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In this study, convective heat transfer for nanofluid flow over multiple rotating cylinder in a 
confined space is analyzed under magnetic field while enclosure has one inlet and one outlet 
port. Three identical circular cylinder are used and the two walls of the cavity are considered 
to be elastic. The coupled fluid-structure interaction and magneto-convection problem is solved 
by finite element method. Impacts of rotational Reynolds number (Rew between -100 and 100), 
Hartmann number (Ha between 0 and 50), cylinder size (R between 0.001H and 0.11H) and 
Cauchy number (Ca between 10−8 and 10−3) on the flow and thermal performance features 
are explored. The flow field and recirculation inside the cavity are significantly affected by the 
activation of rotation and magnetic field. The vortices are suppressed by increasing the strength of 
magnetic field and thermal performance is improved. Thermal performance of 56.6% is achieved 
by activation of magnetic field at the highest strength with rotations of the circular cylinders. 
When rotations are active, heat transfer rate is reduced while up to 40% reduction is obtained 
without magnetic field. Cylinder size has the highest impact on the overall thermal performance 
improvement while up to 132% enhancements are achieved. The contribution of elastic walls on 
the thermal performance is slight while less than 5% improvements in the average heat transfer 
is obtained. An optimization study leads to 12.7% higher thermal performance improvements as 
compared to best case of parametric computational fluid dynamics simulation results while the 
optimum values of (Rew, Ha, R) is obtained as (-80.66, 50, 0.11H).
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Nomenclature

𝐵0 magnetic field strength
Ca Cauchy number
𝐸 elastic modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Ha Hartmann number
ℎ heat transfer coefficient . . . . . . . . . . . . . . . . . W/m2K
𝑘 thermal conductivity . . . . . . . . . . . . . . . . . . . . . W/mK
𝑛 unit normal vector
Nu Nusselt number
𝑝 pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pr Prandtl number
Re Reynolds number
Rew non-dimensional rotational speed
𝑇 temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
𝑢, 𝑣 velocity components . . . . . . . . . . . . . . . . . . . . . . . . m/s
𝑤 port size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
𝑥, 𝑦 Cartesian coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek Characters

𝛼 thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
𝜙 solid volume fraction
𝛾 inclination angle
𝜈 kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . m2/s

𝜌 density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

𝜎 electrical conductivity . . . . . . . . . . . . . . . . . . . . . . S/m
𝜔 rotational speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . rad/s

Subscripts

𝑐 cold
ℎ hot
𝑚 average
𝑛𝑓 nanofluid
𝑝 solid particle

Abbreviations

CW clockwise
CCW counter clockwise
COBYLA Constrained Optimization
BY Linear Approximation
FEM finite element method
HT heat transfer
MGF magnetic field
NF nanofluid
SUPG streamline upwind Petrov-Galerkin
VEC vented cavity

1. Introduction

Convective heat transfer (HT) for flow over circular cylinders (CCs) in confined environment are encountered in many thermal 
systems including heat exchangers, electronic cooling, material processing, flow control and many others. The CCs can be stationary, 
oscillating or rotating and their numbers can be varied in different applications [1]. In the literature, many studies considered the 
analysis of convective HT characteristics considering single CCs. Costa and Raimundo [2] used rotating CC in a square chamber 
under mixed convection while cylinder size, rotational speed and thermal conductivity on the HT enhancement were explored. They 
noted that the thermal performance of the enclosure were affected by the presence of the rotating CC and thermophysical properties 
of CC were important on the overall HT process. In many studies, the CC size and rotational speeds are considered as some of the 
important factors along with the location. There exist studies that consider the convection for flow over multiple CCs in confined 
spaces. Garmroodi et al. [3] used multiple CCs in a lid-driven enclosure as mixed convection problem under magnetic field (MGF). 
They considered different arrangement of the CCs while the vertical one provided the highest HT rates. Khanafer et al. [4] considered 
mixed convection in a cavity which is heated from left vertical wall and utilization of two rotating CCs. The combined effects of 
Reynolds number, Richardson number and cylinder rotation were explored. It was noted that direction of the rotations has significant 
impact on the overall thermal performance and flow pattern distributions within the chamber. Tahmasbi et al. [5], used two rotating 
CCs in a square cavity in mixed convection while porous media was considered as one of the HT enhancement techniques. Impacts 
of different rotations and directions were studied. It was noted that the highest HT contribution was achieved by using the optimized 
porous media. There are a few works that considered the installation of more than two rotating CCs in confined spaces [6,7].

Nano-enhanced MGF effects can be considered in thermal systems for effective flow control and thermal management. The MGF 
technology is used in diverse applications such as in biomedical, micro-fluidic pumps, energy harvesting, cooling and many others 
[8–12]. Nano-sized particles are used in base fluid for MGF applications. The nanofluid (NF) technology has been successfully 
implemented in diverse fields such as in energy storage, energy conversion, energy production, flow control, HT enhancement and 
many others [13–17]. In recent years, many advancements in applications and production of the NFs have been achieved along with 
the sophisticated modeling approach to better capture the NF impact on the thermal performance improvements [18–21]. When used 
with MGF, the effectiveness will be further improved due to the variation of thermophysical properties. In convective HT, magnetic 
NFs have been used for various cases of using external MGF such as uniform, partially active, spatially varying and time periodic 
[22–26]. Depending upon the application, MGF enhances the thermal transport and modulates the vortex size distribution within 
the system. In cavities with ventilation ports, MGF may affect those zones and increase the convective HT. The flow in ventilated 
cavities (VEC) has potential applications in drying, removing contaminants, electronic cooling and many other systems. In the VECs, 
flow field is very complex with occurrence of multiple vortices. The distribution and size of them can be adjusted by using external 
MGF and varying the strength and inclination of it as it has been shown in many studies [27–29].

The elastic deformation in thermo-fluid systems due to the pressure force exerted on the structure in fluid systems can alter the 
dynamics of convection as shown in previous studies [30–32]. The presence of elastic walls or objects in cavities results in local 
2

deformation of the cavity wall which will effect the flow pattern variations in the vicinity of those regions. Ghalambaz et al. [33]
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Fig. 1. Schematic view of the different HT enhancement techniques.

used an oscillating elastic fin in a square cavity where the fin was attached to hot vertical wall. It was noted that the oscillating 
amplitude can significantly contribute to the HT enhancement while a fin length of 0.2 was found as the best case for highest HT 
rate. In another study, Selimefendigil and Öztop [34] used an inner cylinder with elastic extension for the mixed convection in a 3D 
VEC system. By installing the cylinder and varying the elasticity of the extended part, the flow field and thermal patterns were found 
to be influenced. Ismael and Jasim [35] considered the mixed convection in a VEC with an elastic fin attached to the bottom wall. 
HT enhancement was obtained by using elastic fin as compared to rigid one while the average HT values were found to rise with 
higher Cauchy numbers.

In this study, we consider convective flow in a confined space in the presence of using three identical rotating CCs under MGF 
while the enclosure has ventilation ports. The elasticity of the bottom wall and right vertical wall is also considered. In Fig. 1, 
a schematic view of HT enhancement methods is given. Some of the available methods are used together for thermal performance 
improvement if the flow and convection control are the main objectives. In some applications, the flow over multiple rotating CCs are 
considered where the application is relevant in rotary type heat exchangers for waste heat recovery. The MGF can also be available 
within the system and its impacts on flow and HT should be considered. In both cases, the utilization of NF provides effective thermal 
performance improvements. In the literature, studies exist that consider the utilization of MGF in VEC and consideration of using 
CCs in VEC. As mentioned before, elastic walls and objects have also been considered in channels/cavities. However, there are a few 
studies that used more than two cylinders in channel /cavities.

This study combines the methods of using MGF, NF and multiple rotating cylinders in a VEC for flow control and thermal 
performance improvements. The elasticity of the enclosure walls is also taken into account. The MGF effects and multiple rotating 
cylinders may be present in the system or they can be used as tools for HT control. The coupled effects of rotations due to cylinders, 
wall elasticity of the confined space and MGF effects on flow and thermal behavior have never been studied for a VEC system. 
An optimization study is also conducted to provide the best operating parameters of the multiple rotating cylinder and magnetic 
field to achieve the highest HT rate of the VEC system. The outcomes can be considered for the initial design and development of 
new techniques for thermal management and performance improvements for convective flow over multiple rotating CCs in confined 
spaces where applications are found in electronic cooling, heat exchangers and many other HT equipments.

2. Modeling approach

2.1. Description of thermo-fluid system

Forced convection of NF in an elastic walled VEC system is considered by using three identical rotating CCs under MGF. The inlet 
port is installed on the upper left vertical wall with size of w while the exit port has the same size and located on the right part of the 
bottom wall as shown in Fig. 2. Cavity height is H while inlet/outlet port size is w=0.25H. Cold fluid with uniform velocity is used 
at velocity of 𝑢𝑐 and temperature of 𝑇𝑐 . Left and top walls are assumed to be isothermal at 𝑇 = 𝑇ℎ. The wall elasticity is considered 
for bottom and right walls. The elastic modulus, Poisson’s ratio and density of solid material are E𝑠, 𝜈𝑠 and 𝜌𝑠. Three identical 
rotating CCs are used with their center locations at (xc1, yc1)=(0.25H, 0.35H), (xc2, yc2)=(0.25H+2R, 0.35H+4R) and (xc3, 
yc3)=(0.25H+4R,0.35H) while the cylinder radius is 𝑅 which is varied between 0.001𝐻 and 0.11𝐻 . The cylinders are adiabatic. 
The rotational speed of the CCs is 𝜔 while adiabatic walls are used for the CCs. The imposed MGF is uniform with magnitude of 𝐵0
3

and having inclination of 𝛾 .
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Fig. 2. Elastic walled VEC system with multiple rotating CCs under inclined MGF.

Table 1

Thermophysical properties of hybrid nanoparticles and base 
fluid [47].

Property name with unit Ag MgO Water

𝜌(kg∕m3) 10500 3560 997.1
𝐶𝑝(J∕kg K) 235 955 4179
𝑘(W∕m K) 429 45 0.62
𝜇(kg∕m s) - - 8.55 × 10−4

2.2. Governing equations and boundary conditions

In the current work, 2D and laminar flow is considered. Impacts of free convection, viscous dissipation and radiation effects are 
not taken into account. When MGF effects are used, induced MGF, displacement current effects and joule heating are not considered. 
As the HT fluid, NF of water having Ag-MgO hybrid nanoparticles is used with solid volume fraction of 0.02. Table 1 shows the 
thermophysical properties of nanoparticles and base fluid. A single phase mode of NF is adopted.

The conservation equations under the above given assumptions are stated as in equations (1)-(3):

▽.𝐮 = 0 (1)

(𝐮−𝐰).▽𝐮 = −1
𝜌
▽𝑃 + 𝜈𝑓▽2𝐮+ Γ(𝐮 ×𝐁) ×𝐁+ 𝐹 (2)

(𝐮−𝐰)▽𝑇 = 𝛼▽2𝑇 (3)

where additional terms due to the MGF are seen in the momentum equations as 
Γ𝐵2

0
𝜌

(
𝑣 sin(𝛾) cos(𝛾) − 𝑢 sin2(𝛾)

)
and

Γ𝐵2
0
𝜌

(
𝑢 sin(𝛾) cos(𝛾) − 𝑣 cos2(𝛾)

)
, respectively. Here, Γ and 𝛾 are the electrical conductivity and inclination of MGF. In the FSI, 

equation for the solid zone is stated as in equation (4):

𝜌𝑠𝐚𝐬 =▽.𝜎𝐬 + 𝐟𝐬𝑏 (4)

where 𝐟𝐬𝑏 denotes the body force while 𝜎𝐬 and 𝐚𝐬 are the stress tensor and acceleration.
The relevant non-dimensional parameters are the Reynolds number (Re), Prandtl number, non-dimensional rotational speed 

(Rew), Hartmann number (Ha) and Cauchy number (Ca) which are stated as in the following equation (5):

𝑢𝑐𝐷ℎ 𝜈
√

Γ 𝜔𝐷2
ℎ

𝜌𝑢2
𝑐

4

Re =
𝜈
, Pr =

𝛼
, Ha = 𝐵0𝐻

𝜇
, Rew =

𝜈
, Ca =

𝐸2 (5)
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Boundary conditions are stated as:

• At the inlet VEC, 𝑢 = 𝑢𝑐 , 𝑣 = 0, 𝑇 = 𝑇𝑐 .
• At the exit of VEC, 𝜕𝑢

𝜕𝑦
= 0, 𝑣 = 0, 𝜕𝑇

𝜕𝑦
= 0

• At the left and top wall of the VEC, 𝑢 = 𝑣 = 0, 𝑇 = 𝑇ℎ
• For the left cylinder surface, 𝑢 = −𝜔(𝑦 − 𝑦𝑐1), 𝑣 = 𝜔(𝑥 − 𝑥𝑐1)
• For the top cylinder surface, 𝑢 = −𝜔(𝑦 − 𝑦𝑐2), 𝑣 = 𝜔(𝑥 − 𝑥𝑐2)
• For the right cylinder surface, 𝑢 = −𝜔(𝑦 − 𝑦𝑐3), 𝑣 = 𝜔(𝑥 − 𝑥𝑐3)
• The cylinders are adiabatic, 𝜕𝑇

𝜕𝑛
= 0

For the FSI, the traction equilibrium (𝜎𝐟 = 𝜎𝐬) and displacement compatibility, (𝐝𝐟 = 𝐝𝐬) are used [36].
Local and average Nu are stated as in equation (6):

Nu𝑠 =
ℎ𝑠𝐷ℎ

𝑘
= −

𝐷ℎ

𝑇ℎ − 𝑇𝑐
𝜕𝑇

𝜕𝑛 𝑤𝑎𝑙𝑙
, Nu𝑚 = 1

𝐿𝑡

𝐻

∫
0

Nu𝑠𝑑𝑠, (6)

where 𝑠 denotes the local coordinate and 𝐿𝑡 denotes the total hot part of the VEC.
As the HT transfer fluid, hybrid NF is considered which uses water as base fluid with Ag-MgO hybrid nanoparticles. For this NF, 

correlations for thermal conductivity (𝑘𝑛𝑓 ) and viscosity (𝜇𝑛𝑓 ) were developed based on experimental data and it is adopted here. 
They are given as in equation (7, 8) [37]:

𝑘𝑛𝑓 =
(

0.1747 × 105 + 𝜙
0.1747 × 105 − 0.1498 × 106𝜙+ 0.1117 × 107𝜙2 + 0.1997 × 108𝜙3

)
𝑘𝑓 , (7)

𝜇𝑛𝑓 =
(
1 + 32.795𝜙− 7214𝜙2 + 714600𝜙3 − 0.1941 × 108𝜙4

)
𝜇𝑓 , (8)

where 𝜙 is the sum of the solid volume fraction of individual particles as in equation (9):

𝜙 = 𝜙1 + 𝜙2. (9)

In this study, solid volume fraction of 0.02 is considered.

2.3. Solution method

The solution of the governing equation is made by using finite element method (FEM) with the arbitrary Lagrangian-Eulerian 
(ALE) technique [38,39]. The basic steps in modeling of fluid flow and heat transfer problems with FEM can be found in several 
references [40–42].

The approximation of field variables is made by using equation (10):

𝑢 =
𝑁𝑢∑
𝑘=1

Ψ𝑢,𝑣
𝑘
𝑈𝑘, 𝑣 =

𝑁𝑣∑
𝑘=1

Ψ𝑢,𝑣
𝑘
𝑉𝑘,

𝑝 =
𝑁𝑝∑
𝑘=1

Ψ𝑝
𝑘
𝑃𝑘, 𝑇 =

𝑁𝑢∑
𝑘=1

Ψ𝑇
𝑘
𝑇𝑘,

(10)

where shape functions of Ψ𝑢,𝑣, Ψ𝑝 and Ψ𝑇 are used while 𝑈, 𝑉 , 𝑃 and 𝑇 are the values at the nodes. Lagrange finite elements of 
various orders are considered. By using a weight function 𝑊 , the weighted average of residual 𝑅 is stated as in equation (11):

∫
𝑉

𝑊 𝑅𝑑𝑣 = 0. (11)

To handle the problem of numerical instability, the SUPG is used. In the flow and HT module of the code, BiCGStab is used. To obtain 
convergence of the solver, a value of 10−7 is set.

2.4. Optimization method

The COBYLA (Constrained Optimization BY Linear Approximation) based optimization method is considered. The general problem 
by using PDE as an equality constraint is given in equation (12) [43,44]:

minimize
𝜓

f(Φ(𝜓), 𝜓)

subject to 𝜁(Φ(𝜓), 𝜓)) = 0, (12)
5

𝑙𝑏 ≤𝐺(Φ(𝜓), 𝜓)) ≤ 𝑢𝑏.
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Fig. 3. Grid independence test results: Average Nu for different grid sizes at two rotational speed of the CCs.

In the above given representation, 𝜓 and Φ are the control variables and PDE solutions while the constraints are denoted by 𝐺. The 
optimization method is a gradient-free and the interpolation at the vertices of a simplex is considered. At the iteration steps, it is 
performed within a trust zone. For the current problem, (Rew, Ha, R) parameter set is considered while the average HT from the hot 
surfaces is taken as the objective function.

2.5. Grid independence and code validation

Tests for grid independence are performed to obtain the optimal grid distribution. Fig. 3 (a) shows the average Nu versus element 
number considering two different rotations of the CCs. 320770 number of triangular type elements are used. Grid variation near 
the CCs is shown in Fig. 3 (b). The refinement of the grid near the cylinder walls is performed. Two different validation studies 
are performed. The first one is the convective HT study for cavity having elastic walls and thin flexible plate where reference study 
in Ref. [45] is used. Comparison of average Nu at two different Rayleigh numbers for flexible walled cavity is shown in Fig. 4
considering fixed values of E*=8 × 109, 𝜌s*=6000 and baffle length of 0.8. The highest difference of 3.9% between the average 
Nu is obtained at Ra=104. Another validation for convective HT in VEC is performed by using the reference study in Ref. [46] is 
considered. In the mentioned work, forced convection in a VEC having on inlet and one exit port is analyzed considering various 
values of Re. Comparison of average Nu at two different Re values are shown in Fig. 5. The variation between the results is below 
3%. These results show that the current solver can handle convection problems in VEC and with elastic wall effects.

3. Results and discussion

Impacts of rotation of multiple inner cylinders and elasticity of the walls on the flow and convective HT characteristics are 
explored during forced convection of NF under MGF. Two walls are kept at isothermal while bottom and right walls are elastic-
adiabatic. Three identical CCs are used which have rotational speed of 𝜔. The numerical study is conducted for various values of 
Rew (between -100 and 100), Ha (between 0 and 50), cylinder sizes (R between 0.001H and 0.11H) and Ca (between 10−8 and 10−3). 
6

An optimization study is also conducted for achieving the highest thermal performance. A uniform MGF is imposed with inclination 
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Fig. 4. Comparison of average Nu available in Ref. [45] for convective HT in an elastic walled cavity and a thin flexible plate at two different Rayleigh numbers 
(E*=8 × 109 , 𝜌s*=6000 and baffle length of 0.8).

Fig. 5. Average Nu comparisons for convective HT in a VEC at two different Re. Results in Ref. [46] are used.

of 45 degrees with the horizontal while the Re is kept fixed at 1000. COBYLA based optimization technique is used to achieve the 
highest thermal performance.

3.1. Numerical simulation results

Streamline distributions are shown in Fig. 6 for varying rotational speeds of the multiple CCs at two different MGF strengths 
(Fig. 6 (a-e) for Ha=0 and Fig. 6 (f-j) for Ha=50). When there is no MGF, more flow recirculations are established within the cavity. 
The branching of fluid flow above and in between the cylinders are formed. For all rotational speeds, a corner vortex in the upper 
right part of the cavity is formed. Negative values of Rew indicates clockwise (CW) rotation of the CCs. For higher values of rotation 
in counter-CW (CCW), the flow branching in between the cylinders become more pronounced while vortex zones are formed behind 
the upper CC. On the upper and lower sides of the left CC, vortex zone size increases as well. For CW rotation of the CCs and rising 
its speed, the right corner vortex size becomes larger while at Rew=100, a recirculation zone is formed near the bottom wall. When 
MGF is used at Ha=50, due to the suppression of the vortices within the enclosure, only small variations are seen near the inlet zone 
where a small vortex is established. This is also reflected in the average Nu variations as shown in Fig. 7 (a, b) where the impacts of 
rotation in the existence of MGF effects at Ha=50 will be slight. In the absence of MGF effects, the rotational velocity impact on the 
left heated wall is significant as compared to upper hot wall. When activating the rotations and increasing the speed, the average Nu 
generally reduces. The reduction amount becomes higher for CCW direction as compared to CW. The variations in the average Nu 
with Rew become 10.9% for CW rotation at the highest speed while it is 40% for CCW rotation of the cylinders without MGF effects. 
The variations in the average Nu with cylinder rotations become less than 5% under the MF effects at Ha=50. This is attributed to 
the largely suppression of the vortex zone within the chamber having rotating CCs.

When MGF strength is gradually increased, the vortex size reduces for cases of rotating CCs (Fig. 8 (a-d)) or stationary CCs 
(Fig. 8 (e-h)). Due to the rotational effects of the left CC, two vortices are formed at Ha=30 while the small vortex near the cylinder 
7

disappears at Ha=50. For stationary CC case, the vortex below the upper CC remains but varies in extension up to Ha=30 and is 
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Fig. 6. Effects of Rew on the flow field variations at two different MGF strengths (a-e: Ha=0), (f-j: Ha=50) (Ca=10−4 , R=0.1H).

suppressed completely at Ha=50. When rotations are active, the vortex zone in between the CCs are also reduced by using MGF and 
increasing its strength. Significant suppression of recirculation zones is observed at Ha=50 while vortex size and number control 
inside the chamber can be done effectively by adjusting the MGF strength. Thermal performance improvements are seen for the 
left wall with higher MGF strength while this part has the highest contribution to the HT. For the top wall, thermal performance 
improvement with higher MGF strength is slight which is below 3%. The overall Nu increment with highest MGF strength becomes 
56.6% for rotating case at Rew=-100 (Fig. 9 (a)) while it is 49% for non-rotating case (Fig. 9 (b)). By activating rotations more 
vortices are formed especially in between the cylinders and therefore MGF potential to suppress them and to enhance the thermal 
transport becomes higher.

Rotating CCs with larger sizes have more impacts on the flow re-circulation within the chamber as shown in Fig. 10 (a-f) especially 
when MGF is absent (Fig. 10 (a-c). At Ha=0 and with the smallest size of rotating CCs, a large recirculation zone is formed around the 
object while the upper right corner vortex size extension is higher. The vortices are formed in between the cylinders while additional 
branching of the fluid flow toward the outlet in between the cylinders is seen with larger size. As the main-flow branching toward 
the upper part is formed, the upper right corner vortex becomes smaller. Fig. 11 (a, b) and Fig. 12 (a, b) show the size influence 
of CCs on the average Nu variations for various cases of activation of rotation and MGF effects (Fig. 11 (a, b) for Rew=-100 and 
Fig. 12 (a, b) for Rew=0). In all cases, the positive contribution of the size on the thermal performance improvement is seen for the 
left and for the upper hot walls. The impact is higher when MGF is not active and significant changes are obtained when increasing 
the value of size from R=0.075H to R=0.11H. This is attributed to the size reduction of the vortex of the upper wall of the cavity 
and local velocity enhancement of the NF with reduced gap between the cylinder surfaces (upper and left) for higher cylinder size 
(Fig. 10 (c)). These effects are more pronounced when MGF effects are weak. In overall, when rotations are active (Rew=-100), 
the enhancements in the HT rates with larger cylinder sizes becomes 105% and 22% at Ha=0 and Ha=50 while they are 132% 
and 19.5% for non-rotating CC case. The application of MGF at Ha=50 largely reduces the potential of using higher CC size in 
8

convection.
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Fig. 7. Impacts of CC rotational speed on the average Nu variations for left, top and all walls at Ha=0 (a) and Ha=50 (b) (Ca=10−4 , R=0.1H).

Fig. 8. Effects of MGF strength on the variation of streamlines with activation of rotations at Rew=-100 (a-d) and without rotations (e-h) (Ca=10−4 , R=0.1H).

Right and bottom part of the walls are made elastic. The deformation of the wall with exerted pressure due to the fluid motion 
is obtained and amount of deformation depends upon the fluid velocity and material of the wall. A higher Ca value denotes the 
case of using material with lower elastic modulus while Ca values are taken between 10−8 and 10−3. Fig. 13 shows the streamline 
distributions for different values of Ca considering configurations with rotational (Fig. 13 (a-d)) and without rotational effects (Fig. 13
(e-h)). Higher values of Ca has impacts on the variation of vortices near the bottom wall and upper right corner. Due to the more 
9

deformation with higher Ca, the extension of vortex size (near the bottom part of the left CC) toward the bottom wall is seen while 
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Fig. 9. Average Nu versus Ha with rotations of the CCs at Rew=-100 (a) and without rotations (b) considering left, top and all hot walls (Ca=10−4 , Rew=-100).
10

Fig. 10. Effects of rotating multiple CC size on the variation of streamlines without MGF (a-c) and under MGF (d-f) (Ca=10−4 , Rew=-100).
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Fig. 11. Average Nu versus size of the CCs for left, top and all hot walls considering no MGF (a) and with MGF at Ha=50 (b) (Ca=10−4 , Rew=-100).

the extension of the upper corner vortex is slightly increased due to the deformation of the right flexible wall. When rotations are 
activated, there is 5% and 2% variation of average Nu with varying the Ca values for the left wall and overall case (Fig. 14 (a)). When 
rotations are not used (Fig. 14 (b)), the average Nu changes with different Ca becomes below 2% for the bottom wall and overall 
case. As compared to MGF, cylinder size and rotational speed of the CCs, the elasticity of the wall is not that effective in HT control 
while variations in the average Nu becomes lower than 5%.

3.2. Optimization study results

An optimization study is conducted for achieving the highest HT performance of the system considering the constant Ca number 
case of 10−4.

The lower and upper bounds are stated as in the following:

−100 ≤ Rew ≤ 100, 0 ≤ Ha ≤ 50, 0 ≤𝑅 ≤ 0.11𝐻. (13)

The optimum values of (Rew, Ha, R) are obtained as (-80.66, 50, 0.11H). In parametric CFD, the most favorable condition in 
terms of thermal performance is expected to be at (Rew, Ha, R)=(-100, 50, 0.11H). In Fig. 15 (a-f), comparison results for the 
streamline and isotherm variations are seen between the parametric CFD and optimum case. The vortices are largely suppressed in 
between the cylinders and toward the upper right part of the cavity at Ha=50 and at the optimum case. The extend of the right 
upper vortex is also reduced as the optimum as compared to case of Ha=50 with parametric CFD. Isotherms show the intensification 
of the temperature gradients with highest MGF strength and optimum case near the hot walls. The average Nu is obtained as 80.2 in 
the parametric CFD which is almost 12.7% lower than the optimum one. When individual hot walls are compared, the value of Nu 
11

at the bottom wall is 13.6% higher and for the right wall is it 9.95% higher at the optimum case (Fig. 15 (g)).
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Fig. 12. Average Nu versus size of the CCs for left, top and all hot walls considering no MGF (a) and with MGF at Ha=50 (b) (Ca=10−4 , Rew=0).
12

Fig. 13. Effects of Ca number on the streamline variations considering rotations of the CCs (a-d) and no-rotations (e-h) (Ha=5, R=0.1H).
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Fig. 14. Impacts of Ca on the average Nu for left, top and all hot walls considering rotations at Rew=-100 (a) and no-rotations (b).

4. Conclusions

In this study, combined utilization of multiple rotating CCs and elastic walls are considered for convective HT in a VEC under 
MGF effects. The methods consider the use of several active and passive techniques together for flow control or it can be used in 
some practical applications such as waste heat recovery from rotating type heat exchanger. Following outcomes are achieved as:

• Branching of the fluid flow and formation of many vortices in between the CCs are formed by activation of rotation. This leads 
to reduction of thermal performance. Average Nu variations up to 10.9% and 40% are obtained for CW and CCW rotations at 
the highest speed without MGF effects.

• The impacts of cylinder rotation become less with MGF effects while less than 5% in the average Nu is obtained. However, 
increasing the MGF strength suppresses to multiple recirculations within the VEC and improves the thermal performance.

• Up to 56.6% HT improvement is obtained by using MGF strength at Ha=50 for rotating case while it is 49% for non-rotating 
CC case.

• Larger rotating cylinder sizes improve the thermal performance and the impact is profound for the cases without MGF effects. 
Without MGF effects, up to 105% and 132% increments of average HT are obtained for rotating and non-rotating CC configura-
tions by using the highest cylinder sizes.

• Even though elastic walls contribute to the local flow pattern variation near the deformed walls, the contributions to the overall 
thermal performance are not above 5% considering both rotating and non-rotating CC configurations.

• An optimization study is conducted and the optimum set of (Rew, Ha, R) parameters are obtained as (-80.66, 50, 0.11H). The 
optimum case leads to 12.7% higher HT values as compared to best case of parametric CFD.

The study can be extended to include different number of cylinders, different arrangement of them and thermally conductive cylin-
ders. Effects of cylinder location on the thermal performance can also be investigated. MGF can also be imposed as non-uniform and 
13

partially active which can be considered as an extension of the present work.
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Fig. 15. Comparison of streamlines (a-c) and isotherms (d-f): parametric CFD at Ha=0 and Ha=50 (Rew=-100, R=0.11H) and optimum case (c, f); Average Nu 
comparisons between the parametric CFD and optimum case (g).
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