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By introducing the descriptors calculated from the molecular structure, the binding rates of plasma protein (BRPP) with seventy
diverse drugs are modeled by a quantitative structure-activity relationship (QSAR) technique. Two algorithms, heuristic algorithm
(HA) and support vector machine (SVM), are used to establish linear and nonlinear models to forecast BRPP. Empirical analysis
shows that there are good performances for HA and SVM with cross-validation correlation coefficients 𝑅2cv of 0.80 and 0.83.
Comparing HA with SVM, it was found that SVM has more stability and more robustness to forecast BRPP.

1. Introduction

Pharmacokinetic (PK) often uses mathematical models and
equations to study quantitative change law of medicines
with time [1, 2]. PK is divided into several areas including
the extent and rate of absorption, distribution, metabolism,
and excretion [3]. It is mainly used to build mathematical
expressions to monitor individual in vivo dose or drug
regimen with time and work out PK parameters, make out,
and adjust individual regimen to guarantee effectiveness and
safety of treatment by applying PK model, expression, and
parameters [4, 5]. After a drug is absorbed into vein, most
of it is bound with plasma protein. Combining percentage
of a drug for therapeutic dose and plasma protein is called
binding rate of plasma protein (BRPP) [6]. In this paper,
BRPP is stable because it is a measured value for normal
people in normal dose. Free drug can diffuse to organisms
by lipid membrane. And it can be filtered by tubules or
metabolized by liver [7]. Consequently, combination of drug
and protein can have evident effect on process of drug
distribution and elimination and decrease drug potency at
the target site. Some studies indicate that pharmacodynamic
and pharmacokinetic is mainly influenced by its binding
protein, so does bioavailability [7–10]. The higher BRPP
is, the longer its half-life is. Among R&D projects, about
percent forty candidate compounds fell into disuse because

of poor PK parameters, such as slow absorbing speed, low
bioavailability, high BRPP, quick metabolization leading to
short duration of drug action, and metabolites with toxicity
and slow excretion leading to accumulated toxicity, in a body
[11]. These reasons make in vitro activity of the compounds
to lose the developing values of clinical drugs [12]. Therefore,
for feasible drug design, we must consider characteristics
of pharmacodynamic and pharmacokinetic to achieve the
best balance between them. It is an important content
of drug design for quantitative structure pharmacokinetic
relationship (QSPKR) [13, 14] and quantitative structure-
activity relationship (QSAR) [15, 16]. At the same time,
they are also successfully used to forecast characteristics of
drugs such as drug metabolism, toxicity, and actual bioavail-
ability. Computer-aided drug design (CADD) is becoming
an important research field of new drug development [17],
which can apply known knowledge of drug molecules and
biological targets to find and design new kinds of drug
molecules by theoretical simulation and calculation [18].
At present, it is a very active area to study PK models in
pharmaceutical industry. Because drug BRPP is influenced
by many factors, causality and mechanism are not clear and
distinct between molecular structures of drugs. As far as
the present scientific level is concerned, there are still many
difficulties to clarify relations between them according to
basic principles. Classical forecasting methods (e.g., multiple
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linear regression) face more and more dilemmas. However,
artificial intelligence methods provide stronger tools to ana-
lyze existed PK data and construct QSPKR between BRPP
and molecular structure variables of a drug. In particular,
the results of practical application in other fields indicate
that the performance of support vector machine (SVM)
has superiority over ANN and can overcome the problems
of overfitting and local minimization of traditional neural
networks excellently.

In order to find a new method to construct a PK
model of BRPP, we establish QSAR models by Heuristic
algorithm (HA) and SVM with BRPP of seventy drugs and
test forecasting performance and stability of a SVMmodel.

The remainder of the paper is organized as follows.
Principles of research methods are introduced in Section 2.
Empirical study is presented in Section 3. Finally, conclusive
results are drawn in Section 4.

2. Data Resource and Methodology

2.1. Data Resource and Structure Parameters. All experimen-
tal data of seventy drugs and their BRPPs resource are from
reference [19].Models are constructed by training set consist-
ing of fifty-six drugs chosen randomly. Data of the remaining
fourteen drugs as test set are used to examine stability and
forecast performance of the two models. All compounds are
initially optimized by molecular mechanics method (MM+)
in program Hyperchem 4.0. Then, they are geometrically
optimized further by semiempirical method (AM1). Opti-
mized molecular structure is calculated in MOPAC 6.0, and
then the results are transferred into CODESSA program to
calculate five kinds of descriptors (independent variables):
composition descriptor, topological descriptor, geometric
descriptor, electrostatic descriptor, and quantum chemical
descriptor.

2.2. Heuristic Algorithm. HA can entirely search for a great
quantity of molecular descriptors in software CODESSA
and establish optimal linear regression equation [20]. HA
has to control collinearity of molecular descriptors [21]. For
example, if correlation coefficient of any two descriptors
is more than 0.8, they will not be involved in the same
model simultaneously. The optimal model is built by rapid
filter and selection of HA to descriptors, while it is not
done by considering all possible combination of descriptors.
HA takes pretreatment way to eliminate some descriptors
according to four rules: (1) the descriptors not owned by each
compound; (2) descriptors with smaller changes of values for
all compounds; (3) descriptors with 𝐹 test value less than
1.0 in an equation; (4) descriptors with 𝑡 test value less than
a specific value [16]. Heuristic regression method (HRM)
sequences molecular descriptors as descending order of
correlation coefficients of a model. Every time, the descriptor
with the biggest correlation coefficient is introduced among
the remaining descriptors, which takes turn until the end.
Performance of a model depends on multiple correlation
coefficient (𝑅2), 𝐹 test value (𝐹), standard deviation (𝑠), and
so forth [22]. Stability of a model is tested by correlation

coefficient 𝑅2cv of cross-validation of leave-one-out (LOO)
[23]. Briefly, eliminate a sample in data set and forecast
the eliminated sample by building a new model with the
same descriptors, take turns until every sample in data set
is eliminated and forecasted once, and calculate correlation
coefficient between a forecasted value and an observed value.
Generally, speed and quality of HRM are higher than others,
which makes it become the first choice in practice [24].

In this paper, errors of heuristic regression results are
denoted by root mean square (RMS), and the equation is as
follows:

RMS = √
∑
𝑛
𝑠

𝑖=1
(𝑦
𝑘
− 𝑦
𝑘
)
2

𝑛
𝑐

, (1)

where 𝑦
𝑘
is target value, 𝑦

𝑘
is an observed value, 𝑛

𝑐
is the

quantity of compounds, and 𝑐 denotes a compound.

2.3. Support Vector Machine. Principle of SVM is that
maps input vector 𝑥 into high-dimensional feature space by
scheduled nonlinear mapping and then constructs optimal
hyperplane in the high-dimensional space [25]. Thus, the
problem is transformed into quadratic programming. No
matter what target function or classification function it is,
they both involve the inner product in quadratic program-
ming. If a kernel function is used, it can avoid complex
calculations in high-dimensional space and realize the inner
calculations by an original space function. Consequently,
selecting appropriate inner product 𝐾(𝑥

𝑖
, 𝑦
𝑖
) can realize

linear calculation of a nonlinear transformation, while it
does not increase calculating complexity [26]. Support vector
machine regression (SVRM) maps a variable 𝑥 into high-
dimensional feature space by a nonlinear constructorΦ, and
the regression is done in the space [27].

Assume the given input sample 𝑥 is a 𝑛-dimension vector,
𝑘 samples and their output value 𝑦 are denoted as follows:

(𝑥
1
, 𝑦
1
) , . . . , (𝑥

𝑘
, 𝑦
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) ∈ 𝑅
𝑛
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Regression analysis is also called function estimation,
which is a statistical process for estimating the relationships
among variables. For a given sample set {(𝑥

𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑘},

where 𝑥
𝑖
is the 𝑖 independent factor (descriptor) and 𝑦

𝑖
is the

𝑖 dependent factor (BRPP). A regression model relates 𝑦 to
a function of 𝑥, 𝑦 = 𝑓(𝑥). If the function 𝑓(𝑥) is linear, the
regression is called as linear regression, otherwise called as
nonlinear regression [28]. There is only one kind of sample
points for SVMR, namely, optimal hyperplane which makes
the total deviation minimized between all sample points and
the hyperplane.Thus, sample points are between two borders.
If insensitive function 𝜀 is taken as an error function, the
problem of how to find the optimal regression hyperplane is
transformed to solve quadratic convex programming when
the distances of all sample points to the quested hyperplane
are not more than 𝜀 [25]. Namely,

min 1
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(3)
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When distances of several sample points to the hyper-
plane are more than 𝜀, deviation of insensitive function
𝜀 is equivalently the introduced slack variable 𝜉

𝑖
of SVM

clustering. Introducing fault-tolerant penalty function 𝐶,
the problem of quadratic convex programming to find the
optimal regression hyperplane can be transformed as follows:
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Then, linear regression function of the optimal hyper-
plane is

𝑓 (𝑥) = (𝑤 ⋅ 𝑥) + 𝑏 = ∑

S.V.
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𝑎
𝑖
, 𝑎∗
𝑖
, and 𝑏 can be calculated through constraints; S.V.

denotes support vector. In order to determine parameters
of the optimal hyperplane, the above solving process can be
realized by MATLAB program. Last results indicate that the
optimal regression hyperplane is only determined by sample
points. If points 𝑥 and 𝑥

𝑖
in sample space are replaced by

mapped image point 𝜓(𝑥) and 𝜓(𝑥
𝑖
) with a kernel function;
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)); 𝐿 denotes number of points [29];

then,
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3. Empirical Analysis

3.1. HA Model. Each molecule can be worked out to five
hundred to six hundred descriptors by using CODESSA,
including composition, topological, geometric, electrostatic,
and quantum chemical descriptors. Composition descriptor
reflects the composition information of amolecule, including
quantity of atoms, atomic bonds, atomic rings, andmolecular
weight. Topological descriptor indicates connecting informa-
tion of atoms in a molecule, including Wiener index, Randic
index, and Kier-Hall index. Geometric descriptor reveals size
and shape of a molecule, including inertia moment, molecu-
lar cubage, and surface area. Electrostatic descriptor displays
distribution information of electric charges in a molecule,
including maximum and minimum partial charges, polarity,
and charged partial surface area (CPSA). Quantum chemical
descriptor discloses electric charge distribution in a molecule
and energy information of molecular orbit, including reac-
tion index, dipole moment, energy of lowest unoccupied
molecular orbital (LUMO), and highest occupied molecular
orbital (HOMO), which has an important effect onmolecular
reaction, electrostatic interaction between molecules, and
interaction between molecular orbits. By HM filtering, six
parameters are introduced to the model. Their interrelations
and forecasting results are seen in Tables 1 and 2. In HA
model, correlation coefficient 𝑅2 = 0.85, test value 𝐹 = 63.64,
error RMS = 12.24, and correlation coefficient of cross-
validation 𝑅2cv = 0.80 (see Figure 1 and Table 3).

Table 1: Correlation matrix of the six descriptorsa.

Descriptor 1 2 3 4 5 6
1 1.000 0.177 0.776 0.039 −0.190 −0.559
2 1.000 0.266 0.269 −0.104 −0.255
3 1.000 0.129 −0.541 −0.592
4 1.000 −0.192 −0.497
5 1.000 0.325
6 1.000
a1: ALFA polarizability (DIP), 2: WPSA-3 weighted PPSA (Zefirov’s PC), 3:
HASA-1/TMSA (Zefirov’s PC), 4: Tot point-charge compd. of the molecular
dipole, 5: PNSA-2 total chargeweighted PNSA, and 6: final heat of formation.
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Figure 1: Forecasted BRPP and observed BRPP based on HA.

There are six descriptors in HA linear model. WPSA-3
weighted PPSA (Zefirov’s PC), HASA-1/TMSA (Zefirov’s
PC), and PNSA-2 total charge weighted PNSA are elec-
trostatic descriptors. ALFA polarizability (DIP), Tot point-
charge compd. of the molecular dipole and final heat of
formation are quantum chemical descriptors.𝛼-polarizability
is molecular polarizability which reflects molecular cubage
and interaction between agent and molecule. Polarizability
scale is closely related to hydrophobicity and electrophilicity.
In the model, only the signal of 𝛼-polarizability parameter
is positive, which indicates that polarizability has a positive
effect on bond of drug and plasma protein. Hydropho-
bicity influences combination of drug and plasma protein
directly. Because protein consists of polypeptideswith electric
charge, the stronger electrophilicity is, the easier bindingwith
plasma protein is. Final heat of formation (FHF) is relative
to molecular stability, which expresses molecular reaction
ability. Change of FHF influences molecular structure and
function, while it does the combination of drugmolecule and
plasma protein. WPSA-3 weighted PPSA is partial positive
surface charge. PNSA-2 total charge weighted PNSA is the
weights of total charges and determined by surface area
and functional gene of molecule, which reflects interactions
between polarmolecules. On the surface of plasma protein,
there are enzymes with specific function gene. At the same
time, there also exist a series of receptors. As the ligand, drug
is bound with receptors on the surface of plasma protein.



4 Computational and Mathematical Methods in Medicine

Table 2: Experimental and calculated BRPP based on HA and SVM.

No. Compd. BRPP/(%) HA Residual SVM Residual
1a Acebutolol 26.0 35.9 9.9 40.0 14.0
2 Alprenolol 85.0 61.5 −23.5 72.9 −12.1
3 Amantadine 67.0 58.6 −8.4 61.9 −5.1
4 Amiodarone 100.0 110.9 10.9 100.3 0.3
5 Amitriptyline 94.8 100.1 5.3 90.1 −4.7
6a Aspirin 49.0 56.1 7.1 45.0 −4.0
7 Betamethasone 64.0 62.9 −1.1 61.0 −3.0
8 Bumetanide 99.0 92.6 −6.4 94.0 −5.0
9 Caffeine 36.0 28.0 −8.0 30.9 −5.1
10 Cefalexin 14.0 41.6 27.6 41.0 27.0
11a Chloroquine 61.0 67.7 6.7 75.6 14.6
12 Chlorthalidone 75.0 76.8 1.8 80.0 5.0
13 Cimetidine 19.0 17.2 −1.8 19.4 0.4
14 Ciprofloxacin 40.0 40.6 0.6 43.4 3.4
15 Diphenhydramine 78.0 83.2 5.2 83.9 5.9
16a Furosemide 98.8 85.8 −13.0 95.5 −3.3
17 Glibenclamide 99.0 114.0 15.0 95.1 −3.9
18 Haloperidol 92.0 91.3 −0.7 95.7 3.7
19 Lidocaine 70.0 60.6 −9.4 75.1 5.1
20 Methadone 89.0 94.3 5.3 94.0 5.0
21a Methotrexate 34.0 47.3 13.3 53.4 19.4
22 Metoclopramide 40.0 37.4 −2.6 44.3 4.3
23 Metronidazole 10.0 16.1 6.1 15.0 5.0
24 Nifedipine 96.0 91.0 −5.0 96.6 0.6
25 Phenobarbital 51.0 60.4 9.4 46.2 −4.8
26a Pindoioi 51.0 53.6 2.6 69.0 18.0
27 Prednisone 75.0 58.0 −17.0 69.9 −5.1
28 Quinidine 87.0 93.8 6.8 100.0 13.0
29 Ranitidine 15.0 15.7 0.7 15.6 0.6
30 Sulfadiazine 54.0 65.6 11.6 59.1 5.1
31a Sulfamethoxazole 62.0 56.4 −5.6 48.1 −13.9
32 Terbutaline 20.0 39.2 19.2 25.1 5.1
33 Timolol 60.0 44.6 −15.4 65.1 5.1
34 Triamterene 61.0 58.9 −2.1 66.1 5.1
35 Amikacin 4.0 −12.4 −16.4 5.4 1.4
36a Carbamazepine 74.0 72.2 −1.8 81.8 7.8
37 Carbenicillin 50.0 63.9 13.9 55.0 5.0
38 Cefamandole 74.0 78.7 4.7 76.1 2.1
39 Cefazolin 89.0 72.4 −16.6 83.9 −5.1
40 Cefotaxime 36.0 37.1 1.1 33.6 −2.4
41a Cefuroxime 33.0 52.6 19.6 53.4 20.4
42 Chloramphenicol 53.0 37.7 −15.3 47.9 −5.1
43 Chlorothiazide 94.6 83.2 −11.4 89.5 −5.1
44 Clonazepam 86.0 83.1 −2.9 80.9 −5.1
45 Cocaine 91.0 82.2 −8.8 85.9 −5.1
46a Dapsone 73.0 69.0 −4.0 66.6 −6.4
47 Dexamethasone 68.0 78.9 10.9 73.1 5.1
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Table 2: Continued.

No. Compd. BRPP/(%) HA Residual SVM Residual
48 Diazepam 98.7 88.7 −10.0 93.6 −5.1
49 Ethinylestradiol 98.0 86.2 −11.8 92.9 −5.1
50 Famotidine 17.0 16.2 −0.8 11.9 −5.1
51a Fentanyl 84.0 85.8 1.8 90.2 6.2
52 Flecainide 61.0 80.6 19.6 66.0 5.0
53 Hydrochlorothiazide 58.0 57.6 −0.4 63.0 5.0
54 Imipramine 90.1 93.6 3.5 85.0 −5.1
55 Isoniazid 0.0 17.4 17.4 5.1 5.1
56a Isosorbide-5-mononitrate 0.0 10.7 10.7 −11.8 −11.8
57 Ketoconazole 99.0 90.4 −8.6 104.1 5.1
58 Lovastatin 95.0 101.3 6.3 100.0 5.0
59 Mexiletine 63.0 66.3 3.3 68.1 5.1
60 Nitrazepam 87.0 97.1 10.1 94.6 7.6
61a Norethisterone 80.0 76.1 −3.9 88.3 8.3
62 Omeprazole 95.0 89.9 −5.1 92.6 −2.4
63 Pethidine 58.0 72.0 14.0 76.3 18.3
64 Phenylbutazone 96.1 104.5 8.4 101.2 5.1
65 Propafenone 97.0 79.6 −17.4 91.0 −6.0
66a Propranolol 87.0 83.4 −3.6 90.3 3.3
67 Pyrimethamine 87.0 69.2 −17.8 79.8 −7.2
68 Thiopental 85.0 76.8 −8.2 79.9 −5.1
69 Ticarcillin 65.0 50.7 −14.3 59.9 −5.1
70 Warfarin 99.0 88.0 −11.0 94.0 −5.0
atest set.

Table 3: Correlation coefficient of six-descriptor in HA model.

Descriptor Coefficient 𝑡-test
ALFA polarizability (DIP) 0.653 ± 0.056 11.755
aWPSA-3 Weighted PPSA
(Zefirov’s PC) −10.969 ± 0.860 −12.756

aHASA-1/TMSA (Zefirov’s PC) −73.908 ± 14.802 −4.993
Tot point-charge compd. of the
molecular dipole −7.799 ± 0.918 −8.495
aPNSA-2 Total charge weighted
PNSA −0.036 ± 0.005 −7.757

Final heat of formation −0.059 ± 0.016 −3.596
𝑅
2 = 0.85, 𝐹 = 63.64, RMS = 12.24,
𝑅cv
2
= 0.80

aTMSA: total molecular surface area; PNSA: partial negative surface area;
PPSA: partial positive surface area.

Consequently, change of function gene on the surface of
drug molecule can have a significant effect on BRPP. HASA-
1/TMSA is a ratio of surface area of hydrogen bond receptor
to total surface area of molecule, which is a weight area of
surface charge of hydrogen bond donor atoms. According
to the above explanation, dipole moment between molecules
and the surface of hydrogen-bonding acceptor andmolecular
surface are bothmain influencing factors of bond of drug and
plasma protein. Tot point-charge compd. of the molecular

dipole is the contribution of point charge to molecular dipole
moment.

3.2. SVM Model. In order to compare performance of SVM
with that of HA model, we choose the same test set, training
set, descriptors with HA model. In SVM model, it is very
crucial to choose kernel function. There are four kinds of
kernel functions including linear, polynomial, Gaussian, and
sigmoid. When size and dimension of samples are small, the
four kernel functions can show better performance. On the
contrary, Gaussian kernel is a better choice [30], which is
most commonly used in SVMR; namely,

𝐹 (𝑢, V) = exp (−𝛾∗|𝑢 − V|2) , (7)

where 𝛾 is a constant, 𝑢 and V are two independent variables.
𝛾 controls generalization ability of SVM by adjusting the
shape of Gaussian function. Because size and dimension of
samples are big in our study, Gaussian kernel function is a
preferred choice. The forecasting results are seen in Table 2.
After adjusting 𝛾, 𝜀, and 𝐶 simultaneously, we can get three
useful results.

Firstly, seeing Figure 2, the error is minimal when 𝛾 is
0.035. Optimal value of 𝜀 depends on data type while it also
considers support vectors. Because insensitive function 𝜀 can
control border of all training set, it is very important for SVM
to choose 𝜀. Secondly, relation between 𝜀 and errors is seen in
Figure 3. When 𝜀 = 0.173, the error is the least.
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Figure 2: Relation of 𝛾 and RMS error on LOO cross-validation.
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Figure 3: Relation of 𝜀 and RMS error on LOO cross-validation.

Thirdly, another important parameter 𝐶 is used to
measure the training error between maximal and minimal
hyperplane. If 𝐶 is too small and training is not enough, it
is very difficult to arrive to the optimal. On the contrary,
overfitting phenomenonwill happen. Relation between𝐶 and
errors is seen in Figure 4. When 𝐶 is equal to 130, the error is
the least.

According to the above training results, when the optimal
parameters 𝛾, 𝜀, and 𝐶 are equal to 0.035, 0.173, and 130
respectively, forecasting ability of the model is the most
robust and stable. In Figure 5, RMS is 11.40. For training and
test set, 𝑅2 is 0.97 and 0.92, respectively. Total 𝑅2cv is 0.83.

Comparing HA with SVM, it is found that their correla-
tion coefficient square (𝑅2) is 0.80 and 0.83, respectively, after
cross-validation, RMS is 12.24 and 11.40, respectively. Higher
𝑅
2 value and lower RMS value indicate a better predictability

of the dependent variable from the independent variables
[31]. Therefore, a conclusion can be drawn that SVM model
has better stability and more robust forecasting ability for
BRPP than HA model, which is a good tool to construct PK
a model.

4. Conclusion

In this paper, we construct HA and SVM model to forecast
BRPP, respectively. By calculating descriptors of molecular
structure, we found that it is satisfactory for forecasting
results of nonlinear QSAR model based on SVM and linear
QSAR model based on HA. By comparison of two methods,
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Figure 4: Relation of 𝐶 and RMS error on LOO cross-validation.
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Figure 5: Forecasted BRPP and observed BRPP of HA.

nonlinear model based on SVM is more stable and more
robust to forecast BRPP than linear model based on HA.
Therefore, SVMmodel is a more effective tool to study QSAR
and BRPP of a drug.

However, because the comparison is primarily based on
the analysis of one real dataset, our research has certain
limitations. The conclusions need research supports of more
datasets. SVM performance of predicting BRPP should be
studied and discussed further by more datasets in the future.
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