in proliferating cells
occurs after entry into the S phase, but not in the G1 phase
(Khodjakov et al., 2002; La Terra et al., 2005; Izquierdo et al.,
2014; Lambrus et al., 2015; Wang et al., 2017), which is consistent
with canonical centriole duplication.

MOLECULES REQUIRED FOR DE NOVO
CENTRIOLE FORMATION

Do common molecules function in the canonical and de novo
pathway for centriole assembly? Prolonged depletion of Plk4 or
inhibition of its kinase activity produces acentriolar cells by
blocking centriole duplication. In these conditions, centrioles
do not assemble de novo unless active Plk4 levels are restored
(Rodrigues-Martins et al., 2007b; Lambrus et al., 2015; Wong
et al., 2015). These findings indicate that the activity of Plk4 is
essential for centriole assembly through the de novo pathway as
well. STIL (Castiel et al., 2011; David et al., 2014; Lambrus et al.,
2015; Liu et al., 2018) and SAS-6 (Wang et al., 2015) are also
essential for de novo centriole biogenesis in mammalian cells, as
depletion of these proteins blocks the formation of centrioles by
both canonical and de novo pathways. SAS-6 and SAS-4 are
required for de novo centrosome assembly as in the canonical
pathway in cultured Drosophila cells (Rodrigues-Martins et al.,
2007b). These results indicate that the core factors behind the
formation of the structure of the centriole are common regardless
of whether a new centriole is formed in association with the
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mother centriole or not. It has also been shown that the
interaction between these core factors is similarly critical for
de novo centriole formation. For example, in the case of STIL, its
oligomerization via its coiled-coil domain (David et al., 2016),
phosphorylation by Plk4 at multiple sites, and phosphorylation-
mediated interaction with SAS-6 and CPAP (Moyer and Holland,
2019), appear to be required for both canonical and de novo
centriole formation in mammalian cells. However, it has been
suggested that the de novo pathway may not require
oligomerization of SAS-6 (Wang et al., 2015), meaning that
there may be some mechanisms of centriole formation in the
de novo pathway that differ from those observed in the canonical
pathway.

In cultured Drosophila cells, the Plk4/Sak recruiter protein Asl
is required for de novo centriole formation after the removal of
resident centrioles (Dzhindzhev et al., 2010; Nabais et al., 2021).
This finding suggests that the cytoplasmic Asl somehow
contributes to de novo centriole formation through the local
accumulation of Plk4/Sak; however, the underlying
mechanisms remain unclear. It will also be necessary to
investigate whether the upstream factors of Plk4 promote de
novo centriole formation in mammalian cells. Other PCM
proteins (Pericentrin-like protein [Plp], centrosomin [Cnn],
Spd-2, and γ-tubulin) also support de novo centriole
formation, at least to some extent, in Drosophila cells. In
particular, the contribution of γ-tubulin is relatively
significant, as its depletion attenuates de novo centriole
assembly in both cultured cells and unfertilized eggs of
Drosophila (Nabais et al., 2021). The observation that
centrioles are formed de novo in the PCM cloud containing γ-
tubulin and Pericentrin in Chinese hamster ovary cells
(Khodjakov et al., 2002) implies that PCM proteins are
implicated in the de novo pathway prior to centriole assembly.
Considering that Pericentrin is involved in the recruitment of
SAS-6 (Ito et al., 2019), it is possible that PCM proteins serve as a
scaffold in the cytoplasm and accumulate proteins necessary for
centriole biogenesis.

REGULATION OF DE NOVO CENTRIOLE
FORMATION BY THE LOCAL
CONCENTRATION OF PLK4
Overexpression of Plk4/Sak inDrosophila unfertilized eggs results
in the formation of numerous centrioles (Figure 2B) (Peel et al.,
2007; Rodrigues-Martins et al., 2007b). Since the unfertilized eggs
do not originally have a centriole, these centrioles are initially
formed de novo. EM observation confirmed that Plk4/Sak-
induced centrioles are structurally normal (Rodrigues-Martins
et al., 2007b). A recent study investigated a controlled system that
allows for the high-resolution imaging of de novo centriole
formation, using Drosophila egg explants overexpressing Plk4/
Sak (Nabais et al., 2021). Asl overexpression in Drosophila
unfertilized eggs also results in de novo biogenesis of centrioles
with an intact ultrastructure (Figure 2B) (Dzhindzhev et al.,
2010). Overexpression of SAS-4, SAS-6, Ana1, and Ana2 in
Drosophila unfertilized eggs leads to the de novo formation of

centriolar protein-containing aggregates (Rodrigues-Martins
et al., 2007a; Peel et al., 2007; Dobbelaere et al., 2008; Stevens
et al., 2010). In particular, when SAS-6 and Ana2 are co-
overexpressed in Drosophila eggs, they form large ring-shaped
structures independent of the influence of Plk4/Sak (Stevens et al.,
2010; Gartenmann et al., 2020). This observation suggests that, in
addition to the self-assembly property of SAS-6 and Ana2, Plk4/
Sak may be necessary for their organization into a nine-fold
symmetric structure as a part of the centriolar cartwheel
structure.

As mentioned above, overexpression of Plk4/Sak or its loader
protein Asl in Drosophila unfertilized eggs induces de novo
centriole formation, implying that Plk4/Sak is particularly
important as a regulator of the de novo pathway. Locally
concentrated Plk4/Sak promotes its autoactivation by trans-
phosphorylation (Lopes et al., 2015). Consistently, recent
evidence has shown that the concentration of Plk4/Sak
determines the onset of de novo centriole formation in
Drosophila egg explants (Nabais et al., 2021). Meanwhile, in
Drosophila primary spermatocytes with pre-existing centrioles,
limited Plk4/Sak overexpression induces centriole amplification
only from mother centrioles. In contrast, extensive Plk4/Sak
overexpression in these cells can trigger de novo centriole
formation (Figure 2B) (Lopes et al., 2015). These results
suggested that pre-existing centrioles act as Plk4/Sak
accumulators. Moreover, once the local concentration of
Plk4/Sak reaches a sufficient level for the induction of the
assembly of centriolar components in the cytoplasm, de novo
centriole formation can occur even in the presence of pre-
existing centrioles. Similarly, overexpression of a stable
mutant of Plk4 with mutations in the degron motif
(Plk4ΔSCF) can induce de novo centriole formation in human
cultured cells (Figure 2B) (Wang et al., 2011). Overall, it is likely
that a sufficiently high level of cytoplasmic Plk4 can trigger de
novo centriole assembly, regardless of the presence or absence of
pre-existing centrioles.

De novo centriole formation is normally suppressed as far as
at least one centriole is present in human proliferating cells (La
Terra et al., 2005; Lambrus et al., 2015). Therefore, it is expected
that there is a surveillance mechanism by which the presence of
a centriole in the cell suppresses ectopic centriole assembly. In
other words, the cell may trigger de novo centriole formation
only when it somehow senses the absence of centrioles.
However, the mechanisms involved in triggering the de novo
pathway remain largely unexplored. It is estimated that
endogenous Plk4 levels in normal cells are very low (Bauer
et al., 2016; Nabais et al., 2021). This suggests that the
concentration of Plk4 is usually elevated to a sufficient level
for centriole biogenesis only at the pre-existing centrioles,
whereas the cytoplasmic concentration of Plk4 is controlled
at very low levels to prevent ectopic centriole formation. How
can Plk4 accumulate locally in the cytoplasm and reach a
sufficient concentration for centriole biogenesis in acentriolar
cells? Time-lapse observation of de novo centriole formation
using a cell line expressing fluorescence-tagged Centrin (a
centriole marker) has shown that Centrin foci emerge, being
scattered throughout the cytoplasm (La Terra et al., 2005;
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Lambrus et al., 2015). These results raise the possibility that
cytoplasmic Plk4 accumulates stochastically, and centrioles
form de novo when the local concentration of Plk4 exceeds a
certain threshold. However, currently, there is no evidence to
reasonably explain the regulation of the local concentration of
Plk4 in this manner only after the loss of centrioles.
Understanding the quantitative and qualitative changes in
Plk4 and its putative upstream factors, upon centriole loss,
may provide insight into the mechanisms that regulate the
activation and suppression of the de novo pathway.

FACTORS PREVENTING ECTOPIC
AGGREGATION OF
CENTRIOLE-ASSOCIATED PROTEINS
Several factors prevent the aggregation of centriole-associated
proteins in the cytoplasm of proliferating human cells (Figure 3
and Table 1). Depletion of Cep76 (Tsang et al., 2009), neuralized
E3 ubiquitin protein ligase 4 (Neurl4) (Li et al., 2012), galectin 3
binding protein (LGALS3BP) (Fogeron et al., 2013), and RNA
binding motif protein 14 (RBM14) (Shiratsuchi et al., 2015) leads

FIGURE 3 | Ectopic formation of centriolar protein aggregates is detrimental for cell division. Several proteins have been identified as a suppressor of ectopic
aggregation of centriole-related proteins in the cytoplasm (also see Table 1). Depletion of the suppressors leads to form ectopic aggregates containing centriolar
proteins. In many cases, aggregates can act as extra spindle poles and cause mitotic defects such as multipolar spindle formation and lagging chromosomes.

TABLE 1 | Proteins that suppress ectopic aggregation of centriole-related proteins.

Suppressors Cell types Proteins in
aggregates

Proteins not
in aggregates

Proteins
required

for
aggregation

Mitotic defects References

CEP76 U2OS, Saos-2, Other
osteosarcoma cell
lines, Blastoma cell
lines

CP110, Centrin, C-Nap1,
CPAP, SAS-6,
Polyglutamylated tubulin

γ-Tubulin, Pericentrin SAS-6,
CP110,
Cep97

Aggregates do not persist
through mitosis

Tsang et al. (2009)

NEURL4 U2OS, HeLa, RPE1 CP110, Centrin, γ-Tubulin,
C-Nap1, Polyglutamylated
tubulin

SAS-6 CP110 Pseudobipolar, Lagging
chromosome

Li et al. (2012)

LGALS3BP U2OS, HEK293,
Human seminoma
tissue

Centrin, CPAP, Acetylated
tubulin, γ-Tubulin

Plk4, SAS-6, Cep135,
ODF2, C-Nap1,
Pericentrin,
Polygltamylated tubulin

Plk4 Asterless spindle pole,
Extra spindle pole

Fogeron et al.
(2013)

RBM14 U2OS, HeLa, RPE1,
NIH3T3, Mouse
embryo

Centrin, Centrobin, CPAP,
Acetylated tubulin, γ-
Tubulin, STIL, CP110,
Cep192, SAS-6

C-Nap1, Cep164 STIL, CPAP Pseudobipolar, Multipolar,
Lagging chromosome

Shiratsuchi et al.
(2015)

TRIM37 (About
Centrobin-
containing
condensates)

HeLa, RPE1,
Murlibrey nanism
patients’ fibroblast

Centrobin, Plk4, SPICE,
[(Mitosis) Cep192,
CDK5RAP2, Pericentrin,
γ-Tubulin]

SAS-6, Cep152, Many
other centriole proteins

Centrobin Pseudobipolar, Multipolar,
Lagging chromosome,
Micronuclei,
Missegregation of
chromosome 17 and 18

Balestra et al.
(2021); Meitinger
et al. (2020);
Meitinger et al.
(2021)
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to the formation of centriolar protein-containing cytoplasmic
aggregates, even in the presence of intact centrosomes. These
aggregates are observed by EM as electron-dense materials (Li
et al., 2012; Shiratsuchi et al., 2015) or incomplete centriole-like
structures with microtubules (Tsang et al., 2009; Fogeron et al.,
2013; Shiratsuchi et al., 2015). These aggregates may or may not
function as the major MTOC in human cells. For example,
aggregates induced by the depletion of Cep76 disappear in
mitosis and do not affect mitotic spindle formation (Tsang
et al., 2009). In contrast, depletion of Neurl4 or RBM14 leads
to the formation of structures that act as mitotic spindle poles,
and results in abnormal spindle formation and defective
chromosome segregation (Li et al., 2012; Shiratsuchi et al.,
2015). These effects suggest that these factors play an essential
role in proper chromosome segregation inmitosis (Figure 3). The
composition of these cytoplasmic aggregates differs in each
condition, and is often heterogeneous even within a single cell.
For instance, while depletion of Neurl4 or LGALS3BP leads to the
generation of centriolar protein aggregates without SAS-6 (Li
et al., 2012; Fogeron et al., 2013), the assembly of the aggregates
formed upon Cep76 depletion depends on SAS-6 (Tsang et al.,
2009). Aggregate formation upon RBM14 depletion does not
depend on SAS-6; however, some aggregates grow to become
structurally similar to the centriole, presumably by incorporating
SAS-6 (Shiratsuchi et al., 2015). The formation of centriole-like
structures in LGALS3BP-depleted cells depends on Plk4 (Fogeron
et al., 2013). On the other hand, in RBM14-depleted cells, the
formation of these structures is not dependent on Plk4, but
depends on the formation of the STIL-CPAP complex
(Shiratsuchi et al., 2015). Depletion of Neurl4 increases the
protein levels of CP110, leading to the ectopic formation of
centriole-related structures (Li et al., 2012).

Recent studies have reported that ubiquitin ligase tripartite
motif-containing protein 37 (TRIM37) prevents the ectopic
formation of centriole protein condensates. In TRIM37-
depleted cells, condensates containing Centrobin and Plk4 are
observed in the cytoplasm, acquiring PCM proteins and serving
as MTOCs during mitosis (Balestra et al., 2021; Meitinger et al.,
2021). Centrobin is a centriolar protein that normally localizes to
newly formed daughter centrioles and is involved in centriole
elongation (Zou et al., 2005; Gudi et al., 2011, 2015). The
assembly of the ectopic condensates in TRIM37-depleted cells
depends on Centrobin, but not on Plk4. EM and super-resolution
microscopy have revealed stripe patterns (Balestra et al., 2021;
Meitinger et al., 2021) and hexagonally packed punctate patterns
(Meitinger et al., 2021) corresponding to Centrobin condensates.
Loss-of-function mutations in the TRIM37 gene cause an
autosomal recessive disorder termed Mulibrey nanism (Avela
et al., 2000). This genetic disorder is a kind of dwarfism with
symptoms including severe growth failure, dysmorphia, and
impairment in several organs. Fibroblasts from patients with
Mulibrey nanism have Centrobin-containing condensates as
do the cultured cell lines depleted of TRIM37 (Balestra et al.,
2021; Meitinger et al., 2021). In patient-derived fibroblasts, these
condensates act as MTOCs during mitosis and are accompanied
by a high frequency of defects in spindle formation and
chromosome segregation (Balestra et al., 2021). This

observation suggests that chromosome instability due to
condensate formation may be linked to the disease. Centriole
dysregulation has been previously implicated in dwarfism since
microcephalic primordial dwarfism, another subtype of
dwarfism, is caused by mutations in several centriolar genes
(Khetarpal et al., 2016; Nano and Basto, 2017). Considering
this, it is plausible that abnormal condensation of centriolar
proteins may be responsible for Mulibrey nanism. Besides
Centrobin-containing condensates, ectopic formation of
Centrobin-independent Centrin foci (Balestra et al., 2021;
Meitinger et al., 2021) and Cep192 foci (Meitinger et al., 2016)
in interphase has been reported in TRIM37-depleted cells. In
acentriolar cells, depletion of TRIM37 leads to the formation of
ectopic spindle poles with an array of cytoplasmic foci containing
Cep192 and Plk4, and thereby promotes mitotic spindle assembly
(Meitinger et al., 2016, 2020; Yeow et al., 2020). These results
suggest that TRIM37 prevents ectopic aggregation of centriole-
associated proteins in various manners.

Different assembly processes appear to underlie the
aggregation of centriole-associated proteins upon depletion of
each of the above factors. Thus, the mechanisms by which these
factors suppress the formation of aggregates are also considered
distinct. It is also conceivable that each factor only partially
suppresses ectopic centriole formation through the de novo
pathway, as the cytoplasmic aggregates observed in each case
do not have the complete centriole ultrastructure. These findings
imply that the suppression of de novo centriole formation in
somatic cells is achieved through complicated mechanisms
mediated by various factors; however, these mechanisms
remain unclear. Considering the possibility of unidentified
suppressors, future studies are warranted to comprehensively
identify the factors that prevent ectopic aggregation of
centriole proteins.

DE NOVO CENTRIOLE FORMATION
NATURALLY OCCURS IN VARIOUS
SPECIES
In animal somatic cells, new centrioles are usually generated by
canonical centriole duplication. Nevertheless, previous studies,
mainly using EM, have revealed that several species utilize the de
novo pathway in various manners (Nabais et al., 2017). In many
species, centrioles are eliminated in oocytes and supplied from the
sperm during fertilization; therefore, the unfertilized egg does not
have a centriole. However, centrioles are formed de novo in
parthenogenetic insect eggs, which initially do not have a
centriole (Riparbelli et al., 1998; Riparbelli and Callaini, 2003;
Ferree et al., 2006). Artificially activated eggs of sea urchins
(Dirksen, 1961; Kato and Sugiyama, 1971; Miki-Noumura, 1977)
and surf clams (Kuriyama et al., 1986; Palazzo et al., 1992) also form
centrioles de novo. In rodents, the early embryo does not have a
centriole because the typical centrioles or centriole-like structures
have not been observed to date in the sperm. Early mouse embryos
initially undergo non-centrosomal cell divisions, but centrioles
appear to form de novo at the blastocyst stage (Szollosi et al.,
1972; Gueth-Hallonet et al., 1993; Courtois et al., 2012).
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Some species form centrioles de novo that serve as basal bodies
to assemble cilia and flagella. For instance, the protist Naegleria
gruberi uses the de novo pathway. Naegleria forms two centrioles
and two flagella during its transformation from an amoeba state
into a flagellate state (Dingle and Fulton, 1966; Fulton and Dingle,
1971; Fritz-Laylin et al., 2010). In this process, the first centriole is
formed de novo, while the second one is duplicated from the first
one (Fritz-Laylin et al., 2016). In plants with biflagellate sperm,
such as bryophytes, as well as in the protist Labyrinthula spp., two
centrioles are formed de novo through the “bicentriole” form. The
“bicentriole” is composed of two centrioles sharing a single
elongated cartwheel structure. The two centrioles subsequently
separate and serve as the basal bodies forming the two flagella
(Moser and Kreitner, 1970; Perkins, 1970; Robbins, 1984; Gomes
Pereira et al., 2021). Similarly, multiple centrioles form de novo
through electron-dense structures termed blepharoplasts in
plants such as ferns and cycads during the generation of
multiciliated sperms (Mizukami and Gall, 1966; Hepler, 1976).
Planarians also form massive centrioles through the de novo
pathway for multiciliated cells in the pharynx and body epidermis
(Azimzadeh et al., 2012; Li et al., 2020).

For these examples, few studies have analyzed the molecular
mechanisms that regulate de novo centriole biogenesis in detail;
hence, these mechanisms remain largely unexplained. In the
multiciliated cells of planarians, de novo centriole amplification
requires the planarian homologs of Plk4, Cep152, CPAP, STIL

and SAS-6, the conserved core proteins for centriole assembly
(Azimzadeh et al., 2012; Li et al., 2020). A recent study involving
the bryophyte Physcomitrium patens revealed that the
evolutionarily conserved centriole proteins SAS-6, Bld10
(Cep135), and POC1 are required for bicentriole-mediated de
novo centriole biogenesis (Gomes Pereira et al., 2021). These
results suggest that a commonmolecular mechanismmay be used
for centriole formation in a wide range of species.

CONTROL OF MASSIVE CENTRIOLE
AMPLIFICATION INMULTICILIATED CELLS

Some cells in the vertebrate airway epithelium, oviduct
epithelium, and ventricular ependyma differentiate into
multiciliated cells (MCCs). In MCCs, hundreds of centrioles
form, serving as basal bodies to assemble numerous cilia
(Figure 4). These cilia are motile and play tissue-specific roles,
such as generating directional fluid flow on the luminal surface of
epithelial cells. Inhibition of Notch signaling triggers changes in
the transcriptional program mediated by geminin coiled-coil
containing protein 1 (GEMC1) and Multicilin during MCC
differentiation (Spassky and Meunier, 2017; Lewis and
Stracker, 2021). EM studies revealed that MCCs generate a
vast number of centrioles via scaffold structures termed
deuterosomes, in addition to the centriole amplification that

FIGURE 4 | Centriole amplification in multiciliated cells (MCCs). Numerous centrioles assemble from the pre-existing centrioles and many deuterosomes in intact
wild-type MCCs (A). Deup1−/− MCCs, which cannot form deuterosomes, assemble more centrioles from the pre-existing centrioles (B). In MCCs whose pre-existing
centrioles have been removed, centrioles form predominantly through the deuterosome-dependent pathway (C). MCCs can amplify the proper number of centrioles de
novowithout the pre-existing centrioles and deuterosomes (D). Centriole amplification occurs presumably within a PCM cloud in each condition. These centrioles in
each case dock at the plasma membrane and serve as basal bodies to form numerous motile cilia (right).
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takes place from pre-existing centrioles (Figure 4A) (Sorokin,
1968). The deuterosome is a ring-shaped electron-dense structure
that mediates the formation of multiple centrioles. Recently,
research has been focused on elucidating the mechanisms that
coordinate deuterosome-mediated centriole amplification
(Spassky and Meunier, 2017; Boutin and Kodjabachian, 2019).
The Cep63 paralogue deuterosome assembly protein 1 (Deup1)
has been identified as the core component of deuterosomes (Zhao
et al., 2013). Deup1 is highly expressed due to the transcriptional
reprogramming during MCC differentiation. Concurrently, the
expression levels of centriolar proteins (e.g., Plk4, STIL, SAS-6,
Cep152, and CPAP) are also considerably increased, allowing the
de novo formation of numerous centrioles (Vladar and Stearns,
2007; Zhao et al., 2013). Cep152 interacts with Deup1 and
localizes at the deuterosomes (Zhao et al., 2013). Plk4 and
SAS-6 are also recruited to the deuterosomes (Klos Dehring
et al., 2013; Zhao et al., 2013), and centriole amplification
depends on the latter (Vladar and Stearns, 2007). Major cell
cycle regulators including cyclin-dependent kinase 2 (Cdk2),
Cdk1, Plk1, Separase, and anaphase-promoting complex/
cyclosome (APC/C), which are involved in centriole
duplication cycle in cycling cells, also control the multi-step
processes of deuterosome-mediated centriole amplification in
post-mitotic MCCs (Al Jord et al., 2017; Revinski et al., 2018;
Vladar et al., 2018). It has been observed that deuterosomes are
derived from the vicinity of the daughter centrosome (Al Jord
et al., 2014). Nevertheless, in 2019, several research groups
reported that deuterosome formation and centriole
amplification occur in MCCs that have lost their resident
centrioles via inactivation of Plk4 (Mercey et al., 2019a;
Nanjundappa et al., 2019; Zhao et al., 2019), illustrating that
pre-existing centrioles are not essential for deuterosome
formation (Figure 4C).

The number and morphology of basal bodies that appear
during multiciliogenesis are not affected in ependymal cells
derived from Deup1−/− mice, which are unable to form
deuterosomes (Figure 4B). Furthermore, centriole
amplification can still occur even in MCCs lacking both
mother centrioles and deuterosomes (Figure 4D) (Mercey
et al., 2019b). In other words, under such conditions, a
massive number of centrioles form independently of mother
centrioles and deuterosomes. This potentially allows us to
observe phenomena similar to de novo centriole biogenesis in
proliferating cells at a larger scale. Intriguingly, most centriole
amplification in MCCs occurs in a PCM cloud containing
Pericentrin; this process is also observed in the absence of
deuterosomes and/or pre-existing centrioles (Mercey et al.,
2019a; 2019b). This evidence suggests that PCM may play a
role in de novo centriole formation for multiciliogenesis,
independently of either pre-existing centrioles or
deuterosomes. This process is reminiscent of the involvement
of PCM in de novo centriole formation in proliferating cells
(Khodjakov et al., 2002; Nabais et al., 2021). Furthermore,
observation using EM has shown that the amplified centrioles

are distributed in the vicinity of fibrogranular materials (FGMs)
inMCCs devoid of both deuterosomes and pre-existing centrioles
(Mercey et al., 2019b). Through EM, FGMs were discovered as
arrays of electron-dense granules (diameter: 40–80 nm) found
specifically in MCCs undergoing centriole amplification
(Sorokin, 1968; Anderson and Brenner, 1971; Dirksen, 1971).
A recent study revealed that FGMs contain various centriole-
associated proteins and ensure the fidelity of multiciliary
formation (Zhao et al., 2021). Thus, in future studies,
understanding the role of PCM and FGMs in MCCs without
pre-existing centrioles and/or deuterosomes may provide a better
understanding of de novo centriole formation in
proliferating cells.

PERSPECTIVE

Regarding the molecular mechanisms of centriole biogenesis,
the de novo pathway has been studied less extensively than the
canonical pathway. Further studies on the mechanisms
underlying the de novo pathway, in conjunction with the
canonical pathway, will lead to a deeper insight into the
common and divergent mechanisms involved in centriole
assembly. Another critical research question is the
mechanism through which centriolar cells suppress the de
novo pathway. This can be a medically significant question,
since disruption of the suppression mechanisms would
potentially result in uncontrolled centriole amplification and
subsequent tumorigenesis (Levine et al., 2017). Therefore,
detailed analysis of the molecular mechanisms regulating the
de novo centriole formation in various species would be
important in the future.
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