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a b s t r a c t 

Robotic devices are gaining popularity for the physical rehabilitation of stroke survivors. Transi- 

tion of these robotic systems from research labs to the clinical setting has been successful, how- 

ever, providing robot-assisted rehabilitation in home settings remains to be achieved. In addition 

to ensure safety to the users, other important issues that need to be addressed are the real time 

monitoring of the installed instruments, remote supervision by a therapist, optimal data transmis- 

sion and processing. The goal of this paper is to advance the current state of robot-assisted in-home 

rehabilitation. A state-of-the-art approach to implement a novel paradigm for home-based train- 

ing of stroke survivors in the context of an upper limb rehabilitation robot system is presented in 

this paper. First, a cost effective and easy-to-wear upper limb robotic orthosis for home settings 

is introduced. Then, a framework of the internet of robotics things (IoRT) is discussed together 

with its implementation. Experimental results are included from a proof-of-concept study demon- 

strating that the means of absolute errors in predicting wrist, elbow and shoulder angles are 

0 . 8918 0 , 2 . 6753 0 and 8 . 0258 0 , respectively. These experimental results demonstrate the feasibility 

of a safe home-based training paradigm for stroke survivors. The proposed framework will help 

overcome the technological barriers, being relevant for IT experts in health-related domains and 

pave the way to setting up a telerehabilitation system increasing implementation of home-based 

robotic rehabilitation. The proposed novel framework includes: 

• A low-cost and easy to wear upper limb robotic orthosis which is suitable for use at home. 

• A paradigm of IoRT which is used in conjunction with the robotic orthosis for home-based 

rehabilitation. 

• A machine learning-based protocol which combines and analyse the data from robot sensors 

for efficient and quick decision making. 
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Introduction 

Neurological injuries such as stroke result in disability in the form of complete loss or reduction in upper limb functional ability

[1] . It is estimated that close to one billion individuals (15% of the world’s population) across the globe experience some form of

disabilities such as muscle weakness, partial or full loss of motions and strengths [2] . It has been reported in [3] that 70% of people

with stroke experience arm weakness and 62% of these will not recovery dexterity [4] . During conventional treatments, patients’ limb

movements are carried out manually by the therapists. During the last two decades the use of robotic devices for upper limb physical

therapy of stroke survivors [5–10] has gained popularity in rehabilitation clinics around the globe [11–15] . Several robotic systems

have been developed and clinically evaluated with stroke survivors for upper limb rehabilitation [ 16 , 17 ]. These robotic devices can

provide more systematic, repetitive, objective, and customized physical therapy sessions as compared to manual physical therapy 

[ 18 , 19 ]. 

These upper limb rehabilitation robots have primarily been designed for use in the rehabilitation clinics where the stroke survivors

undergo rehabilitation under the supervision of physical therapists. This practice has demonstrated encouraging results in the form 

of functional improvements in the upper limbs of stroke survivors [20] . A recent study has presented the effectiveness of home-

based upper limb rehabilitation in stroke survivors [21] . During the post-clinic stage of rehabilitation, stroke survivors could undergo

robot assisted physical therapy in their homes or other community level residential settings, where physical therapists can remotely

supervise them. To make this possible, safe solutions need to be developed, with a certain level of autonomous decision-making

algorithms to enable therapists to remotely handle many patients simultaneously. To utilize robots for upper limb rehabilitation at

home, there is a need to develop a new framework and associated technologies which make it possible for the physical therapists to

not only remotely supervise and assess the progress of patients but also have remote control of these robots to adapt the therapy and

the exercises, prevent compensatory movements and incorrect movement patterns. 

Several preliminary efforts have been reported in the literature relating to robotic upper limb home-based rehabilitation. A home- 

based approach based on Internet-of-Things (IoT) has been proposed [22] , but this IoT based approach involves manual physical

therapy instead of a robotic rehabilitation system. Home-based robotic bilateral upper limb rehabilitation systems have been reported 

in the literature that can adjust the robot applied assistance based on the feedback on electromyography (EMG) signals collected from

the arms of the patients [23–25] . However, such work requires placement of EMG sensors on the arms of stroke survivors and this

placement is difficult to achieve accurately in home-based settings [26] . A robotic exoskeleton for upper limb rehabilitation has also

been developed for home use [27] and preliminary evaluation in the form of wearability of the exoskeleton has been performed.

However, capacity for remote supervision and details of the control of this exoskeleton have not been reported. Another IoT based

upper limb rehabilitation robot was reported that uses interaction pressure feedback between human and robot from a piezoresistive

sensor and writes on a STM32 controller to realize impedance control [28] . However, this system lacked remote supervision from a

therapist. 

From the above discussion on representative citations from the existing work on robot-assisted upper limb rehabilitation at home,

it is apparent that so far, the remote supervision of rehabilitation robots facilitating intervention by therapists has not been reported.

There is an urgent need of a remotely supervised home-based stroke rehabilitation of upper limb impairments. It is proposed therefore,

to develop a new paradigm which can provide a safe and objective robotic home-based physical therapy to stroke survivors [24] . This

paper presents a novel framework for home-based training of upper limb movements using as an example a functional prototype of

upper limb rehabilitation robot system. A proposed paradigm of the internet of robotics things (IoRT) includes the components such

as patient data acquisition together with its security and encryption, hardware physical and logical interfaces, remote monitoring and

intervention by therapist. Data aggregation and initial inferencing based on Machine Learning (ML) is carried out over the cloudlets.

According to authors’ best knowledge this is the first instance of development and preliminary evaluation of the paradigm of IoRT,

reported in literature. 

In the following Section “Upper Limb Rehabilitation Robot ”, the upper limb robot is introduced with a brief explanation of

its working capabilities. The proposed IoRT paradigm for robotic home-based rehabilitation is followed in Section “Paradigm of 

the Internet of Robotics Things (IoRT) ” with appropriate illustrations and detailed descriptions of its integrated modules. The ex- 

perimental implementation used to validate the proposed IoRT framework is provided in Section “Proposed Experimental IoRT 

Framework ”. 

Method details 

Upper limb rehabilitation robot 

An upper limb rehabilitation robot has been developed by the authors improving on their previous prototype [23] . The distal arm

impairment, being the most disabling consequence of a neurological damage, has been prioritized in this research. The rehabilitation

robot developed during this study, therefore, provides active wrist and elbow motions and supports other required upper limb mo-

tions passively. The proposed robot can provide elbow flexion-extension and forearm pronation-supination motions ( Fig. 1.1 ). The 

actuators, which are two brushless DC motors (BLDC), employ two stage cycloidal gearbox and have an onboard magnetic encoder

for the measurement of angular positions. The BLDC motors used are AK80–6 motors which are marketed by T-MOTOR ®. These

BLDCs are controlled using the CAN (Controller Area Network) protocol which is a standard designed that allows the microcon-

troller and other devices to communicate with each other without any host computer. This robot also uses incremental encoders to
2 
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Fig. 1.1. Wearable Upper Limb Rehabilitation Robot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

measure flexion-extension motion at shoulder ( 𝜃𝑠 ) and elbow ( 𝜃𝑒 ) in the sagittal plane, and forearm pronation-supination motions

( 𝜃𝑤 ) . 
For an ergonomic robot design, it is vital that the attachment system allows donning and doffing single handed and rather quickly.

Therefore, the attachment system of the proposed robot has been designed to be completely donned with a single hand in less than

2 mins. If additional help is needed, the process can be easily managed by a caregiver, with a little training beforehand. The robot

is attached to a human limb with simple fasteners (Velcro) and straps constructed with nylon and polyester. The robust attachment

system can quickly transfer robot motions, and yet flexible enough to remain compliant to changes in arm postures. The robot is

also entirely located on the arm and therefore, does not hinder movements of other joints. The actuators have onboard encoders for

speed and position sensing while electrical power input to the motors measured via an electrical power metre gives an estimate of

the torque on motor’s output shaft. Towards ensuring safety, mechanical locks are provided in the robot joints to limit its range and

direction of motions, whereas circuit breakers used in the controller limit the motor currents to contain motor speeds within safe

limits. 

The robot’s forearm and upper arm parts are made from aluminium and their lengths can be adjusted to suit different users’ arm

lengths. The robot’s elbow joint is connected with the motor shaft through a cycloidal gear that provides small translational motion

together with the intended rotation. Such motion at the robot elbow allows the robot joint to remain aligned with the human joint

during various arm motions. The interaction force between the human upper limb and the robot is controlled using zero vector as the

commanded force. The force controller, thus implemented, can help in achieving back drivability in the actuation system [29] . This

further means that the actuator can be driven backward with ease to provide safe human interaction. This wearable upper limb robot

is integrated within the IoRT paradigm for providing the rehabilitation at home sitting with the help of sensors, machine learning

and a cloud-based platform. Paradigm of the IoRT is further explained using a flow chart in the next Section. 

Paradigm of the internet of robotics things (IoRT) 

In this work, the IoRT based physical therapy incorporates home-based rehabilitation with a wearable upper limb robot. This novel

approach offers a home rehabilitation system for assisting patients remotely by the physiotherapist on different sites via intelligent

IoT and visual servoing ML tools. 

The Fig. 2.1 illustrates the paradigm of IoRT for a patient sitting at home and the physiotherapist available at remote location. 

I. Patient Data Acquisition 

Patient specific data i.e., the upper limb movements in terms of the joint angles 𝜃𝑠 , 𝜃𝑒 , and 𝜃𝑤 (in a sagittal plane) are obtained

through encoders for position monitoring, joint torques are estimated from the electrical power measurements of the motors, and

patients’ body temperature is measured using LM 35 temperature sensor. The data from these sensors is communicated to the cloudlet

for further signal processing using ML tool. 

Security of patient specific data is ensured by using authentication certificates over IoT devices and also while connecting with a

Message Queue Telemetry Transport (MQTT) client. A singular cryptographic key is used, for the sake of simplicity, to encrypt and

decrypt patients’ data while in-transit and at-rest. 

II. Hardware Physical Interface: 

The hardware physical interface i.e., sensors, actuators, Internet Protocol (IP) cameras, Raspberry Pi (a small microcontroller), 

local server, edge devices, servers and networking device etc. are embedded within the wearable robot system. 
3 
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Fig. 2.1. IoRT Home Rehabilitation functionality diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. Logical Interface: 

This module is developed to facilitate interaction between therapists and the robot in real time. The hardware physical interface

is connected to Wi-Fi-modules, cloud services, and protocols for IoRT tractability. The authorization and ML algorithms are used to

perform the analytics of the specific patient’s data to provide feedback to physiotherapist for making decisions. 

IV. Remote Monitoring and Intervention by Therapist: 

The remote monitoring is achieved through the application software on a therapist’s side which also enables intervention altering

treatment tasks when required. This module allows therapist to provide oral instructions and arrange a prescribed exercises to a

patient. The computer vision may incorporate the extended reality by combining the real and the virtual environments. This will

give an enhanced clinic-like experience to both actors, improving the patient-machine-therapist interactions generated by IoRT and 

wearable devices. 

The various functions of the proposed IoRT system are illustrated in Fig. 2.1 , constituting sensor data acquisition and signal

processing unit, IoRT hardware modelling and ML based architecture, visual servoing using network-synchronized cameras and 

remote monitoring and intervention by therapist. These main components of the IoRT framework together with ML based approach 

to solve the inverse kinematics of the developed robotic orthosis are described in detail in the following subsections. 

Sensor data acquisition and signal processing 

While the primary use of the wearable upper-limb robot is in providing the rehabilitation treatment to the stroke survivors, it can

also be used as a measurement device evaluating patients’ capabilities and health parameters through various sensors and encoders 

mounted on the robot. The proposed robot consists of an LM35 body temperature sensor, displacement encoders, and an electrical

power metre to estimate the torque on motor’s output shaft. These sensors are used to obtain data during robot motions which gives

important (but unstructured) treatment-related data from the subjects. 

The data acquisition DAQ system with its components is shown in Fig. 2.2 . Analogue signals retrieved from the sensors are

converted to digital signals using the signal conditioning circuit. Multiplexer (MUX) helps in putting together multiple analogue 

sensor outputs which is later passed through an analog to Digital Converter (ADC) for further analysis on a digital computer us-

ing an appropriate analysis software, such as the data acquisition toolbox in Matlab®. Presently, the robot employs joint posi-

tion encoders to monitor the upper-limb activity. However, other kinds of medical data in the form of EMG signals, force sen-

sors, images, audio, previous medical records, etc. can also be processed. Wireless communication protocols are used for em-

bedding IoRT feature. Sensor data are amplified appropriately and are subjected to level shifting and calibration after noise

filtering. 
4 
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Fig. 2.2. DAQ component diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Machine learning based framework 

Sensor data aggregation and preliminary inferencing is carried out using reinforcement learning over the cloudlets to reduce 

end-to-end communication latency. Later, artificial intelligence (AI) software tools provide python programming interface between 

cloudlets and the cloud-based devices. This programming interface creates rules in the form of algorithms to turn the data into

actionable information onto the devices. PyTorch and AWS (Amazon Web Services) SageMaker are the AI software tools which 

facilitate building and training of ML models. These models can be directly deployed for the present application. These AI soft-

ware tools use regression-based learning, support vector machines (SVM) [30] or multiple adaptive neuro-fuzzy inference sys- 

tem (MANFIS) [31] to process the sensor data received from cloudlets to categorize the higher level information and further

inferencing. 

In the present research, MANFIS has been implemented (as explained in the next Section) to provide three joint angles from a

given input end-effector position. This input is a commanded rehabilitation path obtained from the exercises prescribed by a remote

therapist. This data is passed through the more efficient, highly accurate active learning and pre-labelling mechanism via pipeline pre-

processed data points using deep learning on SageMaker and PyTorch platforms. At this stage, the ML models are used to establish

mapping between the set of targets and the inputs. Desired angular displacements at shoulder ( 𝜃𝑠 ), elbow ( 𝜃𝑒 ), and wrist ( 𝜃𝑤 ), to

achieve a given end-effector position in space, are informed by the ML models. The ML models are run through the uploaded data

points in a prioritized way. Pre-labels are generated which are later used for manual labelling, reviewing, or editing. The pipeline

then scales the data based on the number of sessions the patient has performed over a period of time. In other words, useful data

from AI software tools is retained by the pipeline for further processing and it is scaled to optimize the overall data volume that

increases with the number of sessions. Based on the data gathered in the pipeline, the patient is prescribed an appropriate mode of

robot assisted treatment by the remote therapist via the Application Programming Interface (API) or User Interface (UI) accessories 

provided by AI software tools (Super.AI) located on the cloud. 

Inverse kinematics of the robot using machine learning 

The developed upper limb robotic prototype has been presented in Fig. 1.1 . The human palm from wrist to fingertips is con-

sidered as the end-effector. The robot needs to be precisely controlled while it is being traversed through the necessary reha-

bilitation trajectories. For the human palm (end-effector) to accurately follow the commanded rehabilitation paths, two kinds of 

kinematic analyses, namely, forward kinematics and inverse kinematics are required. To ascertain position of the end-effector in 

space, we need to measure the angular displacements at shoulder, elbow, and wrist joints. Moreover, to take the end-effector at

a desired location in space, we need to know the required angular displacements at the joints. Determining end-effector posi-

tion from known angular displacements is termed as the forward kinematics, whereas, obtaining various angular displacements 

from the given end-effector position is referred as the inverse kinematics analysis. The forward kinematics solution of the robot,

which is basically the pose of the end-effector in space, can be easily determined by solving kinematic equations from the known

joint angles and link lengths. However, it is difficult and time consuming to perform the inverse kinematic analysis which nor-

mally doesn’t yield a closed form solution and in fact, a correct unique solution needs to be found from the set of many feasible

solutions [32] . 

In this regard, a machine learning based model can be implemented to obtain solutions of the inverse kinematics of the upper limb

rehabilitation robot in a quick and precise manner. In other words, we would like to know about the required angular displacements

at the shoulder, elbow, and the wrist joints so that the tip of the arm can be placed at a given position (target end-effector position).

In order to develop such a model, a database is normally required for training and testing the model and obtaining optimal model

parameters. In fact, solutions from the forward kinematic analysis can be used for this purpose. During the present research, a ML

based model has been developed and tested to demonstrate how instructions from therapists (the commanded rehabilitation paths) 

about end-effector positions can be quickly and precisely translated in terms of shoulder, elbow, and wrist angles, which will be

later given to the controller for further execution. In order to obtain joint angles from the information about end-effector position a

multiple adaptive neuro-fuzzy inference system (MANFIS) has been developed that contains three individual fuzzy models to provide 

three joint angles [31] . This model takes position coordinates of the end-effector as inputs and produces three joint angles through

three different ANFIS models and these outputs can be either obtained as three different outputs or as a single vector of three values.
5 
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Fig. 2.3. (a) ANFIS architecture for input end-effector positions (X, Y) in sagittal plane as inputs and the joint rotations ( 𝜃1 ) as outputs & (b): 

MANFIS-Based ML model concatenating three ANFIS models. 

 

 

 

Three ANFIS models combined in such a way are called MANFIS ( Fig. 2.3 ). Readers are advised to refer to [33] and the pseudo code

provided here for the details of the construction, training, testing, and validating MANFIS. 

Pseudo Code for ANFIS 

Step 1. Generate the membership grades and define inputs as fuzzy variables. 

Step 2. Generate the strength of real number inputs using the fuzzy membership functions. 

Step 3. Normalize the strength values. 

Step 4. Calculate output from an individual rule for given set of input values. 

Step 5. Aggregate all the rule outputs from Step 4. 

Step 6. Employ input-output training data to obtain the weight vector (W), using singular value decomposition (SVD) technique. 

IoRT hardware modelling 

The essential IoRT hardware, that is required for the robot system, contains a Raspberry PI microcontroller board which is used

for implementing necessary IoRT hardware ( Fig. 2.4 ). The IoRT hardware framework includes actuation boards for communication

between motors and controllers, interface board that acts as a gateway, MQTT protocol and Long-Range low-power Wide-Area 

Network (LoRaWAN) used for achieving the required communication. 
6 
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Fig. 2.4. IoT architectural diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The actuation board consists of DC motors used as actuators. Their controller boards connect the upper limb robot and a digital

computer through the appropriate interface board. The interface board is normally a development board such as Raspberry Pi4 for

prototyping the model of IoRT consisting of several features such as Wi-Fi, Bluetooth connectivity and camera. This interface board

also can connect with multiple cloud platforms over various IoRT protocols such as MQTT and LoRaWAN which are the networking

protocols to connect devices to the internet and manages communication between end-node devices and network gateways. In the 

proposed research, the IoRT hardware interface modelling is carried out on AWS-based IoRT core provided by Amazon’s cloud 

ecosystem that allows the required device connectivity. 

The ML processed data retrieved through sensors via cloudlets is registered with IoRT Device Software Development Kit (SDK) 

which securely transmits messages, to and from all the IoRT devices and applications, with low latency and high throughput. Device

Shadow, which is a part of the IoRT core, stores the latest state of a connected upper limb robot so it can be read or set at any

time, making the device appear to the applications domain even if the device is offline due to some connectivity issues. The IoRT

Core MQTT messaging IPC (Inter Process Communication) service is used to send and receive MQTT messages to and from IoRT

Core. Sensors employed on the robot can publish messages to the AWS IoT Core and at the same time subscribe to topics (messages

that need to be communicated) to act on MQTT messages from other sources. The developed prototype is able to interact with the

connected devices owing to its capabilities of interaction to IoRT core service and cloud service provided by cloud ecosystem. The

AWS IoT core services are preferred over other cloud services such as Google Cloud or Microsoft Azure due to their scalability to

support billions and even trillions of messages [34] . 

The AWS IoT message broker component is proposed here to be implemented on MQTT which is a messaging protocol used in

the ‘AWS IoT’ core for communication between the devices. In the proposed framework, MQTT is the broker, and the data from the

sensors onboard are fetched through ML model via logical interaction to the MQTT and the regulating devices. The devices, subscribed

to the service, use this information for publishing the required health monitoring data and at the same time this information can also

be provided to the output devices such as sensors mounted on motor actuators which drive the robot. 

Connecting with an MQTT client requires authentication with an X.509 certificate (secure protocol) and then a new set of AWS

IoT-reserved MQTT topics can transfer messages between devices. It needs to set up and manage a private LoRaWAN network by

connecting LoRaWAN devices and gateways to the AWS cloud, without developing or operating a LoRaWAN Network Server (LNS).

The Rules engine, which is part of the authentication service, connects data from the message broker to other IoRT services for storage

and additional processing. However, if the device is not always connected to internet and the applications, a device shadow service

maintains state of a device in order to communicate with other devices. Subsequently when devices reconnect, they synchronize their

state with that of the shadow in the device shadow service. 

Visual servoing using network-synchronized cameras 

The various components of the visual servoing using network-synchronized cameras are shown in Fig. 2.5 . The computer vi-

sion control application tool, integrated with the ML model, processes the real time video streaming from the computer mounted
7 
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Fig. 2.5. Integrated Visual Servoing for IoRT Home Rehabilitation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP cameras at patient’s home setting. A unique IP is provided to each of the cameras assigned to individual patients. It allows

storage and processing of the video data over cloud and used at patients’ home settings for updating health monitoring data.

A unique IP is also used to fetch the previous history of the patient for the necessary monitoring and analysing purposes. In

the present research, webcam mounted on the digital computer is used as a cloud-based IP security camera. However, a sep-

arate IP camera can be used which may be either wall mounted or placed on a tripod at the patients’ home settings. With

the inclusion of IP cameras and further analysis of their data it is possible to capture and recover important video instances

that can be further used by the therapist for evaluation. Such video sensor data can also be utilized as feedback to the robot

controller. 

Remote monitoring and intervention by therapist 

A specially developed User-Friendly Interface (UI) has to be used by the physical therapist (PT) where a qualified professional

enters all the required settings for the home-based robotic rehabilitation according to the patient’s needs. This procedure starts with

entering the initial evaluation parameters to determine the functional status of the patient, such as nature of the injury, record from

the previous course of care, level of function and mobility. The therapist can review the uploaded past medical history of the patient

to choose the appropriate trainings at home-based setting. There are various tests that can be performed, e.g. , safety assessment,

range of motion, tone and muscle spasticity, strength or assistive device use tests. As the main goal of the home-based rehabilitation

is to recover the motor functions after stroke to perform ADL, an intermediate set of goals can be entered that will gradually lead to

improvements of mobility and increased strength. The home-based treatment using a robotic device should be specific to individual’s

needs. A UI has to contain a library of different physical exercises for upper limb rehabilitation, according to the robotic device’s

capabilities, which a physical therapist can utilize to remotely supervise the patient in real-time or prescribe a home-based exercise

program for patient so he or she can train them independently. The recorded data from the wearable sensors (the ranges of motion

achieved in terms of the joint angles, the number of repetitions made, the forces applied by the robot, etc.), saved in a data storage, can

later be analysed by PT to monitor the progress of rehabilitation and adjust the exercise program accordingly. A therapist should also

be able to select a suitable training modality for robotic rehabilitation [35] , i.e. assistive, active, passive, active-assistive, corrective,

path-guidance or resistive. 

The proposed IoRT framework for robotic home-based rehabilitation of upper limbs allows PT to intervene the physical ex- 

ercises altering treatment tasks if required. The defined modules of IoRT framework enable the logical interface to collect the

patients’ data and communicate the prescribed trajectories to the robot system. The patients’ treatment history data is synchro- 

nized via ML algorithms and their best performance is provided to the therapist for making decision on further treatment. For

example, the wearable exoskeleton robot used in the present research sets target elbow flexion/extension based on the patient’s

most recent performance. The appropriate targets, prescribed for the patient to achieve, include targets for parameters such as

the range of motion, end point accuracy, velocity of the flexion and extension movements, number of movement units (zero

crossings of the velocity profile) and number of repetitions to be performed within a set time. Some of these parameters may

not be usually available to therapists during conventional (non-robotic) assessment and supervision of exercises, such as veloc- 

ity of movements and end point accuracy, so using such a robot would allow more measurable and specific targets to be set by

therapists. 
8 
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The developed device is essentially an upper limb robotic exoskeleton aligned with the human joints and designed to provide

supportive motion to the patient. One of the movements that can be practiced assist elbow flexion/extension motion, e.g. unweighted

or weighted bicep curls. This kind of exercise is important for upper limb rehabilitation after stroke as it helps to recover the abil-

ity to bend the arm. The elbow flexion stimulates the biceps while the extension activates the triceps muscles. The unweighted

exercise are advised to regain motor control and activate neuroplasticity whereas the weighted exercises are intended to gain the

strength. Another movement that can be practiced with the developed robotic orthosis is forearm pronation-supination motion. This 

is an important ability as it is necessary for most of the ADL. The therapist interaction consists of giving initial instructions about

movements to be performed, receiving measurable data from the robot about the movements, and using that data to prescribe ex-

ercises and set measurable targets to progress the patient’s ability further, and then reassess it at regular intervals. This interaction

would be set within the context of usual therapeutic processes such as joint goal setting with the patient to decide on which ADL

are to be achieved. The therapist would then devise appropriate movements to be practiced with the robot to help achieve these

goals. The further improvements of the proposed IoRT system may include software updates with game-like exercises to increase 

the motivation of the patient and provide a more repetitive robotic home-based rehabilitation. Moreover, the improvements of the 

robot may incorporate inclusion of the modules to assist more degrees-of-freedom (DOFs) of the human upper limb and imple-

menting different advanced control strategies, such as Assist-as-Needed (AAN) support while patients try to perform exercises on 

their own. 

Proposed experimental IoRT framework 

Every input/output IoRT enabled device is called a ‘thing’ and all such ‘things’ are registered with AWS cloud service. In order

to connect the proposed model of IoRT framework and IoT core (software framework on IoT device) to the ‘thing’ (such as PC and

mobile), AWS cloud service is taken as AWS IoT core service. The registered Raspberry Pi4 hardware device, registered as ‘thing’ is

shown in Fig. 3.1 . After creating the ‘thing’ in IoT core, IoT core certificates are downloaded and copied onto the Raspberry Pi4. Later,

an ‘Amazon Cognito’ (authentication service) is configured which allows anonymous users access with right certificates including 

Public Key and Private Key files. Next, policies are created and associated with generated certificates as the set of rules engines. With

the steps explained above, the hardware implementation is achieved and towards the end, a python program is executed to connect

IoRT core to ‘things’. Subsequently, to send and receive messages, to and from AWS IoT Core, MQTT messaging IPC service is used

authenticating with an X.509 certificate and Amazon Cognito. 

Python program is written to publish/fetch and read messages from the connected sensors (real time sensor data) of the upper

limb robot. This program also subscribes to the messages (topics) and reads them in the form of notification service to the intended

application domain as demonstrated in Fig. 3.2 , where subscribing the topic ‘patient_monitor’ and publishing it with the sensor data

to the system is also illustrated. 

Amazon Notification service (ANS) is connected to the application domain such as personal computers and mobile devices. It is

also connected remotely to the therapist who can view and access the messages. At this stage, the therapist is able to access patients’

status online while they are using the wearable robots. Cloud services are also capable of storing the real time sensor data for later

offline analysis. Patients’ location is accessed by Intelligent Computer Vision (CV) edge devices through IP cameras as discussed in the
Fig. 3.1. Proposed IoRT for Home-Based Rehabilitation implemented using Raspberry Pi4. 
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Fig. 3.2. AWS IoT Core Publish and Subscribe MQTT services. 

Fig. 3.3. Target and Actual Joint Angles for test data with Prediction errors (in degrees), from ML model. 
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previous section. These CV-enabled appliances are used to deploy and register multiple real time video streams simultaneously through 

a real time streaming protocol (RTSP). In the present research, the wearable robot is connected to rtsp://198.168.1.110/live/mpeg3

for observing the video stream and the IoRT module casting, while the instructions from therapist to the patient’s application domain

are sent via video teleconferencing. 

ML based modelling for inferencing the sensor data 

To test the proposed IoRT framework an inferencing of sensors’ data over cloud has been implemented. First, the shoulder, elbow

and the wrist joint motions of the robot are recorded, and the robot end-effector position is derived using the forward kinematics

analysis from the three joint motions (shoulder, elbow, and wrist). The acquired sensor data is passed through data acquisition unit

to develop an ML-based model for data inferencing. The database used for training and testing of AI model consists of robot joint

motions and corresponding robot end-effector positions. Performance of the AI model developed is further assessed using RMS (root

mean square) errors in target and output robot end-effector positions. 

The proposed ML-based model uses deep-learning regression and support vector classification libraries of Keras (API of Tensor- 

Flow) [36] , and Sci-Kit learn [37] in the python language environment for predicting a continuous-valued end-effector position

attribute associated with the wearable upper limb rehabilitation robot. Sensor data was split into training and validating datasets to

perform deep learning regression. The Sequential model on Keras is used to train the AI model because the proposed network consists

of a linear stack of layers. ReLU (rectified linear unit) activation function is selected in this AI model and the input dimensions are kept

equivalent to the number of antecedents. Requisite number of hidden layers together with one node singular output layer completes

the model architecture. In order to train the model with appropriate training data, an optimizer and the loss measure are defined.

While the RMS error from testing data is a loss measure, the “adam ” optimizer [38] is used for a minimization algorithm in order to

optimize the learning rate. 

Numerical case study 

To experimentally evaluate the proposed approach, three common motions were chosen as the commanded (by therapist) re- 

habilitation paths, namely, shoulder extension-flexion, elbow extension-flexion and wrist pronation-supination. The ranges of these 

motions are constrained by the robot capabilities, being ± 90 0 , ± 60 0 and ± 50 0 for shoulder, elbow and wrist, respectively. The test

data includes the desired end-effector positions suggested by the therapist. 

In order to implement altered end effector positions commanded by the therapist, the machine learning module converts this 

command to three joint angles of shoulder, elbow and wrist ( 𝜃𝑠 , 𝜃𝑒 and 𝜃𝑤 ). The target and actual joint angles for test data and the

related prediction errors (in degrees) from ML model are plotted in Fig. 3.3 . Prediction errors are basically the absolute differences

between the target and predicted angular positions at shoulder, elbow, and wrist joints to achieve the commanded end-effector 

position by the therapist. As can be seen from the right-hand side of Fig. 3.3 , the prediction errors are higher for the shoulder angles

in comparison with elbow and wrist angles. This is due to the fact that the errors get accumulated moving from wrist to elbow and

then to the shoulder joint. The means of absolute errors in predicting wrist, elbow and shoulder angles are 0 . 8918 0 , 2 . 6753 0 and

8 . 0258 0 respectively. Furthermore, the robot link connected at the shoulder joint has larger rotational inertia and so is subjected to

larger deflections compared to the links connected at elbow and wrist. These errors are observed over different ranges for the three

described motions. The machine learning module was implemented on cloudlet with input data transmitted by the robot acting as an

IoRT gateway. 

Discussion and conclusion 

A proof-of-concept prototype was developed to understand and evaluate the implementation of a potential IoRT paradigm in the 

robot assisted rehabilitation in home settings. The upper limb rehabilitation robot was developed that can actuate elbow flexion-

extension, and wrist pronation-supination motions ( Fig. 2.1 ) by using BLDC motors and allow other passive upper limb motions.

The robot also has incremental encoders deployed on the actuators to control flexion-extension motion for shoulder ( 𝜃𝑆 ) and elbow

( 𝜃𝐸 ) in the sagittal plane, and forearm pronation-supination motions ( 𝜃𝑊 

). The IoRT framework, as described in Section 3, consists

of four modules, namely, Data Acquisition, Hardware Physical Interface, Logical Interface, Remote Monitoring or Intervention by 

Therapist. Essential IoRT hardware consist of a Raspberry Pi microcontroller board, actuation boards, interface, and an appropriate 

communication protocol. The remote therapist receives higher level information that is generated by the AI tools (provided by AWS).

These AI tools work with the data transmitted by the robot acting as an IoRT gateway. For instance, the therapist shall be able to

know the ranges of motions that are retrieved from the robot attached to the patient’s upper limb. If therapists decide to alter the

locked ranges of robot motions, they can do so by sending an appropriate command through the logical Interface module of IoRT.

The message received from the therapist is received by the host computer which is connected with the rehabilitation robot in home

settings. Later, the interface board generates appropriate current signal to pass it to the related actuator (BLDC motors). 

A novel edge intelligence framework for a bio-inspired upper limb robot has been designed based on the Internet of Robotics

things (IoRT) paradigm for home-based stroke rehabilitation of upper limb impairments. Extracted sensor data from wearable robot 

in patients’ home settings is processed using MANFIS-based machine learning models on cloudlets. Transmitting this higher-level 

information to the cloud is recommended to reduce end-to-end communication latency. This higher-level information that contains 

the machine learning model along with other important information such as correlation between sensor data and best features, is
11 
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later transmitted via IoRT MQTT protocol to the cloud services. AWS cloud service further works on the information sent from the

cloudlets using AI tools such as Super.AI etc. Information which is processed through AWS cloud services is later sent to the remotely

connected therapist. The proposed IoRT can also be combined with visual servoing for real time video streaming through IP cameras

using RTSP protocol so that therapist can monitor the sequences of exercises. The implementation of proposed IoRT for home-based

rehabilitation of upper limb impairments is also shown in Fig. 3.1 whereby Raspberry Pi4 is used to interface the robot to the cloud

services. 

The proposed prototype is unique from previously proposed work in the literature since it also facilitates a remote therapist to

intervene and manipulate the robot system at patients’ home settings. It is known that the most disabling consequence of neurological

damage is distal arm impairment, but mostly the recovery of proximal upper limb motor functions is studied and researched. Therefore,

the upper limb rehabilitation robot developed during this study focuses on the active wrist and elbow motions while providing passive

shoulder motions. The research work presented in this paper is an advancement over the prototypes studied and analysed in terms

of the capabilities of the robotic system and the validation of the IoRT paradigm. As yet another distinctive feature, the proposed

framework has potential of collecting image and video signals, captured through IP cameras, together with other sensor data. This

important information can be processed using the intelligent edge computer vision platform on the cloud to evaluate the treatment

using advanced image processing tools. The application platform proposed in this research is user friendly for both the patient as well

as the therapist. During the ongoing pandemic of COVID’19 or any other such pandemic in future, this solution can help delivering

treatment remotely either in real time or asynchronously. 

The description of the IoRT framework and its capabilities discussed above explains that a therapist from remote locations (such

as clinic or otherwise) can receive important data from the robot system through cloud. It is also explained here that the therapist

is able to intervene during the ongoing treatment and alter vital parameters on the robot system in order to implement the desired

changes in the robot’s position and force trajectories. The message from the therapist in certain form is received by the host computer

situated at the home settings. In the present case, the therapist suggest a desired end-effector position and the ML module predicts

the required shoulder, elbow, and wrist angles in order to achieve the desired end-effector positions. 

It is acknowledged that the proposed framework of IoRT described in this work has not yet been deployed in a controlled envi-

ronment with target users. We consider that it is currently at a technology readiness level TRL3 (Technology Readiness Level), so

further investigations will need to be done before conducting tests in the operational environment, i.e. at home-based setting with

stroke patients. 
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