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Objectives: To investigate the value of MRI-based radiomic model based on the
radiomic features of different basal nuclei in differentiating idiopathic Parkinson’s disease
(IPD) from Parkinsonian variants of multiple system atrophy (MSA-P).

Methods: Radiomics was applied to the 3T susceptibility- weighted imaging (SWI) from
102 MSA-P patients and 83 IPD patients (allocated to a training and a testing cohort, 7:3
ratio). The substantia nigra (SN), caudate nucleus (CN), putamen (PUT), globus pallidus
(GP), red nucleus (RN), and subthalamic nucleus (STN) were manually segmented, and
396 features were extracted. After feature selection, support vector machine (SVM) was
generated, and its predictive performance was calculated in both the training and testing
cohorts using the area under receiver operating characteristic curve (AUC).

Results: Seven radiomic features were selected from the PUT, by which the SVM
classifier achieved the best diagnostic performance with an AUC of 0.867 in the
training cohort and an AUC of 0.862 in the testing cohort. Furthermore, the combined
model, which incorporating part III of the Parkinson’s Disease Rating Scale (UPDRSIII)
scores into radiomic features of the PUT, further improved the diagnostic performance.
However, radiomic features extracted from RN, SN, GP, CN, and STN had moderate to
poor diagnostic performance, with AUC values that ranged from 0.610 to 0.788 in the
training cohort and 0.583 to 0.766 in the testing cohort.

Conclusion: Radiomic features derived from the PUT had optimal value in differentiating
IPD from MSA-P. A combined radiomic model, which contained radiomic features of
the PUT and UPDRSIII scores, further improved performance and may represent a
promising tool for distinguishing between IPD and MSA-P.

Keywords: idiopathic Parkinson’s disease, multiple system atrophy, radiomics, support vector machine,
susceptibility weighted imaging
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INTRODUCTION

Idiopathic Parkinson’s disease (IPD) and multiple system atrophy
(MSA), especially Parkinsonian subtypes of MSA (MSA-P),
are common neurodegenerative disorders that share similar
Parkinsonism symptom (Ramli et al., 2015; Barbagallo et al.,
2016). Although MSA-P may resemble IPD at the early stage,
functional deterioration is more rapid, with moderate or
transient dopaminergic responses, and contributes to a worse
prognosis (Peeraully, 2014). Therefore, a development of an
accurate diagnostic separation between IPD and MSA-P is of
clinical significance.

More recently, increased attention has been paid to advanced
magnetic resonance imaging (MRI) approaches to detect
physiological mechanisms underlying PD and to distinguish IPD
and MSA, and these approaches include resting-state functional
MRI (Wang et al., 2017a), diffusion MRI (Hikishima et al.,
2015), and voxel-based morphometry (Peran et al., 2018).
However, these approaches are not generalized to clinical practice
due to a lack of consistent results and their time-consuming
nature. Susceptibility-weighted-imaging (SWI) has been widely
used in clinical practice due to its sensitivity in detecting
iron depositions (Liu et al., 2015), since loss of dopaminergic
neurons and abnormal iron accumulation are well established
as pathophysiological hallmarks of Parkinsonism (Hare et al.,
2017; Chen et al., 2019). Promising MR diagnostic biomarkers
have been proposed to be useful for differentiating IPD from
atypical Parkinsonism (AP) via SWI based on neurodegenerative
patterns that underlie PD and AP (Meijer et al., 2016; Wang
et al., 2017b). However, consistent recognition of MR biomarkers
has been met with difficulty among radiologists, especially when
iron deposition is too low to be detected at the early stage
of the disease, offering limited support for clinical diagnostic
criteria. “Swallow-tail” sign has been demonstrated to be a
promising biomarker for differentiating between IPD patients
and healthy control (HCs), but not for discriminating IPD
from AP (Wang et al., 2017b). Similarly, a distributional
pattern of posterolateral putaminal hypointensity on SWI has
been reported to be a common finding in MSA-P patients
(Sugiyama et al., 2015; Lee et al., 2019). In practice, however,
the inner or medial subregion of the putaminal hypointensity
can also be found in MSA-P patients. Other patients may
lack typical signs on SWI due to the relatively short period
of disease. Additionally, tissue-specific physiological patterns
in iron concentrations have been proposed, with the highest
concentrations found in different basal nuclei [i.e., putamen
(PUT), globus pallidus (GP), caudate nucleus (CN), and red
nucleus (RN)] in patients with neurodegenerative diseases, which
may provide valuable information for differential diagnoses (Han

Abbreviations: AP, Atypical Parkinsonism; AUC, Area under the curve; CN,
Caudate nucleus; GP, Globus pallidus; IPD, Idiopathic Parkinson’s disease; LASSO,
The least absolute shrinkage and selection operator; MSA-P, Parkinsonian variant
of multiple system atrophy; MRI, Magnetic resonance imaging; MoCA, Montreal
Cognitive Assessment; PUT, Putamen; PSP, Progressive supranuclear palsy; ROC,
Receiver operating characteristic; RN, Red nucleus; SN, Substantia nigra; STN,
Subthalamic nucleus; SWI, Susceptibility-weighted imaging; SVM, Support vector
machine; UPDRSIII, Parkinson’s Disease Rating Scale III.

et al., 2013; Shahmaei et al., 2019). However, no single basal
nucleus has been shown to completely distinguish between
Parkinsonian disorders. On these premises, the potential of
different basal nuclei in differentiating IPD from MSA-P requires
further exploration.

Radiomics, which includes promising approaches that
incorporate advanced quantification and classification
methodologies, offers a complementary tool to existing
radiological practices by extracting quantitative medical imaging
features based on machine learning algorithms. A previous
study has shown that radiomics offers important advantages
for cancer diagnosis, grading, heterogeneity, and prognosis
(Park et al., 2018). At present, there is growing interest in the
potential of radiomics to aid in the development of non-invasive
biomarkers in neurodegenerative diseases, such as PD and
Alzheimer’s Disease (AD) (Feng et al., 2018; Cheng et al., 2019).
However, the potential of radiomic analysis based on basal nuclei
for distinguishing between PD and MSA-P on SWI has not
yet been assessed.

Hence, in the present study, we investigated the most valuable
nuclei for potentially enabling differential diagnosis of IPD and
MSA-P based on a non-invasive radiomic model on SWI.

MATERIALS AND METHODS

Participants
This investigation was approved by the Institutional Review
Board of China Medical University, and written inform consent
was obtained from all subjects. The IPD patients were diagnosed
on the basis of the diagnostic criteria of the UK PD Society
Brain Bank (Hughes et al., 1992). The MSA patients met
the criteria for “probable MSA” via the second- consensus
clinical criteria (Gilman et al., 2008). The exclusion criteria
were as follows: (1) a history of cerebrovascular disease, brain
tumor, or neurological surgery; (2) a history of substance
abuse or alcohol dependence; (3) systemic diseases such as
anemia and diabetes mellitus; (4) psychiatric disorders or co-
occurring neurological illness; or (5) contraindications to an
MRI examination. Following inclusion and exclusion criteria, 185
patients including 83 IPD patients and 102 MSA-P patients were
recruited from the Department of Neurology between September
2016 and March 2019. The patients were randomly allocated to
either the training (70%) or testing (30%) cohort, with stratified
sampling. Movement disorders and the cognitive conditions
of patients were assessed by part III of Parkinson’s Disease
Rating Scale (UPDRSIII) and Montreal Cognitive Assessment
(MoCA), respectively.

MRI Acquisition
Magnetic resonance imaging scans were conducted on a 3.0T
MRI scanner (Magnetom Verio, Siemens, Erlangen, Germany)
with a 32-channel head coil. Based on 3D-FLASH T2WI
sequence, the SWI data were obtained parallel to the anterior
commissure-posterior commissure (AC-PC) plane, with the
following parameters: repetition time/echo time = 27/20 ms; slice
number = 64; slice thickness = 0.8 mm; flip angle = 15◦; filed of
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FIGURE 1 | Workflow of radiomic analysis. (1) Regions of the CN (yellow), PUT (green), GP (purple), SN (blue), RN (red), and STN (light blue) were segmented slice by
slice to generate volumes of interest (VOIs) in IPD and MSA-P patients. (2) Six kinds of radiomic features were extracted via AK software. (3) A combined
feature-selection procedure was applied in the training cohort, which contained t tests, least absolute shrinkage and selection operator (LASSO), and Spearman
correlation analysis. (4) The SVM classifier was constructed by ten-fold cross validation with 10 repetition in the training cohort, and the final diagnostic performance
was evaluated in both training and testing cohorts.

view = 230 mm × 172.5 mm; matrix size = 182 × 256; and voxel
size = 0.9 mm × 0.9 mm × 0.8 mm. All data were derived from
one scanner and used the same MR parameters.

Image Segmentation
Pathological studies have demonstrated that abnormal iron
levels in a series of nigral and extranigral regions should
be considered as candidate biomarkers to differentiate IPD
from AP and controls, including the PUT, CN, GP, RN,
subthalamic nuclei (STN), and substantia nigra (SN). On the
basis of these studies, the selection of regions of interest
(ROIs) was confirmed (Dickson, 2012; Mazzucchi et al.,
2019). Considering that iron distribution is heterogenous, ROIs
were drawn on the continuous layers to obtain volumes of
interest (VOIs). Manual segmentation of the basal nuclei
was carried out using ITK-SNAP (V3.4.0)1 according to the
continuous anatomic structures with boundary voxels excluded.
SN, CN, PUT, GP, and RN were segmented via axial-magnitude
imaging, whereas STN was segmented via coronal-magnitude
imaging by a neuroradiologist who was blinded to the clinical
information (HP, with 5 years of experience in neuroimaging
diagnoses). All segmentations were confirmed by a senior
neuroradiologist (GF, with more than 20 years of experience
in neuroimaging diagnosis). Figure 1 presents the workflow of
the present study.

Feature Extraction
Firstly, normalization (z-score transformation) was performed
on the imaging data in order to avoid heterogeneity bias. In total,
396 features were ultimately extracted, including 41 histogram
features, 72 statistics-based texture features, 10 form factor
features, 82 gray-level co-occurrence matrix (GLCM) features,
180 gray-level run length matrix (GLRLM) features, and 11 gray-
level size zone matrix (GLSZM) features. AK software (Artificial

1http://www.itksnap.org

Intelligence Kit; version V3.2.0; GE Healthcare, China, Shanghai)
was used for feature extraction. The details of radiomic feature
extraction are presented in Supplementary Table S1.

Feature Selection
To avoid model overfitting, the following steps were integrated
in feature selection procedure in the training cohort: First,
two sample t tests with a false-discovery rate (FDR) correction
were applied to select features. Features were considered
important at FDR-cor. p < 0.05. Subsequently, the least
absolute shrinkage and selection operator (LASSO) regression
was fitted to construct a subset of optimal features from
the high-dimensional radiomic features using ten-fold cross-
validation. Finally, Spearman’s rank correlation was employed
for analyzing the correlation between the remaining non-
zero radiomic features. The association was considered to be
statistically significant when the absolute value of the coefficient
was ≥0.8 and the p value was <0.05, thus excluding one of them
according to their coefficients. The above steps were calculated
using MATLAB R2013b. The optimization parameters are listed
in Supplementary Table S2.

Support Vector Machine (SVM)
Construction and Validation
With the selected features, support vector machine (SVM) model
with a radial basis function (RBF) kernel was performed for data
classifications, owing to its classification stability and favorable
performance. SVM has the potential to differentiate Parkinsonian
syndromes and predict disease progression (Castillo-Barnes et al.,
2018). The SVM classification was constructed using ten-fold
cross-validation with 10 repetition in the training cohort. The
statistical significance of the balanced accuracy (ACC) was
identified by a random permutation test (1,000 times). The
performance of the SVM classifier was evaluated by the area
under the curve (AUC) in receiver operating characteristic (ROC)
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analysis in both the training and testing cohort. The SVM was
implemented in MATLAB using the LIBSVM3.21 toolkit2.

Statistical Analysis
The Kolmogorov–Smirnov test (K–S test) was performed to
test the normality of each distribution. Student’s t test, Mann–
Whitney test, and Chi-square tests were used for demographic
variables and the selected radiomic features. To evaluate the
balanced ACC, a permutation test (1,000 times) was also
performed. p < 0.05 was deemed to be statistically significant.
Statistical analyses were carried out using SPSS22.0 (SPSS Inc.,
Chicago, IL, United States) and MATLAB R 2013b.

RESULTS

Demographic Characteristics
A total of 185 patients, including 83 IPD and 102 MSA-P
patients, were included in the present study. There were no
significant differences in age, gender, disease duration, or MoCA
score between the IPD and MSA-P patients in both the training
and testing cohorts. The MSA group showed slightly higher
UPDRSIII scores compared with those in the IPD group in the
training cohorts. However, there was no significant difference
in UPDRSIII scores between the IPD and MSA-P groups in the
testing cohorts (Table 1).

Feature Selection
A total of 396 radiomic features were initially extracted from
each basal nucleus. After performing t tests with FDR correction,
the following significant features was selected: RN: four features;
SN: 123 features; PUT: 69 features; GP: 138 features; CN:10
features; and STN: 22 features. Next, based on LASSO regression,
the remaining features were as follows: three features (RN), 22
features (SN), seven features (PUT), 12 features (GP), three
features (CN), and three features (STN). Finally, the most stable
radiomic features were identified accordingly, as follows: RN:
three features; SN: 16 features; PUT: seven features, GP: 12
features; CN: three features; and STN: two features. The details
of the selected features in each basal nucleus are listed in
Supplementary Table S3.

2https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Performances of Classifiers
Among the different basal nuclei, the SVM classifier showed the
highest AUC using radiomic features extracted from the PUT,
with an AUC of 0.867 for the training cohort and 0.862 for the
testing cohort. In addition, the combined model, which added
UPDRSIII scores to the radiomic model of the PUT, exhibited
further improved classification performance. However, the SVM
performances based on radiomic features of the GP, SN, RN, CN,
and STN were moderate to poor, with AUC values ranging from
0.610 to 0.788 for the training cohort and from 0.583 to 0.766 for
the testing cohort (Table 2 and Figures 2, 3).

Representative Radiomic Feature
Analysis in the PUT
After assembling the feature selection procedure, seven
representative radiomic features were identified in the PUT,
which included one histogram feature, one textural parameter,
four GLCM features, and one GLRLM feature. The details of
the representative radiomic features of the PUT are shown in
Table 3.

The histogram feature of the standard deviation
(26.512 ± 5.337 in IPD; 34.949 ± 11.898 in MSA-P, p < 0.001)
in MSA-P patients was higher than that in IPD patients. The
textural feature- correlation (1.206E-3 ± 7.177E-4 in IPD,
9.030E-4 ± 4.873E-4 in MSA-P, p < 0.01) was lower in MSA-P
patients, compared with that in IPD patients. As for GLCM
features, the value of GLCM Entropy (0.400 ± 0.353 in IPD,
0.769 ± 0.873 in MSA-P, p< 0.01) was found to be comparatively
higher in MSA-P patients. Furthermore, the Haralick correlation
(4.604E9 ± 2.821E9 in IPD, 1.829E9 ± 2.012E9 in MSA-P,
p < 0.001) and inverse difference moment (0.045 ± 0.023 in
IPD, 0.033 ± 0.017 in MSA-P, p < 0.001) were higher in IPD
patients compared with those in MSA-P patients. Meanwhile, the
GLRLM- run length non-uniformity (309.990 ± 120.300 in IPD;
400.501 ± 129.660 in MSA-P; p < 0.001) in MSA-P patients was
higher than that in IPD patients.

DISCUSSION

Multiple system atrophy, especially MSA-P variants, may mimic
IPD particularly at the initial stage of the disease, as both
MSA and IPD present with Parkinsonism (Peeraully, 2014;

TABLE 1 | Demographic characteristics of IPD and MSA-P patients in the training and testing cohorts.

Characteristics (mean ± SD) Training cohort p-value Testing cohort p-value

IPD (n = 58) MSA-P (n = 71) IPD (n = 25) MSA-P (n = 31)

Age (y) 62.00 ± 7.55 64.44 ± 8.07 0.080 64.16 ± 6.52 62.48 ± 7.97 0.391

Gender (male/female) 28/30 37/34 0.665 12/13 15/16 0.977

Disease duration 4.42 ± 2.09 3.86 ± 1.91 0.116 4.46 ± 2.03 3.92 ± 1.82 0.304

UPDISIII score 37.66 ± 10.98 42.07 ± 13.33 0.041* 37.12 ± 9.14 41.74 ± 11.38 0.098

MoCA 22.60 ± 3.97 22.46 ± 4.37 0.851 21.03 ± 4.10 21.80 ± 4.17 0.494

SD, standard deviation; MSA-P, multiple system atrophy-Parkinsonian type; IPD, idiopathic Parkinson’s disease; UPDRSIII, Unified Parkinson’s Disease Rating Scale;
MoCA, Montreal Cognitive Assessment; * denotes statistical significance, P < 0.05.

Frontiers in Aging Neuroscience | www.frontiersin.org 4 November 2020 | Volume 12 | Article 587250

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-587250 November 6, 2020 Time: 20:53 # 5

Pang et al. Radiomics of Basal Nuclei in Differentiating IPD and MSA-P Variant

TA
B

LE
2

|S
V

M
cl

as
si

fie
r

pe
rfo

rm
an

ce
of

ea
ch

ba
sa

ln
uc

le
us

an
d

th
e

co
m

bi
ne

d
m

od
el

in
th

e
tr

ai
ni

ng
an

d
te

st
in

g
co

ho
rt

s.

B
as

al
nu

cl
eu

s
Tr

ai
ni

ng
co

ho
rt

P
(p

er
m

u
t.

)
Te

st
in

g
co

ho
rt

P
(p

er
m

u
t.

)

B
al

an
ce

d
-A

C
C

S
en

(9
5%

C
I)

S
p

ec
(9

5%
C

I)
A

U
C

(9
5%

C
I)

B
al

an
ce

d
-A

C
C

S
en

(9
5%

C
I)

S
p

ec
(9

5%
C

I)
A

U
C

(9
5%

C
I)

R
N

0.
59

5
0.

51
2

(0
.4

77
,0

.5
51

)
0.

67
7

(0
.6

34
,0

.7
12

)
0.

61
0

(0
.5

79
,0

.6
41

)
<

0.
01

**
0.

57
2

0.
50

3
(0

.4
46

,0
.5

60
)

0.
64

0
(0

.5
77

,0
.7

00
)

0.
59

2
(0

.5
45

,0
.6

39
)

<
0.

01
**

S
N

0.
73

2
0.

74
2

(0
.7

08
,0

.7
74

)
0.

72
1

(0
.6

82
,0

.7
57

)
0.

78
5

(0
.7

59
,0

.8
10

)
<

0.
05

*
0.

70
2

0.
70

7
(0

.6
52

,0
.7

57
)

0.
69

6
(0

.6
35

,0
.7

52
)

0.
71

9
(0

.6
76

,0
.7

61
)

<
0.

01
**

P
U

T
0.

81
0

0.
81

8
(0

.7
88

,0
.8

46
)

0.
80

2
(0

.7
67

,0
.8

33
)

0.
86

7
(0

.8
47

,0
.8

86
)

<
0.

00
1*

**
0.

79
1

0.
84

2
(0

.7
97

,0
.8

81
)

0.
74

0
(0

.6
81

,0
.7

93
)

0.
86

2
(0

.8
32

,0
.8

92
)

<
0.

00
1*

**

G
P

0.
73

1
0.

69
0

(0
.6

55
,0

.7
24

)
0.

77
2

(0
.7

36
,0

.8
06

)
0.

78
8

(0
.7

64
,0

.8
12

)
<

0.
00

1*
**

0.
69

5
0.

74
5

(0
.6

93
,0

.7
93

)
0.

64
4

(0
.5

81
,0

.7
03

)
0.

76
6

(0
.7

27
,0

.8
05

)
<

0.
01

**

C
N

0.
66

4
0.

68
9

(0
.6

53
,0

.7
23

)
0.

63
8

(0
.6

00
,0

.6
77

)
0.

66
2

(0
.6

31
,0

.6
93

)
<

0.
00

1*
**

0.
62

6
0.

64
5

(0
.5

90
,0

.6
98

)
0.

60
6

(0
.5

40
,0

.6
65

)
0.

61
5

(0
.5

68
,0

.6
62

)
<

0.
01

**

S
TN

0.
63

6
0.

71
8

(0
.6

84
,0

.7
51

)
0.

55
3

(0
.5

12
,0

.5
94

)
0.

64
9

(0
.6

18
,0

.6
79

)
<

0.
01

**
0.

58
1

0.
71

0
(0

.6
56

,0
.7

60
)

0.
45

2
(0

.3
89

,0
.5

16
)

0.
58

3
(0

.5
35

,0
.6

30
)

<
0.

01
**

P
U

T
+

0.
83

6
0.

81
4

(0
.7

84
,0

.8
42

)
0.

85
7

(0
.8

26
,0

.8
84

)
0.

88
0

(0
.8

61
,0

.8
98

)
<

0.
00

1*
**

0.
80

9
0.

81
3

(0
.7

65
,0

.8
55

)
0.

80
4

(0
.7

49
,0

.8
51

)
0.

87
8

(0
.8

49
,0

.9
06

)
<

0.
00

1*
**

A
U

C
,

ar
ea

un
de

r
th

e
re

ce
iv

er
op

er
at

or
cu

rv
e;

R
N

,
re

d
nu

cl
eu

s;
S

N
,

su
bs

ta
nt

ia
nu

cl
eu

s;
P

U
T,

pu
ta

m
en

;
G

P,
gl

ob
us

pa
llid

us
;

C
N

,
ca

ud
at

e
nu

cl
eu

s;
S

TN
,

su
bt

ha
la

m
ic

nu
cl

eu
s;

A
cc

,
ac

cu
ra

cy
;

S
en

,
se

ns
iti

vi
ty

;
S

pe
c,

sp
ec

ifi
ci

ty
;A

U
C

,a
re

a
un

de
r

cu
rv

e;
C

I,
co

nfi
de

nc
e

in
te

rv
al

.*
de

no
te

s
st

at
is

tic
al

si
gn

ifi
ca

nc
e,

P
<

0.
05

;*
*d

en
ot

es
st

at
is

tic
al

si
gn

ifi
ca

nc
e,

P
<

0.
01

;*
**

de
no

te
s

st
at

is
tic

al
si

gn
ifi

ca
nc

e,
P

<
0.

00
1.

FIGURE 2 | Receiver-operating characteristic (ROC) curves of the SVM model
in the training cohort.

FIGURE 3 | Receiver-operating characteristic (ROC) curves of the SVM model
in the testing cohort.

Ramli et al., 2015; Barbagallo et al., 2016). It is important to
differentiate between IPD and MSA-P; however, it remains
difficult to distinguish between these two neurodegenerative
diseases via conventional MRI. Our present study is the first to
build an SVM classifier using radiomic features derived from
basal nuclei on SWI to differentiate IPD from MSA-P. We found
that, based on the radiomic features derived from the PUT, the
SVM classifier showed the best performance in differentiating
IPD from MSA-P compared with that of the other basal nuclei.
Furthermore, a combined model, which added UPDRSIII scores
into the radiomic model of the PUT, further improved the
classifier performance. However, radiomic features extracted
from SN, GP, RN, STN, and CN showed only moderate to poor
differential-diagnostic performances.

In the present study, the selected radiomic features in
the PUT, extracted from magnitude imaging, consisted of
one histogram parameter, one textural parameter, four GLCM
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TABLE 3 | Statistical analysis of the selected radiomic features derived from the putamen.

Feature type-feature name IPD MSA-P Stat/adjusted P-value

Histogram feature-Std Deviance 26.512 ± 5.337 34.949 ± 11.898 −5.001/<0.001***

Textural feature-Correlation_angle0_offset1 1.206E- 3 ± 7.177E-4 9.030E-4 ± 4.873E-4 2.849/<0.01**

GLCM feature-GLCMEntropv_AllDirection_offset7_SD 0.400 ± 0.353 0.769 ± 0.873 −3.026/<0.01**

GLCM feature-HaralickCorrelation_Alldirection_offset4 4.604E9 ± 2.821E9 1.829E9 ± 2.012E9 6.508/<0.001***

GLCM feature-InverseDifferenceMoment_angle0_offset7 0.045 ± 0.023 0.033 ± 0.017 3.377/<0.001***

GLCM feature-InverseDifferenceMoment_anglel35_offset7 0.043 ± 0.016 0.030 ± 0.016 4.552/<0.001***

GLRLM feature-RunLengtliNonuniformity_AllDirection_offset 4_SD 309.990 ± 120.300 400.501 ± 129.660 −4.073/<0.001***

MSA-P, multiple system atrophy-Parkinsonian type; IPD, idiopathic Parkinson’s disease; **denotes statistical significance, P < 0.01; ***denotes statistical significance,
P < 0.001.

parameters, and one GLRLM parameter, all of which revealed
iron deposition patterns by reflecting higher-order imaging
patterns and capturing mineable imaging heterogeneity. The
histogram parameters described the statistical distribution of
the voxel intensities within the established ROI. The histogram
parameter- standard deviation is used to quantify the amount
of variation or dispersion within an ROI. Our study found that
the standard deviation was higher in MSA-P patients than in
IPD patients, indicating the dispersed signal of the PUT on SWI
in MSA-P patients, which was mainly attributed to marginal
iron deposition. The textural parameter- correlation depicts the
similarity of the gray levels in neighboring pixels. A higher
correlation indicates a more homogeneous signal throughout the
entire basal nuclei, which was found in IPD patients in the present
study. The GLCM entropy is the measure of randomness of the
intensities of images and indicates the amount of information
in the image. The value of the GLCM entropy was found to be
higher in MSA-P patients compared to that in IPD patients in
the present study. The GLCM parameters- Haralick correlation
and inverse difference moment describe the degree of similarity
of the gray level in a row or column direction, and the local
homogeneity of the image, respectively. These parameters were
found to be lower in MSA-P patients than in IPD patients,
suggesting heterogeneous iron decomposition of the PUT in
MSA-P patients. GLRLM parameters measure how many pixels
of a given gray value occur in a sequence in a given direction.
The GLRLM parameter- run-length non-uniformity measures
the similarity of run lengths. The value of run-length non-
uniformity was found to be lower in IPD than that in MSA-P
patients. This reflected the fact that iron accumulation of the
PUT was more complex in MSA-P patients. A growing body of
evidence has suggested that a pattern of putaminal hypointensity
from lateral to medial on SWI is a specific feature in MSA-P
patients (Gupta et al., 2010; Han et al., 2013; Shahmaei et al.,
2019). Furthermore, uniform low-signal intensity throughout the
PUT on SWI is thought to be non-specific and to accompany
the normal aging process (Lee and Lee, 2019). As a result, the
heterogeneity of the PUT on SWI was higher in patients with
MSA-P than in IPD patients, which was in accordance with the
results of our radiomic features. In this context, radiomic features
may be served as an objective approach to assess the spatial
distribution of iron deposition in the PUT, and may potentially
applicable in clinical practice.

Furthermore, on the basis of these contributive features,
we built an SVM classifier to enable an automated distinction

between IPD and MSA-P patients. SVM, a method of machine
learning, has been applied to neurodegenerative diseases based on
the role of the basal nuclei. Chen et al. (2020) used morphologies
of thalamic subnuclei as inputs to train the SVM and achieved
a high accuracy of 95% in PD diagnosis. In another study, an
SVM model was established using radiomic features extracted
from Nigrosome-1, which yielded favorable results in terms of
an AUC of 0.96 (Cheng et al., 2019). However, only a single basal
nucleus was included in their analysis. Furthermore, few studies
have focused on the differential diagnosis of PD and MSA-P.
Hence, in our present study, we explored the power of differential
diagnosis of SVM classifiers based on radiomic features extracted
from six different basal nuclei and obtained an AUC of 0.867 in
the training cohort and 0.862 in the testing cohort from PUT,
implying its potential value in clinical applications.

A combined SVM model, which incorporated radiomic
features and UPDRSIII score, was built on the basis of
radiomic model extracted from the PUT in our present study.
We found that the combined SVM model outperformed the
radiomic SVM model. Considering that both MSA-P and IPD
patients exhibit Parkinsonian symptoms, we used UPDRSIII
scores to assess motor dysfunction as previously reported
(Metman et al., 2004). MSA was associated with more rapidly
progressive disease course; thus, UPDRSIII scores may be higher
in MSA patients, especially at the initial stage of the disease
(Krismer et al., 2019). Some previous studies have found that
there is a correlation between R2∗ values and the degree
of clinical manifestations in progressive supranuclear palsy
(PSP) patients, which suggests that the severity of rigidity and
tremors is associated with iron-related pathologies (Lee et al.,
2017). The radiomic features captured imaging heterogeneity
by revealing higher-order imaging patterns, which conferred
better performance compared to that of conventional approaches.
The heterogeneity of SWI is mainly influenced by iron
decomposition occurring locally in PD. Thus, UPDRSIII scores
may serve as additional radiomic features to unveil heterogeneity
patterns within images. Incorporating UPDRSIII scores into
a developed radiomic model allows for more information;
thus, the combined model may provide further benefit for
diagnostic performance. This also indicates that a combination
of radiological examinations and clinical symptoms is necessary
for making clinical decisions. However, in view of the instability
and subjectivity of clinical scales, the diagnostic performance
of UPDRSIII scores combined with radiomic features warrants
further investigation.
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In our present study, the performances of the SVM classifier
based on radiomic features extracted from GP, SN, CN, RN,
and STN showed moderate to poor performance in terms of
differential diagnosis. According to previous studies, an absence
of dorsolateral nigral hyperintensity on MRI indicating a valuable
marker for identifying IPD and can also be found in the majority
of AP patients, preventing differential diagnosis among the IPD
and AP patients (Bae et al., 2016; Mahlknecht et al., 2017).
However, other researchers have suggested that the absence
of “swallow-tail” sign may have potential in differentiating
PD from MSA patients (Wang et al., 2017b). It was reported
that the presence of “swallow-tail” sign was more prevalent
in cerebellar subtypes of MSA (MSA-C) in contrast to MSA-
P patients (Reiter et al., 2015). Thus, this discrepancy might
be due to the failure of subtyping MSA patients. Our study
also supported the notion that the pathogenesis of SN in
MSA may be associated with iron deposition and reduced
neuromelanin, similar to features found in IPD patients. Recent
SWI studies have demonstrated that the susceptibilities of
the RN and GP are higher in PSP patients compared with
those in IPD or MSA patients, as well as controls (Han
et al., 2013; Sjostrom et al., 2017). However, the RN and
GP were not capable of differentiating between MSA from
IPD patients in our study. Furthermore, the CN has been
reported to be have no statistical differences in iron content
between PD and AP patients (Han et al., 2013; Sjostrom
et al., 2017; Mazzucchi et al., 2019). Similarly, in our present
study, the radiomic features extracted from the RN, GP, and
CN showed moderate to poor differential diagnostic values.
However, Mazzucchi et al. (2019) found that the STN might
be useful for differentiating MSA from PD. This discrepancy
may be due to the small size of the STN and difficulty in its
visualization on SWI.

There were some limitations to our present study. First,
the SVM classifier was built based on ROIs that were
manually drawn on SWI, which represents a tedious and
inconvenient process for clinical application. Therefore,
development of automated segmentation methods is needed
in the future. Second, only six representative basal nuclei
and corresponding SVM classifiers were included in our
present study. Hence, more basal nuclei and machine-learning
methods should be taken into consideration in future studies.
Third, compared to that of SWI, quantitative susceptibility
mapping (QSM) and R2∗ mapping tend to be more sensitive
quantitative methods for estimating iron deposition in PD
patients (Liu et al., 2015; Chen et al., 2019; Mazzucchi et al.,
2019). Therefore, further research should be performed that
relates radiomic features to quantitative iron contents within
different basal nuclei.

In conclusion, we found that radiomic features derived from
the PUT exhibited the best performance in differentiating IPD
from MSA-P patients. Furthermore, a combined radiomic model
containing radiomic features of the PUT and UPDRSIII scores
further improved diagnostic performance and may be useful as a
diagnostic tool distinguishing between IPD and MSA-P.
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