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Placental insufficiency and adipose tissue dysregulation are postulated to play key roles

in the pathophysiology of both pre-eclampsia (PE) and gestational diabetes mellitus

(GDM). A dysfunctional release of deleterious signaling motifs can offset an increase in

circulating oxidative stressors, pro-inflammatory factors and various cytokines. It has

been previously postulated that endothelial dysfunction, instigated by signaling from

endocrine organs such as the placenta and adipose tissue, may be a key mediator

of the vasculopathy that is evident in both adverse obstetric complications. These

signaling pathways also have significant effects on long term maternal cardiometabolic

health outcomes, specifically cardiovascular disease, hypertension, and type II diabetes.

Recent studies have noted that both PE and GDM are strongly associated with lower

maternal flow-mediated dilation, however the exact pathways which link endothelial

dysfunction to clinical outcomes in these complications remains in question. The current

diagnostic regimen for both PE and GDM lacks specificity and consistency in relation

to clinical guidelines. Furthermore, current therapeutic options rely largely on clinical

symptom control such as antihypertensives and insulin therapy, rather than that of early

intervention or prophylaxis. A better understanding of the pathogenic origin of these

obstetric complications will allow for more targeted therapeutic interventions. In this

review we will explore the complex signaling relationship between the placenta and

adipose tissue in PE and GDM and investigate how these intricate pathways affect

maternal endothelial function and, hence, play a role in acute pathophysiology and the

development of future chronic maternal health outcomes.
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INTRODUCTION

Gestational diabetes mellitus (GDM) and pre-eclampsia (PE) are two obstetric complications which
detrimentally impact perinatal outcomes for both mother and child. For the mother, PE has been
associated with chronic conditions of endothelial damage and cardiovascular events (1). GDM has
also been linked to long-term alteration of maternal endothelial function and a greater risk of type
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2 diabetes mellitus (T2DM) diagnosis (2). A shift in glucose
metabolism, during which maternal hyperinsulinemia is
compensated to support the need of fetal growth, serves
as a cardiometabolic stressor that may culminate in CVD
co-morbidities or long-term cardiovascular complications (3).

Similar risks exist for the offspring, such as
neurodevelopmental disorders in hypertensive pregnancies
and type 1 diabetes mellitus in hyperglycemic pregnancies
such as GDM (4, 5). Population based studies have shown that
the deleterious implications of obstetric complications on the
fetus, such as an increased risk of endocrine, nutritional, and
metabolic derangements, including T2DM, are present well into
adolescence and early-adulthood (6, 7).

GDM is the most commonmetabolic pregnancy complication
and affects up to 18% of all pregnancies, however this value
differs greatly (between 14 and 25%) depending on the diagnostic
test and glucose cut-off values employed (8). During healthy
pregnancy, the maternal physiology adapts to compensate for
many changes in energy demands, such as glucose metabolism.
As the fetus develops, a surge of hormone secretion, such as
placental lactogen and estrogen, promote a state of insulin
resistance, which facilitates a rise in blood glucose levels to
fuel fetal growth (9). Appropriate blood glucose levels are
then maintained through homeostatic mechanisms such as
hypertrophy and hyperplasia of pancreatic β-cells (10). However,
in GDM pregnancies, normal metabolic adaptions fail to
adequately control glycemic levels, resulting in hyperglycemia
and secondary complications such as vasculopathy and birthing
complications (11). GDM outcomes have been linked to issues
upstream of dietary glucose absorption, such as impaired insulin
sensitivity caused by β-cell dysfunction (12). The International
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Association of Diabetes and Pregnancy Study Groups (IADPSG)
recently updated the diagnostic criteria for GDM whereby an
oral glucose tolerance test (OGTT) is performed in a fasting
state using 75 g of glucose at 24–28 weeks. GDM is positively
diagnosed if any one of the following cut-off ’s is met i.e., ≥ 92
mg/dl (≥5.2 mmol/l) or 1 h ≥ 180 mg/dl (≥10 mmol/l) or 2 h ≥

153 mg/dl (≥8.5 mmol/l) (13).
PE affects 2–8% of pregnancies and has large heterogeneity

in its associated risk factors (14, 15). The exact pathophysiology
of PE remains a controversial issue, however it is well-accepted
that complications originate during abnormal placentation and
resulting placental insufficiency. During normal placentation,
cytotrophoblast cells facilitate remodeling of thematernal uterine
spiral arteries, allowing for normal blood flow and nutrient
supply to the growing fetus (16). The fusion of cytotrophoblast
cells to terminally differentiated syncytiotrophoblasts, allowing
for the formation of gap junctions and the exchange of small
metabolites and secondary messengers, is a complex event
which is not fully understood (17). In cases of PE, particularly
early onset PE (delivery <34 weeks), trophoblast abnormalities
has been postulated as culprits of poor placentation and
atherosclerotic changes in the placental vasculature (18). The
resulting hypoxic environment and localized oxidative stress
responses are believed to offset systemic responses, such as
hypertension, proteinuria and HELLP syndrome, which define
PE (16). Symptoms of late onset PE (delivery ≥34 weeks) are
likely to occur due to abnormal placental senescence and a
maternal genetic predisposition to cardiovascular and metabolic
disease (18). Contrary to previous criteria, recent guidelines
from the International Society for the study of Hypertension
in Pregnancy (ISSHP) have outlined that proteinuria is not
mandatory for a diagnosis of PE. Rather, this is diagnosed by
the presence of de novo hypertension after 20 weeks’ gestation
accompanied by proteinuria and/or evidence of maternal acute
kidney injury (AKI), liver dysfunction, neurological features,
hemolysis or thrombocytopenia, or fetal growth restriction (19).

The pathophysiology of PE and GDM has complex
implications on maternal health, which include the possibility
of unmasking existing CVD predispositions. However, both
complications have established risk factors which can be
identified pre-pregnancy or early in pregnancy and efforts to
promote early screening and risk-reduction strategies may
significantly improve health outcomes. Some risk factors
common to both conditions include maternal obesity,
pregestational diabetes, maternal age, previous PE and/or
GDM diagnosis, and familial history (9, 20–23). Due to the
increase in obesity levels and Western dietary practices, GDM
diagnoses have dramatically increased over the past decade (24).
While recent reports have suggested that PE rates have remained
static, the number of severe cases are on the rise (25). Examining
clinical risk factors allow for some diagnostic predictions,
however, this is not a sufficient method to decide the need for
therapeutic intervention such as prophylactic aspirin in patients
of high PE risk (26). Further elucidation of the pathophysiology
of these obstetric conditions will provide a clearer insight into
the most effective means for clinical diagnosis and therapy. In
this review we will describe how deterioration of the endothelial
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vasculature as a consequence of these obstetric complications
may be implicated in long-term maternal cardiometabolic
disease. We will aim to delineate potential pathogenic mediators
of endothelial dysfunction and discuss potential therapeutic
targets that may ameliorate this disruptive pathophysiology.

DOES PE AND GDM-MEDIATED
ENDOTHELIAL DYSFUNCTION
CONTRIBUTE TO THE FUTURE RISK OF
MATERNAL CARDIOMETABOLIC
DISEASE?

It has been previously postulated that endothelial dysfunction
plays a pivotal role in the detrimental health outcomes recorded
in PE and GDM, playing a particular role in hypertension,
proteinuria, cardiovascular risk, obesity and hyperlipidemia (27).
Recent studies have shown that women diagnosed with PE
and GDM have a significantly lower flow-mediated dilation
(FMD) compared with their healthy counterparts, suggestive of
increased endothelial damage in these patients (1, 28). Persistent
endothelial dysfunction in these patients may lead to maternal
cardiovascular disease (CVD) and poor cardiometabolic health,
dominant causes of mortality globally and major factors
of concern in maternal health both pre- and post-partum.
Cardiometabolic disease encapsulates a spectrum of conditions,
which develop from insulin resistance and visceral obesity
into a decrease in high-density lipoprotein (HDL) cholesterol
concentrations, an increase in triglyceride concentrations, and
hypertension. These metabolic factors manifest as serious clinical
outcomes such as CVD and type II diabetes (29). Additionally,
PE and GDM are, themselves, established risk factors for
future poor cardiovascular health outcomes (30). Although the
acute symptoms of these obstetric complications are alleviated
post-delivery, the occurrence of these is associated with a
predisposition or vulnerability for the pregnant woman to
develop longer term chronic maternal complications which
may not be clinically detectable for years after pregnancy. For
example, the risk of developing vascular complications later in
life is increased up to 14.5-fold in women after hypertensive
pregnancies (31).

One probable theory for postpartum CVD correlation
is the persistence of endothelial dysfunction. For example,
in PE pathophysiology, inadequate cytotrophoblast invasion
and resultant insufficient placentation causes a decrease in
placental blood flow due to poor spiral artery remodeling. A
compensatory rise in maternal blood pressure and oxidative
stress provokes pro-inflammatory signaling pathways with the
resultant generation of cytokines which induce endothelial
dysfunction, thereby causing increased arterial lipid deposition
and arterial stiffness (32).

Recent evidence has also suggested that the maternal
vasculature is permanently disrupted in GDM, which predisposes
the mother to a higher risk of developing CVD, including an
increased risk of ischemic heart disease, myocardial infarction,
coronary angioplasty, and coronary artery bypass graft (33).
This risk is due, in part, to an increase in T2DM or intrinsic

endothelial dysfunction due to intense glucose intolerance (34,
35). A recent US study established a 63% increased risk of
CVD amongst women with a history of GDM, which was only
partly explained by correlation with body mass index (BMI) (36),
suggesting other key players in GDM pathophysiology. Maternal
comorbidities such as obesity and dyslipidemia may have further
deleterious effects on maternal endothelial function. There is also
increasing evidence that these cardiometabolic conditions may
be dormant predispositions, whether genetic or otherwise, which
are unmasked by pregnancy complications.

Two endocrine organs which undoubtedly play a
pathophysiological role in both PE and GDM are the
placenta and adipose tissue. Both metabolic organs release
a myriad of signals which can induce deleterious effects
on the maternal vasculature, with probable long-term
consequences. Potential mediators which have been proposed
in directing the deleterious communication between both
metabolic organs and the maternal endothelium include
reactive oxygen species (ROS), mitochondrial DNA, pro-
inflammatory cytokines and lipid-derived signals (Figure 1).
In this review we will explore the intertwined signaling
relationships of placenta and adipose tissue on maternal
endothelial function and investigate how these mediators play
a pathophysiological role in future maternal cardiometabolic
outcomes of pregnancies with PE and GDM through disruption
of endothelial function.

PATHOGENIC CONTRIBUTORS TO
ENDOTHELIAL DAMAGE

Reactive Oxygen Species
Physiologically, pregnancy is associated with oxidative stress,
largely orchestrated by placental mitochondrial activity
and the production of reactive oxygen species (ROS), by-
products of normal cellular activity (37). Mitochondria serve
as the primary source of endogenous ROS, however the
endoplasmic reticulum and peroxisomes also function in ROS
production (38). Excessive ROS generation can lead to the
release of deleterious mediators into the maternal circulation
and this overproduction is overtly evident in insufficient
placentation and the resulting ischemic microenvironment in the
placenta (39).

Although certain immune cells such as uterine natural
killer cells (uNK) and macrophages prime the smooth muscle
and endothelium for invasion, specifically the extravillous
cytotrophoblast (EVT) plays a major role in vascular infiltration
of the decidua and myometrium (40). Placental insufficiency,
a condition which has been postulated as a culprit in
obstetric complications including PE and intrauterine growth
restriction (IUGR), results from insufficient or incomplete
trophoblast invasion of the maternal uterine spiral arteries
(41, 42). The resulting impaired uteroplacental blood flow
leads to diminished placentation, ischemia, oxidative stress,
inflammation and apoptosis of the syncytiotrophoblast (43, 44).
Similar pathological pathways are activated in cases of maternal
obesity, where increasing visceral adipose tissue mass increases
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FIGURE 1 | Mechanisms linking placenta and adipose tissue dysfunction to endothelial damage. Aberrant endocrine organ dysfunction leads to excessive ROS

generation and the release of inflammatory motifs from the placenta and adipose tissue. Deleterious motifs such as NLRP3 by-products, miRNA, inflammatory

cytokines, and mtDNA enter the circulation, instigating various pathways which drive localized damage to the endothelium through inhibition of angiogenesis and

inflammation. Sequential endothelial dysfunction ensues and pathogenic pathways such as TLR-4 driven cytokine production further upregulate ROS generation,

creating a pernicious feedback loop. Maternal vasculopathy ensues, resulting in acute complications and poor chronic health outcomes. Created with BioRender.com.

STB, syncytiotrophoblast; EV, extracellular vesicle; ROS, reactive oxygen species; GLUT-4, glucose transporter type 4; eNOS, endothelial nitric oxide synthase; MMP,

matrix metallopeptidase; TLR-4, toll-like receptor 4; sFLT-1, soluble fms-like tyrosine kinase-1; miRNA, micro ribonucleic acid; cf-mtDNA, cell-free mitochondrial

deoxyribonucleic acid; NLRP3, NOD-; LRR- and pyrin domain-containing protein 3; AGE, advanced glycation endproducts; oxLDL, oxidized low-density lipoprotein.

adipocyte dysfunction, resulting in inflated ROS production. This
hyperbolic ROS generation has been correlated to an increase
in insulin resistance in both the adipose and other peripheral
tissues (45).

Excessive ROS production is postulated to play a significant
role in mediating many vascular responses, specifically activation
of matrix metalloproteinases (MMPs), vascular remodeling,
smooth muscle hypertrophy and cellular apoptosis. In response
to ROS, oxidation of the IκB kinase (IKK) complex occurs,
leading to the release of nuclear factor kappa B (NF-κB) (46)
which promotes the transcription of various pro-inflammatory
mediators of endothelial dysfunction including intracellular
adhesion molecule 1 (ICAM-1), the vascular cell adhesion
molecule 1 (VCAM-1) and inflammatory cytokines such as
interleukin (IL)-6 and tumor necrosis factor (TNF)-α (47).
This interplay is appropriately regulated during pregnancy but
becomes disorientated in PE and GDM (48, 49).

Exaggerated ROS generation thereby represents a primary
cause of endothelial dysfunction in both PE and GDM,

resulting in potentially permanent vascular damage and altered
endothelial phenotype which may have significant long term
consequences (50).

Nitric Oxide
Pregnancy is associated with significant physiologic adaptive
changes of the maternal cardiovascular system. Nitric oxide
(NO), a soluble gaseous mediator, has a wide variety of
physiological functions including maintenance of vascular
homeostasis and modulating vascular tone (51). ROS can
interfere with the maintenance of vascular tone through
reduction of nitric oxide (NO) production. Endothelial NO
synthase (eNOS), which is expressed constitutively in the
vascular endothelium and regulates vascular tone through NO
synthesis, appears to be suppressed by ROS overproduction (52).
Suppression of endothelial NO synthesis causes dysregulation
in vascular tone modulation, and platelet and leukocyte
adhesion (51).
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NO malfunction has been specifically implicated in PE and
GDM-derived endothelial complications through abnormal
maternal vascular adaption mechanisms (53, 54). During
pregnancy, NO produced by endothelial and inducible NO
synthases (eNOS and iNOS, respectively) actively regulates
embryo development, implantation, trophoblast invasion,
placental vascular development and function (40, 41). There
has been inconclusive evidence on the levels of NO expression
throughout gestation, predominantly due to the variances in the
NOS levels recorded in maternal serum (55, 56).

eNOS and the concurrent synthesis of NO has been
implicated in maternal endothelial dysfunction, however the
exact pathophysiology of this mechanism remains elusive. A
recent study reported that women with severe hypertensive
pregnancies had significantly lower circulating eNOS levels and
that this was significantly associated with a decrease in levels
of placental growth factor (PlGF), while a subtle increase in
eNOS and PIGF was recorded in women with mild hypertensive
pregnancies (57). These findings may suggest that although
a compensatory rise in eNOS and PlGF levels exists in mild
pathologies, these mechanisms fail in severe hypertensive cases.
Both eNOS and iNOS have been shown to be tightly regulated
in placental tissue throughout pregnancy, and a number of
studies have reported on evidence of a dysregulated increase
in eNOS response with conditions of placental hypoxia such
as that which is seen in placental insufficiency and impaired
vascular development (58–60). This induces a compensatory
increase in NO-induced vasodilation of the placental vasculature.
Additionally, further work in this area has established that
the quantity of syncytiotrophoblast extracellular vesicles (EVs)
carrying eNOS was reduced in PE patients relative to control
patients (61). This observed reduction in circulating eNOS may
correlate to a reduction in NO bioavailability and an increase in
endothelial dysfunction.

Although the direct interaction between NO and ROS
regulates the maintenance of physiological vascular tone during
normal pregnancy (62), their imbalance may also contribute to
pathogenic effects. In a recent clinical study of women with
GDM, there was evidence of increased eNOS expression in
both maternal and cord blood, compared to matched healthy
controls, but a decrease in circulating NO levels (2). This
phenomenon, known as eNOS uncoupling, occurs due to
increased monomerization of the eNOS enzyme when the eNOS
dimer is disrupted due to the presence of peroxynitrite, a by-
product of the scavenging of NO by the superoxide radical (O2-)
(63). The resulting damage leads to superoxide production by
eNOS rather than the generation of NO (63). This production
of superoxide, in addition to excess ROS produced from other
sources such as endothelial cell mitochondria under conditions
of hypoxia and hyperglycemia, mediates inactivation and
sequestration of NO through oxidative reactions, contributing to
hypertension and tissue damage (64, 65).

Endothelium-derived NO dysfunction, resulting in altered
bioavailability and tissue damage, has been specifically implicated
as a potential cause of PE symptoms (66) and, similar to
above, the interplay between ROS and NO plays a key
role. A predominant source of ROS is due to the disrupted

membrane potential of endothelial cell mitochondria. This
occurs in response to mechanical damage to the mitochondria
or in response to oxidative stress, often initiating ROS
overproduction, particularly at complexes I and III. Another
localized source of ROS is nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase 4 (Nox4), which is highly
expressed in endothelial cells and is essential for cellular
proliferation (65). Nox4 is upregulated in cases of cellular stress,
particularly in those with impaired blood flow or hyperglycemia
(67). Once levels of ROS exceed cellular buffering capacity,
dysfunction and apoptosis ensue. Peroxynitrite, produced
through ROS scavenging of NO, oxidizes DNA, proteins and
lipids and contributes to vascular signaling dysregulation (52).
Furthermore, peroxynitrite can also contribute to irreversible
nitration of tyrosine residues on other proteins, causing
impaired phosphorylation and enzymatic dysfunction (68). Thus,
this interaction between NO and ROS propagates endothelial
damage and may be another key element in PE and GDM-
mediated vasculopathy.

Mitochondrial Dysfunction
As described earlier, mitochondria are the primary mediators
of oxidative stress and consequently influence exaggerated ROS
mediated endothelial dysfunction (65). However, an additional
mechanism by which mitochondria can disrupt endothelial
function is mediated in part by mitochondrial DNA (mtDNA)
provocation of an inflammatory response. Mitochondria have
their own genome withmtDNAmolecules, which are particularly
susceptible to oxidative damage because of their proximity
to the electron transport chain (ETC) and their deficiency
of protective histones (69). A change in membrane potential,
brought on by traumas such as oxidative stress and pathogen
invasion, induces mitochondrial membrane depolarization and
increases permeability (70). These changes facilitate the release
of mitochondrial components such as ROS and mtDNA into the
cytosol, triggering various inflammatory and apoptotic pathways
(71). Damage to mtDNA can induce malfunction of the electron
transport chain and adenosine triphosphate (ATP) production,
resulting in ROS overproduction by complex I and III (72).
The above pathway describes a pernicious feedback loop, where
mtDNA can be damaged by ROS-mediated oxidation leading
to diminished oxidative phosphorylation capacity, mtDNA
fragment release and further ROS production (73).

Secreted mtDNA fragments also act as damage-associated
molecular patterns (DAMPs), endogenous signaling molecules
that are released from damaged cells and activate an innate
immune response (74).MtDNA can instigate a pro-inflammatory
response in the maternal circulation by binding to toll-like
receptor 9 (TLR-9) on immune cells. Recent work in our
group established that pathogenic plasma mediators (including
mtDNA) of PE increased TLR-9 activation with ensuing
neutrophil activation (75, 76). MtDNA has also been shown
to activate the NLRP3 inflammasome leading to cleavage of
procaspase-1 and the resulting release of pro-inflammatory
cytokines IL-1β and IL-18, which in turn can inflict endothelial
damage (77, 78). Persistent and aberrant NLRP3 activation
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underlies many chronic inflammatory and degenerative diseases,
such as T2DM and CVD (77, 79–81).

Previous studies have suggested that cell-free circulating
mtDNA (cf-mtDNA) copy number increases with mitochondrial
dysfunction (82). Although the majority of cf-mtDNA in the
maternal circulation is of maternal origin, ∼5–20% of this
cf-mtDNA is of fetal/placental origin (83). Our group have
shown elevated levels of circulating mtDNA fragments in plasma
samples from 15 to 20 weeks’ gestation from both PE and
GDM patients (69, 84). An additional source of cf-mtDNA
in the maternal circulation could be from adipose tissue, as
mitochondrial dysfunction in the omental adipose tissue has
been linked to a significant increase in mtDNA content (85).
Adipocyte mitochondria have been shown to play a key role
in signaling through their ability to influence key biochemical
processes central to the adipocyte, such as fatty acid esterification
and lipogenesis, as well as their impact on production and release
of key adipokines (86).

Mitochondria are also primary apoptotic mediators
(87). Endogenous cellular stressors such as mtDNA and
ROS can activate BH3-only proteins, which inhibit anti-
apoptotic factors, stimulate pro-apoptotic protein synthesis
and lead to further mitochondrial damage through outer
membrane permeabilization (88, 89). The resulting release
of cytochrome C and other mitochondrial proteins activates
pro-inflammatory caspases such as the NLRP3-caspase-1
pathway (87). Oxidized low-density lipoproteins (oxLDL),
which are also released from damaged mitochondria following
membrane permeabilization, have been directly linked to
endothelial cell apoptosis through ROS upregulation and p53
activation, a tumor supressing gene which induces cell growth
arrest and apoptosis (89, 90). It has also been postulated that
nitration of mitochondrial protein complex I and membrane
depolarization in endothelial cells contributes to cellular
necroptosis, through alteration and inhibition of mitochondrial
bioenergetics (91).

Brown adipose tissue (BAT) is distinct from white adipose
tissue (WAT) in that their more abundant mitochondria
profoundly express uncoupling protein 1 (UCP1), which
uncouples substrate oxidation from ATP production so
that heat can be produced (92). Decreased secretion
of the adipokine neuregulin 4 (NRG-4) by BAT was
recently described in 74 women with GDM (93). NRG-
4 is a novel member of the neuregulin family which is
predominantly secreted by BAT and has been suggested to
play a vital role in regulating the mitochondrial oxidative
machinery (94). Another recent study reported a direct
inter-tissue communication between BAT and the placenta,
via placental growth factor (PIGF), which manifests in
increased UCP-1 expression and mitochondrial oxygen
consumption in GDM BAT tissue when compared to
normal pregnancy (95). The importance of the metabolic
mitochondria in influencing endothelial function cannot
be underestimated, whether its directly via ROS-mediated
oxidative stress or indirectly via instigation of pro-inflammatory
signaling pathways.

Pro-inflammatory Cytokines
The placenta, an important endocrine organ, is also a key
instigator of inflammatory signaling. Placental tissue is largely
maintained by successful syncytiotrophoblast functionality (96).
A release of pro-inflammatory motifs is a key stress response
of the syncytiotrophoblast, which contributes largely to a
localized oxidative stress response in the placenta, leading to
an increased secretion of antiangiogenic and pro-inflammatory
messengers, thereby significantly influencing maternal response
and endothelial impairment (97).

Cytokines are small secreted proteins which regulate the
functions of the immune system, having specific effects on
communications between cells (98). In healthy uncomplicated
pregnancy, complex cytokine signaling in the placenta mediates
local vascular growth and development. Tissue-specific
expression of cytokines facilitates additional functions during
gestation, for example, IL-8 expression in the myometrium has
been shown to be specifically upregulated during both term
and preterm labor (99). However, dysregulation of placental
cytokine release has been demonstrated to correlate with
obstetric pathology. In pre-eclamptic mothers, higher levels of
TNF-α and transforming growth factor (TGF)-β1 have been
noted in placental histopathological studies, whereas level
of IL-10, regarded as a potent anti-inflammatory cytokine,
were decreased in PE vs. normotensive placentas (100). A
correlated “cytokine signature” has been described in the
maternal circulation, with significantly higher levels of pro-
inflammatory cytokines IL-8, IL-6, and IFN-γ in PE plasma
samples, relative to normotensive women. These findings
were particularly exaggerated in cases of severe PE (101).
Similar research demonstrated that human uterine decidual
cell-derived IL-6 was found to contribute to excess circulating
IL-6 levels that promote both endothelial cell dysfunction
(and subsequent vascular dysfunction) in the pathogenesis of
PE (102).

Also elevated in PE, anti-angiogenic soluble fms-like tyrosine
kinase-1 (sFlt-1) and soluble endoglin (sENG) levels, released in
an exacerbated inflammatory states, are culprits for endothelial
dysfunction, whereas proangiogenic PlGF levels, which are
involved in preserving endothelial function, are reduced in
pathologies of placental dysfunction (103).

Adipose tissue is also a highly metabolic endocrine organ
which has a substantial impact on signaling mediators,
including those from the placenta, which instigate a biological
response in the mother and, as such, have considerable
implications for maternal cardiometabolic health (104).
Adipose tissue secretes various humoral factors, known as
adipokines, which can regulate both pro- and anti-inflammatory
responses. This is particularly evident in the metabolically
active visceral adipose tissue. Furthermore, immune cells
including monocytes, macrophages, dendritic cells, natural killer
(NK) cells, mast cells and granulocytes have been shown to
infiltrate visceral adipose tissue and stimulate metainflammation
(via increased production of pro-inflammatory cytokines)
and adipocyte dysregulation (105). TLR-4 activation in
adipocytes initiates adipose inflammation and a systemic
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innate immune response (106). Triggering of TLR-4 receptor
activation is thought to be regulated by free fatty acids (FFAs),
which is linked to an increase in obesity and lipolysis (106).
Dysregulation of adipokine secretion and adipogenesis are
considered risk factors and symptoms of PE and GDM
(107, 108).

Some of the key adipose-derived factors involved are leptin,
adiponectin, resistin, TNF-α, IL-6, and IL-1β (109). Other
than adiponectin, which can act in both an anti- and pro-
inflammatory capacity (110), these adipokines predominantly
exert a pro-inflammatory response. Adipokines have been
also shown to regulate vascular function, often resulting
in vascular inflammation with consequent development of
atherosclerosis (104). The deleterious impact that adipokines
have on the endothelium and vascular homeostasis is
complex. For example, leptin, an adipokine implicated
in energy intake and expenditure, binds to receptors of
the endothelial surface and regulates vascular tone by
phosphorylating mitogen activated protein (MAP) kinases
(111). Further to this, overproduction of leptin has been
linked to decreased NO bioavailability through an increase
in oxidative stress (112). Leptin also plays a role in platelet
activation and aggregation, contributing to thrombosis and
CVD (113).

Maternal adiposity has also been shown to disrupt placental-
derived cytokine signaling. Challier et al. reported that obesity in
pregnant women resulted in a 2–3-fold increase in the number
of placental macrophages, characterized by an increase in IL-1,
TNF-α, and IL-6 mRNA expression (114). Maternal obesity has
also been characterized by an increase in placental expression
of both IL-6 and TNF-α, while similar studies have found
an increase in IL-8 and leptin expression in the placentas of
GDM women (115). Hofbauer cells (HBCs), placental-specific
macrophages, have been implicated in regulating placental
inflammatory signaling in both obstetric complications. The
physiology of this pathway is thought to involve a switch from
the anti-inflammatory M2 phenotype to the pro-inflammatory
M1 phenotype. Sisino et al. supported this hypothesis by
showing that, in a rodent model, gestational diabetes altered the
normal phenotype of HBCs from the M2 to the M1 subtype
(116). On the contrary, analysis of isolated HBCs showed
an increase in M2 markers such as CD206 and CD206 in
the placentae of GDM women. Although not significant, an
increase in the secretion of IL-1β and IL-6 from GDM HBCs
was also recorded (117), indicating that more investigation
is needed to establish the bidirectional effects of HBCs and
obstetric pathology.

Other pro-inflammatory mediators including resistin, TNF-α,
IL-6 and IL-1β also exert an adverse effect on the vasculature
by promoting insulin resistance and monocyte infiltration
of the endothelium (118), resulting in chronic inflammation
and endothelial damage. TNF-α is equally culpable in CVD
development, as it regulates NF-κB activation in cardiomyocytes,
which can cause both cardiomyopathy and heart failure by
increasing inflammation and inducing myocyte atrophy (119).
On the contrary, adiponectin expression, which has been shown
to be reduced in women with GDM but significantly increased

in PE, improves glucose and lipid metabolism and endothelial
function (120, 121). The increase of adiponectin in pre-eclamptic
women is believed to be related to a compensatory feedback
mechanism in response to significant vascular damage (121).
Adiponectin also exerts cardioprotective effects in vascular
disease, via adiponectin receptor 1 and 2 activation, resulting in
an increase in differentiation and survival of both endothelial
and vascular smooth muscle cells while reducing the pro-
inflammatory macrophage response (122). As such, circulating
adiponectin levels have been proposed as biomarker for both
coronary artery disease and myocardial infarction.

Insulin Resistance and Altered Lipid
Signaling
In the last decade there has been a significant increase
in our understanding of the pathogenic role of adipose
tissue inflammation in mediating the pathophysiology of
atherosclerosis and vascular damage and the disruption of
insulin signaling with resulting insulin resistance (123). The
insulin resistant state, initiated by immune cell infiltration,
metainflammation, and lipid signaling, impairs triglyceride
storage resulting in increased FFA release. The increase in these
FFAs is known to induce further insulin resistance in both the
muscle and liver (124).

Insulin resistance, whether induced from immune cell
infiltration in adipose tissue, subsequent pro-inflammatory
responses or an increase in circulating FFAs, is considered an
independent predictor of CV mortality and morbidity (125),
in particular hypertension, type II diabetes and atherosclerosis
(126, 127). The compensatory hyperinsulinemia associated with
insulin resistance has been linked to vascular plaque formation in
pathophysiology of atherosclerosis, induced by changes in gene
expression of the estrogen receptor (128, 129). Insulin resistance-
induced dyslipidemia is also postulated to be a significant risk
factor for CVD, as it is characterized by increased circulating
triglycerides, decreasedHDLs as well as the reported formation of
small dense low-density lipoproteins (sdLDLs) (128). Adipocytes
play a key regulatory role in dyslipidemia. Impaired adipocyte
function leads to a downregulation of FFA release suppression in
response to insulin, as well as inducing hypertriglyceridemia and
decreasing HDL concentrations (130), which can account for an
increased CVD risk. This abnormal lipid metabolism is an early
clinical marker for future maternal cardiometabolic disease and
chronic endothelial dysfunction.

An increase in maternal adiposity and dysregulation has
been correlated to impaired placental function through lipid
accumulation, inflammation and oxidative stress (131). This
increase in placental lipotoxicity is not resultant of increased lipid
uptake from the maternal circulation, as fatty acid (FA) uptake
has been shown to be decreased in cases of maternal obesity
(132), but is the result of an increase in lipid esterification and
storage and FA β-oxidation (FAO) dysregulation. A reduction
of lipid transportation intermediates, specifically acylcarnitines,
has been noted in the placentae of obese women (131, 133).
These placentae also had higher mRNA and protein expression
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of FA esterification regulators such as peroxisome proliferator-
activated receptor γ and acetyl-CoA carboxylase. Furthermore,
extramitochondrial (peroxisomal) FAO is upregulated in the
placenta of obese mothers, compensating for an impaired
mitochondrial function. This pathway not only presents a
rationale for localized placental endothelial dysfunction in both
PE and GDM, but also that of enhanced ROS production and
pro-inflammatory signaling through immune cell infiltration and
mitochondrial dysfunction.

The detrimental effects of both insulin resistance and altered
lipid signaling on endothelial function are believed to stem
from endothelial-derived NO deficiency and ROS production
(134). This relationship exists as a negative feedback loop
where insulin resistance and metabolic cellular disturbances
increase the production of ROS and reactive nitrogen species
(RNS). As described earlier, these signals can deleteriously
affect the function of eNOS and NO, rendering them incapable
of their homeostatic vascular function. In turn, induced
endothelial dysfunction impairs insulin action due to damage
of microcirculatory blood flow and the capillary network,
reducing the motility of insulin in the circulation. Vascular
damage, resulting from lipid deposition and oxidative stress
to the vessel wall, instigates an inflammatory response, and
the release of chemoattractants and cytokines which further
exaggerates insulin resistance and endothelial dysfunction (134).
Adipokines such as retinol binding protein 4 (RBP4) can
further detrimentally affect maternal glucose tolerance, by
disrupting the activity of glucose transporter type 4 (GLUT4)
(135), an insulin-sensitive glucose transporter that acts to
promote insulin-stimulated glucose uptake by adipose, skeletal
and cardiac tissues (136). RBP4 expression is increased in the
omental adipose tissue of severely obese patients, suggesting
that these proteins may be reciprocally connected in a glucose
metabolism pathway (137). Similarly, TNF-α also reduces
insulin-stimulated cellular glucose uptake by disrupting GLUT4
activation (138).

It has been proposed that the sphingolipid ceramide is also
an important effector of insulin resistance through a signaling
network linking lipid-induced inflammatory exacerbation to
TLR-4 activation (106). TLR-4 dependent insulin resistance
is activated by elevated endogenous and exogenous ligands
such as FFAs and enteric lipopolysaccharides (139). TLR-4
activation results in activation of pro-inflammatory motifs c-
Jun N-terminal kinases (JNK), IκB kinase (IKK), and the p38
mitogen-activated protein kinase which impair insulin signal
transduction directly through inhibitory phosphorylation of
insulin receptor substrate (IRS) on serine residues, preventing
insulin-dependent glucose uptake (139). Activation of TLR-4
can also further stimulate pro-inflammatory cytokine signaling,
leading to inhibition of glucose uptake as described previously.

Advanced Glycation End Products
Advanced glycation end products (AGEs) are a heterogeneous
group of compounds that are formed by non-enzymatic reactions
between the carbonyl groups of reducing sugars and the free
amino groups of proteins, lipids or nucleic acids. Elevated glucose
levels resulting from maternal insulin resistance have the ability

to bind to free amino groups of proteins, lipids or nucleic
acids, modifying their function (140). Reducing sugars, such as
glucose, can undergo enzymatic reaction to form these AGEs
which can accumulate both intracellularly and extracellularly,
disrupting the normal cellular function throughout the body
(141). AGEs can also originate from exogenous sources such as
dietary consumption and the majority of them are classified as
toxic compounds which may stress cells and trigger cell injury,
leading to pathological endothelial cell dysfunction (140).

Receptor for AGEs (RAGE) are cell surface pattern
recognition receptors present in various cell types in the
vasculature including endothelium, smooth muscle and
macrophages (142).

As a result, AGEs have been implicated in mediating
secondary outcomes of PE and GDM in part due to their
detrimental effects on endothelial function (143, 144). Induced
endothelial cell toxicity has also been linked to the progression
of atherosclerosis and CVD and it has been suggested
that therapeutics targeting AGEs may effectively ameliorate
pathologies intrinsic to endothelial dysfunction (145, 146).

A recent study reported increased RAGE protein expression
in PE placentae and that AGE formation, and the corresponding
activation of RAGE, induced a trophoblastic inflammatory
response in the placenta, increasing the secretion of pro-
inflammatory cytokines. Soluble RAGE levels were also higher in
serum in these pre-eclamptic mothers, postulating their role in
modulating an inflammatory response in thematernal circulation
and highlighting their potential deleterious effects on the
maternal vasculature. Interestingly, RAGE mRNA transcription
was comparable in PE women vs. women with uncomplicated
pregnancies, suggesting that differential regulation of RAGE
occurs post-transcriptionally (147).

A similar study found that AGE levels in maternal plasma
in GDM were significantly higher than in women with
uncomplicated pregnancies (148). The hyperglycemic state
of GDM promotes AGE formation, a reaction which is
further accelerated in a microenvironment of inflammation
and oxidative stress (149). Additionally, it has been postulated
that glycation of mitochondrial proteins alters their function,
thereby disrupting mitochondrial bioenergetics with a resultant
increase in ROS (150). Hemoglobin A1c (HbA1c), also known
as glycosylated hemoglobin, has a significant diagnostic role
in diabetic glycemic monitoring and has been demonstrated
to correlate with arterial stiffness and endothelial dysfunction
in patients with uncontrolled diabetes mellitus, particularly
those with resistant hypertension. Moreno et al. found that,
in these patients, HbA1c was an independent risk factor for
impaired FMD and arterial stiffness, suggestingHbA1c as a useful
biomarker for vasculopathy (151).

Circulating AGEs also represent a clinical risk in PE. To
investigate the effect of these circulating pathogenic mediators
in PE on adipose tissue, Akasaka et al. treated human
primary adipocytes with PE serum. Significantly elevated mRNA
expression of IL-6, C-C motif chemokine ligand 2 (CCL2) and
RAGE were evident when compared with adipocytes treated with
control serum. This suggests that upregulation of IL-6 and CCL2
expression is mediated in part by the RAGE pathway, resulting
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in the exacerbated pro-inflammatory response evident in
PE (152).

Soluble Fms-Like Tyrosine Kinase-1
Placental soluble fms-like tyrosine kinase-1 (sFlt-1), an
antagonist of vascular endothelial growth factor (VEGF),
is considered an etiological factor of endothelial damage in
obstetric complications, in particular PE (153). PlGF, a member
of the VEGF family, is a glycoprotein which regulates blood
vessel development and maintenance of endothelial function
(154). Whereas, VEGF can bind to various receptors including
VEGFR-1, 2, and 3, PIGF specifically signals through VEGFR-1
(or Flt-1) binding (155). sFlt-1, the soluble variant of VEGFR-1,
is an alternatively spliced variant of VEGFR-1 which inhibits
angiogenesis by reducing free circulating levels of VEGF
and PlGF through direct binding and inhibition of further
interaction with receptors (156). sFlt-1 is released from the
placenta in response to oxidative stress and inflammation
(157) and the increased level of sFlt-1 is associated with
detrimental alterations in endothelial integrity (158). sFlt-1
release from the placenta is also believed to be modulated by
endogenous proteases, such as serine protease chymotrypsin-like
protease/chymase and metalloprotease (159). The release of
the anti-angiogenic factor sFlt1 presents a significant cause
of proteinuria, glomerular endotheliosis and hypertension in
obstetric complications through reduction of PlGF and VEGF
bioavailability (160) and placental-derived sFlt-1 circulating
concentrations are elevated in both PE and GDM pregnancies
relative to healthy uncomplicated pregnancies (160, 161).

The significant correlation between PlGF inhibition by sFlt-1
and consequent pre-eclamptic vasculopathy presents a potential
biomarker for the obstetric complication of PE. A recent
cluster-randomized controlled trial found that the availability
of serum PlGF level testing significantly reduced the time to
clinical diagnosis and supported a lower incidence of maternal
adverse events (162). These findings strongly endorse the use of
circulating PlGF level testing as a biomarker and diagnostic test
for PE.

Recent evidence has suggested that transcriptionally active
syncytial aggregates, released from the placenta, act as a
transporters for sFlt-1 in the maternal circulation (163). These
syncytial knots are formed from abundant syncytiotrophoblast
aggregation at the surface of placental terminal villi and are
believed to be a marker of oxidative damage (164). These knots
are enriched in sFlt-1 protein, which is heavily matrix-bound,
and may be a novel transport mechanism for sFlt-1 and other
damaging proteins in the maternal circulation (163).

Maternal obesity may affect these anti-angiogenic factors via
a number of adipokine-mediated pathways (165) but their cross-
talk is poorly characterized in human pregnancies. Interestingly,
sFlt-1 was found to be secreted by adipose tissue explants
obtained from non-pregnant human females with a robust
inverse correlations between sFlt-1 expression and BMI (166).
Contrary to this, no evidence supported sFlt-1 release of human
adipocyte origin isolated from PE patients (167). Additionally,
an increase in circulating sFlt1 levels strongly correlated with
leptin concentration, but only in normal-weight pregnant women

(168). These findings point toward a moderate, physiological
production of anti-angiogenic proteins by visceral adipose tissue
which is under autocrine regulation of adipokines and may be
suppressed by insufficient placental signaling.

Extracellular Vesicles
All eukaryotic cells are capable of secreting various types of
membrane vesicles, known as extracellular vesicles (EVs), to
carry or exchange a wide range of cargo involved in multiple
physiological and pathological processes. In healthy pregnancy,
these vesicles participate in many important physiological
activities including embryo implantation, immune-modulation,
spiral artery remodeling and metabolism adaptations (169).

EV-mediated crosstalk between the placenta, adipose tissue
and circulating blood cells is of significant interest in relation to
cardiovascular complications in pregnant women as circulating
EV levels have been linked to both cardiovascular and diabetic
complications in non-pregnant patients (170).

In terms of size and composition, various trophoblast-derived
EVs are present in the maternal circulation from as early as 6
weeks of gestation (171, 172). Salomon et al. have shown that
oxygen tension regulates the number and protein content of
trophoblast EVs, with greater release under hypoxic conditions
(173). Hyperglycemia also enhances the release and bioactivity
of these vesicles (174). A great deal of in vitro and in vivo work
has confirmed the immunomodulatory potential of placenta-
derived EVs and their direct interaction with endothelial
cells, monocytes, lymphocytes, neutrophils, macrophages and
platelets (175–178).

A strong connection has been described between circulating
trophoblast-derived EVs and pregnancy complications such as
PE, IUGR and GDM (179–181). Syncytiotrophoblast clustering
and abnormalities are hallmarks of placental insufficiency and
pathology (182) and released EVs are linked to endothelial
damage, monocyte stimulation and an upregulation of the
maternal pro-inflammatory response (180). This phenomenon
is also characteristic of GDM, where recent work suggested
an alteration in miRNA content in trophoblast-derived EVs in
the sera of GDM patients (183, 184). These particular miRNAs
were proposed to act as important regulators of trophoblast
differentiation as well as in insulin secretion and glucose
transport in pregnant women (184) and therefore may be key
regulators of GDM pathology.

Systemic maternal endothelial dysfunction often ensues in
response to the circulating trophoblast-derived mediators (2).
Firstly, epigenetic mechanisms can induce chronic changes
in the endothelial function of both the mother and the
fetus, instigated by miRNA release and resulting alterations of
epigenetic machinery. In vitro data has demonstrated that in
conditions such as GDM, which causes in utero environmental
perturbations, endothelial functionality is decreased through
increased miR-101 expression and reduced EZH2-β and
trimethylation of histone H3 on lysine 27 levels (185). The direct
role ofmiRNA trafficking by placenta-derived EVsmay be a novel
concept in the context of cardiovascular complications associated
with pregnancy and it is yet unclear which cells/tissues are the
predominant targets of this type of messaging.
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Cronqvist et al. recently provided evidence for the EV-
mediated transfer of PE and healthy placenta-specific miRNAs
into the endoplasmic reticulum and mitochondria of primary
human coronary artery endothelial cells (HCAEC) (186). This
process resulted in a down regulation of specific target genes,
including sFlt-1 in HCAEC, in response to both normal and
PE EV-treatment (89), suggesting that EVs may be initiators
rather than modifiers of the disease. In another similar
study design, placenta-derived EVs from patients with PE
reduced NO production and eNOS expression in primary
human umbilical vein endothelial cells (HUVECs) (187).
More recently, postpartum profiling of blood miRNA content
identified a specific combination of miRNAs associated with
higher cardiovascular risk in women with PE and hypertensive
pregnancy due to endothelial dysfunction (188).

Adipose tissue-derived EVs have been traditionally isolated
from culture medium of adipose tissue, adipocytes, and adipose
tissue-derived stem cells (ADSC). The size and composition of
these EVs are similar to their parent cell, and usually secrete
various adipokines including adiponectin, leptin, resistin, and
pro-inflammatory cytokines that can facilitate communication
with immune cells (189). EVs are also enriched with enzymes,
such as glucose-6-phosphate dehydrogenase, fatty acid synthase
and lipids (190), indicating the possibility of these cellular
mediators being primarily involved in the pathogenesis of GDM.
Recent research investigating adipocytes-derived EVs, found
that these inflammatory EVs upregulate VCAM-1 production
in vascular endothelial cells which stimulates exaggerated
leukocyte attachment, promoting inflammation and endothelial
dysfunction (191). Further evidence from Kranendonk et al.
established that specific markers of adipose tissue-derived EVs
were associated with a 57% increased risk of developing
metabolic syndrome and 16% increased risk of developing
T2DM in patients already diagnosed with CV disease (192).
This evidence outlines the complex but substantial impact that
circulating EVs, derived from both placental and adipose tissue
in cases of obstetric pathology, may have on maternal endothelial
function and cardiometabolic health.

THERAPEUTIC STRATEGIES

Currently, therapeutic options for GDM focus on insulins and
biguanides such as metformin, which are initiated once measures
such as lifestyle modification fail to effectively achieve glycemic
targets. In PE, therapeutic intervention commonly involves the
use of β-blockers such as labetalol to control hypertension
and pre-delivery anticonvulsive medication such as magnesium
sulfate to prevent the onset of maternal eclampsia. Aspirin
is also prescribed routinely for primary prevention of PE-
related vascular dysfunction (193). As addressed previously,
vascular complications of pregnancy are not limited to the
duration of gestation and may induce chronic vascular and
metabolic conditions such as CVD and T2DM (194). In this
section, we will describe a number of potential alternative
therapeutics which may protect against endothelial dysfunction
in pregnancy, in part by negating the detrimental pathways of

some of the pathogenic mediators characterized earlier, and may
afford safe prophylaxis for high risk pregnant women, thereby
minimizing acute endothelial dysfunction and improved long-
term cardiometabolic prognosis (Figure 2).

Given the potential pathogenic role that dysfunctional
mitochondria play in mediating endothelial damage, we
propose that mitochondrial-targeted antioxidants may provide
therapeutic benefit for mothers diagnosed with certain obstetric
complications such as PE and GDM. MitoQ, a mitochondrial-
targeted antioxidant, is a ubiquinone moiety linked to a
lipophilic triphenylphosphonium (TPP) cation (195). MitoQ
has ameliorated endothelial dysfunction and improved vascular
function in recent animal and human studies (196, 197). Oral
administration of MitoQ has established therapeutic benefit
in rodent in vivo models of cardiac ischemia-reperfusion
(IR) injury, sepsis, diabetic kidney damage and hypertension,
respectively (198). Furthermore, a recent randomized controlled
trial with MitoQ in healthy older adults aged between 60 and
79 years demonstrated that brachial artery FMD was 42%
higher after MitoQ administration for 6 weeks, vs. placebo. The
treatment arm also showed significantly reduced aortic stiffness
and plasma oxidized LDL. The CLEAR trial, treating Hepatitis C
patients with MitoQ, showed a decrease in circulating markers of
liver damage and was the first report of mitochondrial-targeted
antioxidant clinical efficacy and safety (199).

MitoTempo, a similar mitochondrial-targeted antioxidant,
has shown promising in vitro results in the treatment of
oxidative stress and endothelial dysfunction (200). We
have previously shown that MitoTempo exerts a protective
effect against ROS-induced cell damage of endothelium.
MitoTempo was also effective in attenuating mitochondrial-
specific ROS and inflammatory signals generated by PE
plasma mediators in exposed endothelial cells (200).
Furthermore, an in vivo study showed that MitoTempo
reduced hypertension in two murine models of hypertension,
namely, angiotensin II-induced hypertension and DOCA-
salt hypertension, in part by decreasing vascular ROS
concentrations and increasing NO production, with the
consequent improvement in endothelial relaxation and vascular
tone (201).

A nutraceutical mitochondria-targeted antioxidant, L-
ergothioneine (ERG), has also demonstrated potential
therapeutic effects, particularly in PE (202). ERG is a water-
soluble amino acid derived from histidine, which accumulates
preferentially in high oxidative stress organs through the action
of a specific organic cation transporter novel type 1 (OCTN1)
(203). This nutraceutical also has the therapeutic benefit of
having a particularly long half-life of ∼30 days and a well-
established ability to cross both the blood brain barrier and the
placenta (204, 205). In a reduced uterine perfusion pressure
(RUPP) rat model of PE, ERG significantly reduced hypertension
and rescued fetal growth restriction (206). ERG was also found
to significantly reduce the levels of circulating sFlt-1 and the
production of mitochondrial-specific ROS in vivo.

There remains a question over whether the increase in
mitochondrial dysfunction and exaggerated ROS generation
precedes or proceeds the disease state, as the physiological criteria
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FIGURE 2 | Schematic diagram of the pharmacodynamics of various proposed therapeutic interventions for endothelial damage prophylaxis. These agents can inhibit

deleterious pathways upstream of endothelial cell dysfunction, potentially preventing the maternal clinical manifestations associated with pre-eclampsia and

gestational diabetes mellitus. Created with BioRender.com. EV, extracellular vesicle; ROS, reactive oxygen species; DAMP, damage-associated molecular pattern;

NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NEK7, NIMA related kinase 7; NLRP3, NOD-; LRR,- and pyrin domain-containing protein 3;

BHB, beta-hydroxybutyrate; IL, interleukin; AGE, advanced glycation end products; RAGE, receptor for AGE.

required may often be present long before a clinical diagnosis
is confirmed. However, these mitochondrial specific therapeutics
show promising results in favor of targeted antioxidant therapy in
obstetric complications of endothelial dysfunction, where other
clinical interventions may be contraindicated. In addition, a
clinical trial of chronic MitoQ administration in healthy older
adults has established a favorable outcome in reducing markers
of vasculopathy and inflammation (197).

Another potential therapeutic strategy to preserve endothelial
function is to attenuate immune dysregulation and inflammation
through inhibition of the NLRP3 inflammasome pathway. The
NLRP3 inflammasome is activated by a diverse range of stimuli
including products of mitochondrial dysfunction and ROS (207).
NLRP3 pathway inhibitors are currently under investigation
for a range of inflammatory conditions, including type II
diabetes and atherosclerosis, through both indirect and direct
pharmacological targeting. Glyburide, a sulfonylurea drug, is
used for T2DM treatment in the US (208). Both in vitro
and in vivo studies suggest that glyburide inhibits activation
upstream of NLRP3 and more recently has been proposed

to inhibit the NEK7-NLRP3 interaction (209, 210). Although
glyburide is not approved for GDM treatment by the FDA, the
American College of Obstetricians and Gynecologists (ACOG)
recommended in 2013 that “when pharmacologic treatment of
GDM is indicated, insulin and oral medications are equivalent
in efficacy, and either can be an appropriate first-line therapy”
(211). A similar sulfonylurea compound, MCC950, is considered
one of the most selective and potent NLRP3 inhibitors (212).
Unlike glyburide, MCC950 has been shown to act directly on
the inflammasome. Some proposed mechanisms of actions of
MCC950 include blocking IL-1β processing by caspase-1 or
inhibition of ATP hydrolysis and NLRP3 assembly (213, 214). A
recent study found that MCC950 significantly decreased IL-1β
release and the activation of caspase-1 in colonic explants and
macrophage cells isolated from the chronic colitis murine model
(215). Furthermore, MCC950 was recently shown to reduce the
cholesterol crystal-induced IL-1β response in human placental
tissue explant (216).

As an alternative to sulfonylurea therapy, sodium glucose
co-transporter 2 (SGLT2) inhibitors have significantly
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reduced T2DM-mediated vasculopathy in clinical trials
(ClinicalTrials.gov Identifier: NCT02964572). SGLT2 inhibitors
can stimulate an increase in circulating β-hydroxybutyrate
(BHB) levels, which suppress NLRP3 inflammasome activation
in macrophages. This trial in T2DM participants found that
SGLT2 inhibition had a similar capacity to reduce glucose levels
to sulfonylurea, but significantly decreased IL-1β secretion
compared to baseline, unlike sulfonylurea (217). CY-09, a
compound that selectively blocks NLRP3 by directly binding to
the ATP-binding motif of NLRP3 NACHT domain, inhibiting
inflammasome assembly and activation, has shown similar
therapeutic effects in diabetic complications (218). In vivo
experiments demonstrated that CY-09 reversed metabolic
disorders in a diabetic mouse model through inhibition
of NLRP3-dependent inflammation. These mice showed
significantly higher insulin sensitivity and reduced weight
gain compared to control. These results were not evident in
NLRP3 knockout mice, suggesting that CY-09 alleviates diabetic
symptoms specifically throughNLRP3 inflammasome inhibition.

Currently undergoing clinical trials for treatment of
degenerative arthritis, OLT1177 also acts directly on NLRP3
inflammasome to inhibit IL-1β and IL-6 secretion, thereby
reducing neutrophil infiltration and joint swelling (219).
OLT1177 demonstrates a promising safety profile after oral
administration in phase I trials and was shown to be selective for
NLRP3 inhibition over other inflammasomes in murine studies
(212). Additionally, this compound has a long half-life with
minimal toxicity in humans at various doses (220). Although
these inhibitors are not currently investigated in pregnancy,
inhibition of the NLRP3 inflammasome presents as a promising
therapeutic avenue to alleviate both the acute and chronic
inflammatory and metabolic symptoms of PE and GDM.

RAGE expression is significantly increased in women
diagnosed with PE andGDM (143, 221). Hence, inhibiting RAGE
activation may alleviate symptoms of ROS generation, pro-
inflammatory cascades, and subsequent endothelial dysfunction.
Aminoguanidine, benfotiamine, thiamine, and pyridoxamine
have been clinically investigated to treat vascular complications
of types 1 and 2 diabetes by inhibition of AGE formation (222),
however the results were mixed. Aminoguanidine showed initial
promising results but treatment was later ceased due to adverse
events (223). Benfotiamine, however, significantly reduced serum
levels of AGE as well as markers of endothelial dysfunction and
oxidative stress in T2DMpatients who ate a highAGEmeal (224).
The safety profile and clinical efficacy of these therapies remain to
be fully evaluated in pregnancy.

Specific targeting of RAGE is also being investigated as a
more direct means of therapeutic intervention. An example of
such a compound is the mutant RAGE peptide S391A-RAGE,
which acts to inhibit transactivation of RAGE (225). In an animal
model of atherosclerosis, S391A-RAGE successfully diminished
angiotensin II-dependent inflammation, endothelial dysfunction
and atherogenesis (225). However, these novel RAGE peptides
have not yet progressed past preclinical testing and require
further investigation.

An alternative therapeutic option relates to the inhibition of
the release and uptake of circulating EVs. This is an ongoing

novel area of pharmacology research that may have exciting
implications in many disease states. Inhibition of ceramide
(a key player in endosomal sorting and EV biogenesis) with
GW4869, a neutral sphingomyelinase inhibitor, is one current
pharmacological approach under investigation (226, 227).
Although these findings are not focused on disease modification
in pregnancy, this research may open therapeutic doors into
targeting pro-inflammatory syncytiotrophoblast-derived EVs or
miRNA-mediated communication in the maternal circulation.

As the safety profile of potential therapeutic interventions
is paramount in pregnancy, naturally occurring flavonoids
such as naringenin may be of particular interest in PE
and GDM. In vitro research has demonstrated that apigenin
and naringenin, two types of flavones, diminish endothelial
dysfunction (228, 229). These studies showed inhibition of
ROS production, caspase-3 activity and phosphorylation of NF-
κB in treated endothelial cells. In rodent models of GDM,
naringenin exhibited antidiabetic properties, reducing blood
glucose levels and improving renal function in part through a
reduction in cellular apoptosis (230). Naringenin has also been
shown to effectively reduce neutrophil infiltration and activation,
indicating a vasculoprotective effect through amelioration of an
overall pro-inflammatory phenotype (231).

Lifestyle modifications have often been the first line of
intervention, particularly for managing the symptoms of GDM.
Reduction of dietary glucose intake and careful glycemic
monitoring can successfully manage insulin resistance, without
the need for drug intervention, in less severe cases of
GDM. Some studies, such as the ongoing EMERGE clinical
trial (ClinicalTrials.gov Identifier: NCT02980276), are currently
investigating the most effective way to implement lifestyle
modifications in addition to metformin, to reduce the need
for insulin and the occurrence of hyperglycemic episodes and
maternal weight gain. In cases of PE, symptoms may often
be more severe and medical intervention is often necessary
along with lifestyle management. As such, extensive pre-
clinical investigations into safe and effective therapeutics, with
appropriate pre-clinical models, targeting the diverse pathogenic
mediators of PE and GDM pathophysiology, is key for
clinical progression.

CONCLUSION

Placenta and adipose tissue-derived signaling motifs can
contribute to a systemic maternal inflammatory response
with subsequent endothelial dysfunction in PE and GDM
pathology. Crosstalk between the metabolic organs involved
can further propagate these detrimental outcomes in both
obstetric complications. Uncontrolled metabolic dysfunction
in the mother will also have negative implications on the
developing fetus, as inflammatory markers such as IL-6 and
excessive circulating glucose can cross the placenta and enter
into the fetal circulation (232), having a direct link to offspring
neuropsychological disorders and increased adiposity (233, 234).

The poor cardiometabolic outcomes associated with PE and
GDM can be linked to metabolic dysfunction of both placental
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and adipose tissue. Conditions of poor placental perfusion,
ischemia and oxidative stress induce an array of inimical
signaling pathways, including pro-inflammatory cytokines,
antiangiogenic factors, AGEs, EVs, and syncytial aggregates,
which can have permanent deleterious consequences on
endothelial function in the maternal vasculature. Dysregulated
adipose tissue can amplify a pro-inflammatory state in response
to infiltrating immune mediators, leading to the release of pro-
inflammatory adipokines such as resistin, TNF-α, and IL-6.
Oxidative stress responses in this metabolic tissue can also result
in the release of an abundance of oxidized lipids and proteins into
the maternal circulation, leading to endothelial damage which
has been strongly linked to the pathogenesis of CV diseases
such as atherosclerosis, heart failure, myocardial dysfunction and
T2DM (235, 236). The resulting systemic damage will have both
acute and chronic cardiometabolic health implications later in
the maternal lifetime.

The interplay between the numerous pathogenic mediators
described in this review opens avenues for new therapeutic
possibilities. Nutraceutical antioxidants such as L-ergothioneine
are particularly attractive as a result of their favorable safety
profile (203). However, while certain pharmacotherapies
such as L-ergothioneine and flavonoid supplementation

have been deemed safe for use during pregnancy (230, 237),

other options such as NLRP3 and RAGE inhibitors require
further investigation to establish their potential effects on
the developing fetus. Deciphering the complex pathways
involved in PE and GDM will help further elucidate the
pathophysiology of both obstetric complications, while also
providing a window of opportunity to improve future maternal
cardiometabolic health by developing clinically effective
targeted therapeutics.
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