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Abstract: The pathobiology of ascending aorta aneurysms (AAA) onset and progression is not well
understood and only partially characterized. AAA are also complicated in case of bicuspid aorta valve
(BAV) anatomy. There is emerging evidence about the crucial role of endothelium-related pathways,
which show in AAA an altered expression and function. Here, we examined the involvement
of ERG-related pathways in the differential progression of disease in aortic tissues from patients
having a BAV or tricuspid aorta valve (TAV) with or without AAA. Our findings identified ERG as
a novel endothelial-specific regulator of TGF-β-SMAD, Notch, and NO pathways, by modulating
a differential fibrotic or calcified AAA progression in BAV and TAV aortas. We provided evidence
that calcification is correlated to different ERG expression (as gene and protein), which appears to be
under control of Notch signaling. The latter, when increased, associated with an early calcification in
aortas with BAV valve and aneurysmatic, was demonstrated to favor the progression versus severe
complications, i.e., dissection or rupture. In TAV aneurysmatic aortas, ERG appeared to modulate
fibrosis. Therefore, we proposed that ERG may represent a sensitive tissue biomarker to monitor
AAA progression and a target to develop therapeutic strategies and influence surgical procedures.

Keywords: ascending aorta aneurysm; bicuspid aorta valve; tricuspid aorta valve; ERG
transcriptional factor pathway; TGF-β-SMAD; Notch; NO pathways modulation

1. Introduction

Current evidence underlines that ascending aorta aneurysm (AAA) is not the result of
a unique risk factor, but rather appears as a multifactorial disease, having a heterogenous
and complex cluster of cardiovascular abnormalities at diverse levels, from the genetic and
epigenetic to molecular and cellular levels [1–3]. However, AAA’s biology of onset and
progression is yet not well understood, and remains partially characterized, and particularly
for the sporadic forms [2,3]. Such disease is also complicated in case of bicuspid aorta
valve (BAV) anatomy [4–6]. AAA in BAV cases appears to be characterized by a typical
pathogenesis and an early onset’s age, as well as by an increased risk of evolving in severe
aortic complications (i.e., dissection or rupture), when certain diameters, as well as a
significant rate of calcification, are reached [4–6]. Currently, it is emerging the crucial role
of endothelial dysfunction in AAA development and dissection/rupture associated with
BAV, closely related to deregulation of regulatory pathways principally in endothelial cells
(EC), and consequently in vascular smooth muscle cells (VSMC) [4–6]. Consistent with
this, we have demonstrated in BAV cases, when compared with subjects with tricuspid
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aortic valve (TAV), a deregulation of crucial EC pathways (i.e., Notch, TGF-β, TLR-4 and
others), a reduced capacity of vascular repair significantly related to a decreased blood
number of endothelial progenitor cells (EPC), and an altered T and B immune response
to tissue damage [7–11]. In addition, we have also demonstrated that such endothelial
alterations in BAV are significantly associated with an increased VSMC apoptosis, as
well as a wall-remodeling characterized by calcification. We have also reported that such
mechanisms positively correlate to an earlier progression of BAV versus moderate (i.e.,
aorta stenosis and calcification) or severe AAA complications, including dissection and
rupture [7–11]. However, it is not clear which of the abovementioned mechanisms, or ones
not known, are the main contributors, of aorta BAV complications, i.e., AAA. In addition, it
is not entirely recognized whether hemodynamic and environmental factors also play a
fundamental role, as well as epigenetic or transcriptional factors can act as hub or be result
of a complex interplay of pathway networks [10,12]. Probably, a synergistic action of all
these elements reflects the different AAA phenotypes associated with BAV, as stressed in
our works, than those detected in TAV individuals [4,10,12]. Differently, TAV subjects show
a more advanced age of AAA onset, about versus the 70–75 years, and a pathogenesis more
related to vascular aging and the resultant remodeling and degeneration process associated
with a preeminent fibrosis, that significantly reduces the probability of AAA progression in
dissection and rupture [2,13–17]. Precisely, a typical vascular remodeling and degeneration,
accompanied by wound healing associated with a significant increase of circulating EPC
levels [9,11], tissue expression of TGF-β and Smad-3 [18–21] consequent inflammation,
endothelial-to-mesenchymal transition (EndMT) [22–24] and fibrosis [25], embody aorta
dilation, or better, AAA disease, in TAV patients.

These observations lead to increasingly strengthen the hypothesis that AAA in aortas
with TAV or BAV valves uses different trajectories both in development and progression,
where the differential mechanisms involved requires to be fully elucidated, by detecting
all the molecules involved, and particularly the hub pathway, having the role of principal
driver and regulator of other crucial pathways. Consequently, diverse aspects remain
unresolved and numerous questions surface, even if the interpretation of current evidence
suggests the crucial role of endothelium and its pathways, which show an expression
and functions dependent on the maintained EC homeostasis or its alterations [14,26–29].
Such leads us to investigate on the transcriptional modulation of aorta endothelium in
conditions of BAV or TAV, with or without AAA. Accordingly, a genome-wide association
study [30] and the works of Dr Randi [31–35] have evidenced the fundamental role in EC of
a transcription factor, ERG, encoded by ETS-related gene, able to regulate endothelial home-
ostasis and the consequent vascular stability, as well as its alterations, and the evocation of
pathological conditions, by controlling a wide range of targets and pathways, including
Notch, TLR-4 and TGF-β-SMAD1/3 [31–36]. Precisely, here, we assessed the eventual
involvement of ERG factor in aortas from BAV and TAV cases with or without AAA, and in
the mechanisms related to is differential progression. Such investigation was conducted a
broad basis to first get a complete identification on the potential differences in expression
and roles among the diverse groups (four: with or without AAA, respectively with aorta
diameter ≥45 mm or ≤45 mm, see guidelines indicated in reference [37]) of BAV and TAV
cases included in the study. To achieve such main aim, our study was complemented by
histological and immunohistochemical investigations on tissue aorta samples from four
groups (BAV, BAV with AAA, TAV and TAV with AAA), as well as by an extensive real
time PCR-based gene expression analyses. The goal of this study was to reveal new, yet
unidentified, alterations in EC from aneurysmatic or not aortas, by comparing BAV versus
TAV EC, as well as to diversify the roles of specific detected molecules in AAA formation
and progression. Based on the results obtained, we also evidenced a potential model of
progression of AAA.
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2. Results
2.1. BAV and TAV Patient Characteristics

Demographic and clinical characteristics of the study population are synthesized
in Table 1. BAV and TAV patient’s features are summarized in Table 2. No significant
differences were observed regarding the size of aorta dilatation between BAV and TAV
cases affected by AAA. However, BAV cases are younger than TAV cases. Hypertension
was a common risk factor to both BAV and TAV patients, although in BAV population
the percentage of hypertensive was higher. Renal failure and diabetes were more fre-
quent in TAV patients than in BAV. The mean aortic root diameter in BAV patients was
42.6 ± 6.1 mm, instead in TAV patients was 41.9 ± 5.6 mm. The mean ascending aorta
diameter in BAV patients was 50.2 ± 6.8 mm, instead in TAV patients was 52.7 ± 8.9 mm.
As regards the morphological aspects detectable during the cardiac operation, in 100% of
BAV population we detected a coronary ostia dislocation and an origin of the epi-aortic
vessels from the convexity of the ascending aorta, in 10% of cases a Valsalva sinus prolapse,
in 30% an asymmetric dilatation of the ascending aorta and in 80% an aortic wall thickness.
In TAV patients, we revealed a coronary ostia dislocation in 90% of patients, an asymmetric
dilatation of the ascending aorta in 30% of patients, a left ventricle/aortic valve disjunction
in 20% of cases, an aortic wall thickness in 60% of cases. Comparing TAV and BAV patients
with an ascending aorta diameter ≥45 mm and >45 mm (Table 3), we noticed that the
Valsalva sinus prolapse was significantly associated to TAV patients with an ascending
aorta diameter <45 (Group 4), instead the asymmetric dilatation of the ascending aorta was
significantly associated to BAV and TAV patients with an ascending aorta <45 mm (Group 2
and Group 4).

Table 1. Demographic and Clinical characteristic and Histological Findings of the Study Population.

Variables Patients (n = 20)

Demographic and Clinical Data
Age (years) 63.7 ± 15.5
Marfan Syndrome 0 (0%)
Hypertension 15 (75%)
Diabetes 1 (5%)
Renal Failure 2 (10%)
Peripheral Vascular Disease 0 (0%)
Family History for Aneurysm 1 (5%)
Other Vascular Disease 1 (5%)
Coronary Artery Disease 9 (45%)
Valsalva Sinuses Prolapse 5 (25%)
Left Ventricular/Aortic Valve disjunction 2 (10%)
Asymmetric Dilation of Ascending Aorta 6 (30%)
Coronary Ostia Dislocation 19 (95%)
Aortic Wall Thickness 14 (70%)
Origin of the epi-aortic vessels from the aorta 18 (90%)
Ejection Fraction (%) 54.5 ± 8.4
Aortic Root Diameter 42.3 ± 5.7
Ascending Aorta Diameter 51.5 ± 7.8
Histological Data
% Endothelial ERG+ cell/tot cells 24.4 ± 25.8
% vsmcs psmad3+ 11.08 ± 8.97
% alfa SMA+ endothelial cells 23.34 ± 26.83
% S100A4+ endothelial cells 21.33 ± 25.33
% Fibrotic area (Masson standing) 12.23 ± 11.81
% Calcific area (Alizarin standing) 0.32 ± 0.19
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Table 2. Demographic, clinical, histological data comparison between patients with bicuspid aortic
valve (BAV) and patients with tricuspid aortic valve (TAV).

BAV (n = 10) TAV (n = 10) p-Values

Demographic and Clinical Data
Age (years) 56.1 ± 17 71.3 ± 9.5 0.024
BMI 27.8 ± 4.1 27.5 ± 4.7 0.759
Male 8(80%) 6(60%) 0.628
Caucasians 10(100%) 10(100%) 1.000
Marfan Syndrome 0 (0%) 0 (0%) -
Hypertension 9 (90%) 6 (60%) 0.303
Diabetes 0 (0%) 1 (10%) 1.000
Renal Failure 0 (0%) 2 (20%) 0.474
Peripheral Vascular Disease 0 (0%) 0 (0%) -
Family History for Aneurysm 0 (0%) 1 (10%) 1.000
Other Vascular Disease 1 (10%) 0 (0%) 1.000
Coronary Artery Disease 4 (40%) 5 (50%) 1.000
Valsalva Sinuses Prolapse 1 (10%) 4 (40%) 0.303
Left Ventricular/Aortic Valve disjunction 0 (0%) 2 (20%) 0.474
Asymmetric Dilation of Ascending Aorta 3 (30%) 3 (30%) 1.000
Coronary Ostia Dislocation 10 (100%) 9 (90%) 1.000
Aortic Wall Thickness 8 (80%) 6 (60%) 0.628
Origin of the epiaortic vassels from the
ascending aorta 10 (100%) 8 (80%) 0.474

Ejection Fraction (%) 53.6 ± 8.6 55.4 ± 8.7 0.646
Aortic Root Diameter 42.6 ± 6.1 41.9 ± 5.6 0.792
Ascending Aorta Diameter 50.2 ± 6.8 52.7 ± 8.9 0.489
Histological Data
% Endothelial ERG+ cell/tot cells 39.8 ± 29 9 ± 6.2 0.0082
% Vsmcs psmad3+ 8.7 ± 3.9 13.4 ± 11.9 0.2581
% alfa SMA+ endothelial cells 11.5 ± 9 35.2 ± 33.6 0.0557
% S100A4+ endothelial cells 6.6 ± 2 36 ± 29.5 0.0117
% Fibrotic area (Masson staining) 5.9 ± 1.8 18.5 ± 14.3 0.0212
% Calcific area (Alizarin staining) 0.353 ± 0.178 0.277 ± 0.208 0.3918
% Notch+ Endothelial cells 13.9 ± 10.1 18.6 ± 10.4 0.3146
% Vsmcs Notch+ cells 5.27 ± 1.23 14.1 ± 9.6 0.0174
% eNOS+ cells 38.9 ± 8.4 4.9 ± 4.06 <0.001

Table 3. Comparison between BAV patients with an ascending aorta ≥ 45 mm (Group 1), BAV
patients with an ascending aorta < 45 mm (Group 2), TAV patients with an ascending aorta ≥ 45 mm
(Group 3), TAV patients with an ascending aorta < 45 mm (Group 4).

Variables Group
1

Group
2

Group
3

Group
4 p-Value

p-Value
Group

1 vs.
Group

2

p-Value
Group

1 vs.
Group

3

p-Value
Group

1 vs.
Group

4

p-Value
Group

2 vs.
Group

3

p-Value
Group

2 vs.
Group

4

p-Value
Group3

vs.
Group

4

Demographic
and Clinical
Data
Age (years) 62.6 ±

15.1
49.6 ±

17.8
66.6 ±

7.7 76 ± 9.5 0.042 0.830 1.000 0.764 0.349 0.036 1.000 a
Marfan
Syndrome 0 (0%) 0 (0%) 0 (0%) 0 (0%) -

Hypertension 4 (80%) 5
(100%) 2 (40%) 4 (80%) 0.291

Diabetes 0 (0%) 0 (0%) 0 (0%) 1 (20%) 1.000
Renal Failure 0 (0%) 0 (0%) 2 (40%) 0 (0%) 0.211
Peripheral
Vascular
Disease

0 (0%) 0 (0%) 0 (0%) 0 (0%) -

Family History
for Aneurysm 0 (0%) 0 (0%) 0 (0%) 1 (20%) 1.000
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Table 3. Cont.

Variables Group
1

Group
2

Group
3

Group
4 p-Value

p-Value
Group

1 vs.
Group

2

p-Value
Group

1 vs.
Group

3

p-Value
Group

1 vs.
Group

4

p-Value
Group

2 vs.
Group

3

p-Value
Group

2 vs.
Group

4

p-Value
Group3

vs.
Group

4

Other Vascular
Disease 1 (20%) 0 (0%) 0 (0%) 0 (0%) 1.000
Coronary
Artery Disease 1 (20%) 3 (60%) 3 (60%) 2 (40%) 0.762
Valsalva
Sinuses
Prolapse

0 (0%) 1 (20%) 0 (0%) 4 (80%) 0.020

Left
Ventricl/Aortic
Valve
disjuction

0 (0%) 0 (0%) 0 (0%) 2 (40%) 0.211

Asymmetric
Dilation of
Ascending
Aorta

0 (0%) 3 (60%) 0 (0%) 3 (60%) 0.033

Coronary Ostia
Dislocation

5
(100%)

5
(100%) 4 (80%) 5

(100%) 1.000

Aortic Wall
Thickness 4 (80%) 4 (80%) 3 (60%) 3 (60%) 1.000

Origin of the
epiaortic
vassels from
the aorta

5
(100%)

5
(100%)

5
(100%) 3 (60%) 0.211

Ejection
Franction (%)

53.6 ±
11.8 53.6 ± 5 51.6 ±

9.1
59.2 ±

7.1 0.555

Aortic Root
Diameter

38.2 ±
5.8 47 ± 1.4 39.6 ±

5.7 44.2 ± 5 0.037 0.064 1.000 0.398 0.163 1.000 0.902 a
Ascendinng
Aorta Diameter

56.2 ±
2.8

44.2 ±
2.4 60 ± 6.3 45.4 ±

2.5 <0.001 <0.001 0.827 0.002 <0.001 1.000 <0.001 a

Histological
Data
% Endotheliali
ERG+ cell/tot
cells

66.1 ±
11.1

13.5 ±
5.7

6.6 ±
3.7

11.5 ±
7.6 <0.001 <0.001 <0.001 <0.001 1.000 1.000 1.000 a

% vsmcs
psmad3+

9.19 ±
5.03

8.25 ±
2.81

23.05 ±
9.17

3.84 ±
2.43 0.008 1.000 0.184 0.363 0.184 0.363 0.002 k

% alfa SMA+

endothelial
cells

9.87 ±
5.98

13.2 ±
11.8

65.6 ±
14.6

4.66 ±
1.78 0.006 1.000 0.049 0.930 0.085 0.657 0.002 k

% S100A4+

endothelial
cells

7.77 ±
1.51

5.5 ±
1.83

63.44 ±
8.03

8.62 ±
3.94 0.005 0.599 0.074 1.000 0.001 0.599 0.074 k

% Fibrotic area
(Masson
staining)

4.38 ±
0.51

7.52 ±
1.11

31.87 ±
3.35

5.16 ±
0.34 0.001 0.031 <0.001 0.785 0.544 0.447 0.016 k

% Calcific area
(Alizarin
staining)

0.34 ±
0.16

0.37 ±
0.21

0.15 ±
0.22

0.41 ±
0.09 0.144

% Notch+

Endothelial
cells

20.5 ±
10.1

7.3 ±
4.4

24.8 ±
11.1

12.4 ±
4.6 0.042 0.092 <0.001 <0.001 <0.001 <0.001 0.249 a

% vsmcs
notch+ cells

6.4 ±
0.4

4.2 ±
0.4

22.9 ±
3.7

5.3 ±
1.4 0.002 0.098 0.326 0.855 0.001 0.855 0.023 k

% eNOS+ cells 43.4 ±
6.5

34.4 ±
8.1

1.3 ±
0.5

8.6 ±
1.6 0.001 1.000 <0.001 0.042 0.012 0.363 0.544 k

a = by ANOVA test; k = Kruskall Wallis test.

2.2. Differential Expression of Endothelial ERG Transcription Factor in BAV vs. TAV Aortic Intima

In our study, immunohistochemical and gene expression analyses evidenced that
aortic tissues of BAV cases with AAA had a significantly higher percentage of ERG+ EC
cells in their aortic tissue samples, accompanied by a significant difference in gene ERG
transcription than the other groups (see Figure 1). By contrast, a significant reduced
number of aortic intimal ERG+ EC cells, as well as a significant decreased level of ERG
gene characterized TAV cases with or without AAA (see Figure 1).



Int. J. Mol. Sci. 2022, 23, 10848 6 of 17

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 18 
 

 

2.2. Differential Expression of Endothelial ERG Transcription Factor in BAV vs. TAV Aortic 

Intima 

In our study, immunohistochemical and gene expression analyses evidenced that 

aortic tissues of BAV cases with AAA had a significantly higher percentage of ERG+ EC 

cells in their aortic tissue samples, accompanied by a significant difference in gene ERG 

transcription than the other groups (see Figure 1). By contrast, a significant reduced num-

ber of aortic intimal ERG+ EC cells, as well as a significant decreased level of ERG gene 

characterized TAV cases with or without AAA (see Figure 1). 

 

Figure 1. Increased ERG expression and miR-126-5P up-regulation in BAV tunica intima with aortic 

diameter ≥ 45 mm. Gene expression analysis on RNA extracted from tunica intima of aortic tissue 

show an increased level of ERG (A) and miR-126-5P (B) transcripts in BAV patients with aortic di-

ameter ≥45 mm compared with the other groups. Changes in gene expression were calculated using 

the comparative ΔΔCT method. Fold change is considered significant for values >2.0 and <0.5. Rep-

resentative images (C) and semiquantitative evaluation (D) of ERG immunostainings of BAV and 

TAV tunica intima that show an increased expression in BAV with aortic diameter ≥ 45 mm com-

pared with the other groups. Averages are reported as percentage of ERG+ endothelial cells ± SEM. 

* p < 0.01. Scale bar = 10. 

  

Figure 1. Increased ERG expression and miR-126-5P up-regulation in BAV tunica intima with aortic
diameter ≥45 mm. Gene expression analysis on RNA extracted from tunica intima of aortic tissue
show an increased level of ERG (A) and miR-126-5P (B) transcripts in BAV patients with aortic
diameter ≥45 mm compared with the other groups. Changes in gene expression were calculated
using the comparative ∆∆CT method. Fold change is considered significant for values >2.0 and <0.5.
Representative images (C) and semiquantitative evaluation (D) of ERG immunostainings of BAV and
TAV tunica intima that show an increased expression in BAV with aortic diameter ≥45 mm compared
with the other groups. Averages are reported as percentage of ERG+ endothelial cells ± SEM.
* p < 0.01. Scale bar = 10.

2.3. Upregulation of Tissue ERG Gene Expression in BAV Cases with AAA Correlates with
miR126 Levels

Since recent literature reports evidence that miR-126-5P targets mesenchymal genes
(i.e., SMAD3/2 genes) [36] in EC by inhibiting EndMT transition, we evaluated its expression
in aorta intimal tissue extracts. Interestingly, we observed that miR-126-5P was significantly
up-expressed only in tissue aneurysmatic samples from BAV cases (see Figure 1), and it
correlates positively with ERG gene levels (r = +0.29, p = 0.02, by linear logistic regression,
Pearson’s test).
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2.4. Downregulation of ERG Gene and miR126 Reciprocally Promotes Higher Expression of SMAD3
in TAV Aortic Tissues with AAA and Higher Levels of αSMA+/S100A4+ EC and EndMTs

To shed light on the mechanisms promoted by ERG gene and miR-126-5P downregu-
lation in intimal aortic tissue of TAV, we performed immunohistochemistry. We detected
higher levels of SMAD3 and αSMA+/S100A4+ molecules, in the aortic EC from the intimal
samples of the TAV group with AAA than in other aorta tissue samples of other groups.
Such results suggested an increased aorta fibrosis in aorta aneurismatic TAV tissues, being
the molecules identified the typical mesenchymal biomarkers of EndMT transition (see
Figures 2 and 3 and related Table 3).
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Figure 2. Higher levels of mesenchymal markers characterize TAV tunica intima with aortic diameter
≥45 mm. Representative images (A) and semiquantitative evaluation (B) of α-SMA immunostainings
of BAV and TAV tunica intima show an increased expression in TAV with aortic diameter ≥45 mm
compared with the other groups. Scale bar = 100 µm. Representative images (C) and semiquantitative



Int. J. Mol. Sci. 2022, 23, 10848 8 of 17

evaluation (D) of S100A4 immunostainings of BAV and TAV tunica intima show an increased
expression in TAV with aortic diameter≥ 45 mm compared with the other groups. Scale bar = 100 µm.
Representative images (E) and semiquantitative evaluation (F) of eNOS immunostainings of BAV and
TAV tunica intima show a reduced expression in TAV compared with the other groups. Scale bar = 100 µm.
Averages are reported as percentage of α-SMA+, S100A4+ and eNOS+ endothelial cells ± SEM.
* p < 0.01; # p < 0.01 TAV < 45 mm vs. TAV ≥ 45 mm.
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Figure 3. Increased pSMAD3 and NICD expression characterize TAV tunica intima with aortic
diameter ≥45 mm. Representative images (A) and semiquantitative evaluation (B) of pSMAD3
immunostainings of BAV and TAV tunica intima show an increased expression in TAV with aortic
diameter ≥45 mm compared with the other groups. Scale bar = 100 µm. Representative images
(C) and semiquantitative evaluation (D) of NICD immunostainings of BAV and TAV tunica intima
show an increased expression in BAV and TAV with aortic diameter ≥45 mm compared with the
other groups. Scale bar = 100 µm. Averages are reported as percentage of pSMAD3 and NICD+

endothelial cells ± SEM. * p < 0.05.

2.5. A Higher Rate of Fibrosis Characterizes TAV Aortic Tissues with AAA, as Well as Increased
Calcification in BAV Tissues with AAA

To validate the results obtained, we evaluated the rate of fibrosis in the aorta tissues
by using Masson’s trichrome staining (Table 3 and Figure 4). Remarkably, we observed the
highest grade of fibrosis in aortic medial tissue samples from TAV cases with AAA than
in other groups (see Figure 4). By using Alizarin red staining, we also detected a higher
degree of calcification in BAV than TAV aortic tissues with AAA (Figure 4).
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expression with lower calcification. Gene expression analysis on RNA extracted from tunica media
of aortic tissue show an increased levels of ERG (A) and miR-126-5P (B) transcripts in BAV tunica
media with aortic diameter ≥45 mm compared with the other groups. Changes in gene expression
were calculated using the comparative ∆∆CT method. Fold change is considered significant for
values >2.0 and <0.5. Representative images (C) and semiquantitative evaluation (D) of NICD
immunostainings of BAV and TAV tunica media that show an increased expression in TAV with aortic
diameter ≥ 45 mm compared with the other groups. Scale bar = 100 µm. Representative images
(E) and morphometric analysis (F) of BAV and TAV tunica media sections stained with Masson’s
trichrome that show an increased fibrotic area in TAV with aortic diameter ≥45 mm compared with
the other groups. Scale bar = 500 µm. Averages are reported as percentage of NICD+ VSMCs ± SEM.
Representative images (G) and morphometric analysis (H) of BAV and TAV tunica media sections
stained with Alizarin Red that show an increased calcified area in BAV with aortic diameter ≥45 mm
compared with the other groups. Scale bar = 500 µm. Averages are reported as percentage of
calcified or fibrotic area ± SEM. * p < 0.05; ** p < 0.01; # p < 0.01 BAV < 45 mm vs. BAV ≥ 45 mm;
§ p > 0.05 TAV < 45 mm vs. BAV ≥ 45 mm.

2.6. Decreased Levels of Notch Intracellular Domain (NICD) in EC and VSMCs from BAV vs.
TAV Aorta Tissues

We also assessed by immunohistochemistry the percentage of Notch intracellular
domain (NICD)+ EC and VSMCs in BAV vs. TAV aortic tissues. Interestingly, we observed
significantly reduced percentages of both NICD+ EC and VSMCs in BAV vs. TAV aorta
tissues, with more reduced values in BAV cases with non-aneurysmatic aortic tissues
(see Figures 3 and 4), by confirming the deregulated expression of Notch pathway in
BAV cases. However, the comparison of obtained data led us to evidence an interesting
aspect, that is a positive correlation between NICD+ and ERG+ EC in BAV aortic tissues
from AAA or non-aneurysmatic groups (r = +0.17 and r = +0.29, p = 0.02 and p = 0.003,
respectively, by linear logistic regression, Pearson test). Precisely, we observed comparable
reduced percentages of NICD+ and ERG+ EC in aorta BAV tissues from non-anurysmatic
group, and a similar increase of NICD+ and ERG+ EC in BAV aorta with AAA, by likely
suggesting a close relationship between the two molecules. Differently, we detected the
highest levels of NICD+ EC and VSMCs in aorta tissues from non and aneurysmatic
TAV groups. Furthermore, such higher levels correlate with the significantly reduced
calcification observed in aorta TAV than BAV tissues (r = −0.25, p = 0.04, by linear logistic
regression, Pearson’s test, Figure 4).

2.7. Higher eNOS Levels in BAV vs. TAV Aortic Tissues

To provide further data for elucidating the different rate of calcification observed in
BAV aorta tissues, we also completed our appraisals by detecting the percentages of eNOS+

EC in BAV vs. TAV aorta tissues by using immunohistochemical analysis. Interestingly,
we observed a higher number of eNOS+ EC in all the BAV aorta tissues, with a trend in
amplitude in aneurysmatic aorta tissues (see Figure 2).

2.8. Upregulated Expression of ERG Endothelial Transcription Factor and miR-126-5P in Aortic
Medial Tissues

Given the interesting data obtained in examining aorta intima tissues, we also detected
the levels of gene expression of ERG in aorta media tissues, by evidencing significative
values in BAV with AAA tissue samples than the other aorta media tissue examined
(Figure 4).

3. Discussion

Our histological and immunohistochemical investigations conducted in tissue aorta
samples from four groups of individuals enrolled in study (BAV, BAV with AAA, TAV and
TAV with AAA), and cotemporally complemented by extensive real time PCR-based gene
expression analyses, permitted to obtain promising findings, which agree our suggestion
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about AAA in aortas with a BAV or TAV valve of following different trajectories both in
development and progression. Precisely, they suggest that ERG transcriptional factor drives
a differential transcription and expression of molecular pathways correlated to a diverse
aorta wall remodeling and degeneration in case of BAV or TAV condition. Such, indeed,
results in the evocation of diverse pathological conditions, ranging from EndMT transition
to higher fibrosis, or from high levels of miR-126-5P to higher calcification, by controlling
a wide range of targets and pathways, including Notch, SMAD3 and αSMA+/S100A4+

molecules. Accordingly, we observed in aortic tissues of BAV cases with AAA a significantly
higher percentage of ERG+ EC cells, accompanied by a significant difference transcrip-
tional levels of ERG gene than the other groups. Differently, TAV cases with or without
AAA showed a significantly reduced number of aortic intimal ERG+ EC cells, as well as
a significantly decreased level of ERG gene transcription. In addition, we also detected
in tissue aneurysmatic samples from BAV cases an up-expression of miR-126-5P, known
targeted mesenchymal genes (i.e., SMAD3/2 genes) [36] in EC by inhibiting EndMT transi-
tion, that positively correlated with higher ERG gene transcription levels. Consistent with
such data, we assessed by immunohistochemistry analysis and via Masson’s trichrome
staining, significantly decreased levels of SMAD3 and αSMA+/S100A4+ molecules and
a significantly reduced rate of fibrosis in tissue aorta samples from BAV cases with AAA
when compared with TAV cases. Furthermore, an increased degree of calcification in BAV
with AAA than TAV aortic tissues with AAA was observed by using Alizarin red staining.
In contrast, we detected, in aortic medial tissue samples from TAV cases with AAA than the
other groups, the highest grade of fibrosis associated with the highest levels of SMAD3 and
αSMA+/S100A4+ molecules, the typical mesenchymal biomarkers of EndMT transition.

The interpretation of such findings obtained led us to suggest that ERG likely regulates
the gene expression of miR-126-5P, which in turn modulates the gene expression of SMAD
molecules, by especially inducing their inhibition. This would explain the reduced collagen
accumulation and fibrosis in all the areas of aneurysmatic BAV aortic tissues, where an
increased Alizarin red specific staining was while evidenced by indicating an increased
calcification process.

In the literature, our data are in accordance with the results obtained by the group
of Randi, that have recently demonstrated the ERG effect on canonical TGF-β-SMAD
signaling [31–35]. They have shown that ablation of ERG expression prevents vascular
fibrosis, due to the inhibition of SMAD3 activity and activation of SMAD1 pathway. The
inhibition of ERG expression was evaluated by Randi’s group in liver chronic diseases and
correlated with EndMT and the rate of SMAD 3-mediated fibrogenesis. Likewise, Zhang
and coworkers [38] have reported that ERG reduces cardiac fibrosis via the inhibition of
endthelin-1, and Nagai group [36] has evidenced that the downregulation of ERG in EC
triggers EndMT.

Furthermore, we also showed that BAV tissues had significantly reduced percentages
of both NICD+ EC and VSMCs than TAV aorta tissues, with more reduced values observed
in BAV cases with non-aneurysmatic aortic tissues. Such datum has first confirmed the
deregulated expression of Notch pathway that characterizes the BAV cases. Besides, the
comparison of obtained data led us to evidence a positive correlation between NICD+

and ERG+ EC in BAV aortic tissues from AAA or non-aneurysmatic groups. Precisely, we
detected comparable reduced percentages of NICD+ and ERG+ EC in aorta BAV tissues
from non-anurysmatic group, and a similar increase of NICD+ and ERG+ EC in BAV aorta
with AAA, by likely suggesting a close relationship between the two molecules. Differently,
we detected the highest levels of NICD+ EC and VSMCs in aorta tissues from non and
aneurysmatic TAV groups. Current evidence likely led us to suppose that Notch signaling
regulates ERG expression by promoting a positive ERG-Notch loop, which in turn controls
the expression of other key pathways crucial in AAA progression [39–41]. We hypothesized
that such interplay can likely determine a gene profile responsible of calcification, as well
as of BAV severe complications observed in aneurysmatic aortic tissues. In contrast, we
showed the highest levels of NICD+ EC and VSMCs in aortic tissues from aneurysmatic
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TAV group. The latter might confirm the role of Notch signaling in triggering EndMT
fibrosis, by activating BMP and TGF-β signaling, which in turn synergizes with Notch
pathway to accelerate EndMT. Consistently, Notch signaling has been demonstrated both to
inhibit runt-related transcription factor 2, a regulator of osteoblast cell fate, and to increase
the expression of SRY-Box transcription factor 9, which is able to prevent calcification, as
well as to evocate regulation of bone morphogenetic protein 2, also partially implicated in
the calcification prevention [42–49].

Finally, we concluded our investigations by detecting the percentages of eNOS+ EC
in BAV vs. TAV aorta tissues by using immunohistochemical analysis in order to further
elucidate the different rate of calcification observed in BAV aorta tissues. Interestingly,
we observed a higher number of eNOS+ EC in all the BAV aorta tissues, with a trend
in amplitude in aneurysmatic aorta tissues. Such datum led us to hypothesize that this
typical augment might be associated with an increased accumulation of NO uncoupled
products contributing to the oxidative stress, and favoring early AAA progression toward
adverse clinical events such as dissection or rupture [50]. Superoxide radicals can, indeed,
react with NO, forming peroxynitrite, a potent oxidant, which can contribute to endothe-
lial dysfunction, as well as to reduce NO bioavailability and. in turn, facilitate calcium
deposition [50].

4. Materials and Methods
4.1. Population Enrolled

For this study, aortic samples were collected from the aortas of TAV (n = 5) and BAV
(n = 5) cases with valve alterations and with ascending aorta diameter ≤45 mm and from
TAV (n = 5) and BAV (n = 5) cases with ascending aorta diameter ≥45 mm undergone to
elective surgical procedures between 2018 and 2022 in the Department of Cardio-surgery
of Tor Vergata University of Rome. Appropriate exclusion criteria were also used during
the BAV/TAV enrollment, for the following diseases: (a) cardiovascular diseases were
excluded according to history and by detecting apposite laboratory and imaging biomark-
ers as indicated by more recent ESC or ASC guidelines; (b) connective tissue disorders
were excluded by assessing markers of inflammation immunological (i.e., autoantibodies)
and imaging biomarkers; (c) inflammatory diseases (from infections to hematological,
gastrointestinal, urogenital, pulmonary, neurological, endocrinal inflammatory disorders,
and tumors included) by detecting apposite laboratory (including complete blood cell
count, erythrocyte sedimentation rate, glucose, urea nitrogen, creatinine, electrolytes, C
reactive protein, liver function tests, iron, and proteins) and imaging biomarkers. In order
to exclude ascending aorta aneurysms related to connective tissue syndromes (Marfan
Syndrome, Ehlers Danlos, Loeys Diets) all patients undergo clinical (Ghent Criteria) and
genetic screening in our “Reference Center of Rare Diseases and Marfan Syndrome” in Tor
Vergata University. In addition, all the cases enrolled belonged to the same ethnic group.
Thus, a very homogenous population was studied.

Surgical indication were: (1) aortic diameter ≥ 45 mm in presence of a severe TAV
or BAV aortic valve dysfunction; (2) aortic diameter ≥ 50 mm in BAV patients without
aortic valve dysfunction; (3) aortic diameter ≥ 55 in TAV patients without aortic valve
dysfunction; (4) intraoperative findings unless the diameter: significant coronary ostia
dislocation, aortic wall thickness, left ventricle/aortic valve disjunction with evidence of
cardiac muscle in transparency at the level of the right/non coronary sinus, asymmetric
dilatation of Valsalva sinus/sinuses [51]. In the grouping of patients, we have chosen a
cut-off diameter of 45 mm because it is the diameter advocated in the “2021 ESC/EACTS
Guidelines for the Management of Valvular Heart Disease” for ascending aorta replacement
in patients with aortic valve diseases (severe stenosis or regurgitation). Patients with an
ascending aorta < 45 mm underwent ascending aorta replacement only in presence of
specific intraoperative findings indicated above. Furthermore, elective or acute surgical
treatment (using wheat operation, Bentall-De Bono and Tirone David surgical techniques,
whenever possible) and complementary tubular-ascending aorta resection were performed
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in the BAV and TAV patients with AAA after evaluation of aortic transverse diameter
sizes by Computed Tomography scanning according to recent guidelines. Accordingly,
an experienced physician evaluated aortic transverse diameter sizes by echocardiography
(Philips iE. 33) before either elective or urgent surgery. The dimension of the aortic annulus,
sinuses of Valsalva, proximal ascending aorta (above 2.5 cm of the sino-tubular junction)
and aortic arch were assessed pre-operatively by trans-thoracic echocardiography as well as
in the operating theatre by trans-oesophageal-echocardiography before the institution of the
cardiopulmonary by-pass. These measures, together with demographic and clinical data
(including comorbidities) were obtained from patients’ medical records and are presented
in Table 1.

The Local Ethics Committee approved the study (protocol n.179/18-01-Aorta-2018)
and written informed consent was obtained from each patient prior to the study. This study
conformed to the principles outlined in the Declaration of Helsinki.

4.2. Histochemical and Immunohistochemical Analysis

Serial 4-µm thick paraffin sections from 10% neutral-buffered formalin-fixed aortic
tissue samples were stained with Alizarin red and Masson’s trichrome staining. Calcium
deposits and collagen fiber accumulation were evaluated calculating the fibrotic or calcified
area through Image J software (NIH, Bethesda, MD, USA). Images were previously captured
using a digital camera (DXM1200F, Nikon, Tokyo, Japan) connected to the ACT-1 software
(NIH, Bethesda, MD, USA) [52] For immunohistochemistry, sections were reacted with
rabbit monoclonal anti-phosphoSMAD3 (1:200; Abcam, Cambridge, UK), anti-ERG (1:150;
Merck KGaA, Darmstadt, Germany) and anti-S100A4 (1:250; Dako, Santa Clara, CA, USA),
rabbit polyclonal anti-Notch Intracellular Domain (NICD; 1:200; Bioss Antibodies Inc.,
Woburn, MA, USA), mouse monoclonal anti-αSMA (1:150; Dako) and anti-eNOS (1:100;
BD Bioscences, Becton, Dickinson, UK). Positive and negative controls were used [52]. For
the immunohistochemical evaluation, the percentage of positive endothelial cells/field
(40×magnification) were counted.

4.3. Gene Expression Analysis

Total RNA and miRNA extraction from endothelium and tunica media derived from
cryopreserved aorta samples was performed using the TRI Reagent® (Sigma Aldrich,
St. Louis, MO, USA) and the mirVana miRNA Isolation Kit (Thermo Fisher Scientific,
Waltham, MA, USA) according to manufacturer’s protocols, respectively. 700 ng RNA
were reverse transcribed using the MystiCq microRNA cDNA Synthesis Mix kit (Sigma
Aldrich, St. Louis, MO, USA) or the SuperScript III (Invitrogen, Thermo Fisher Scien-
tific, MA, USA). Real-time PCR was carried out by using SYBR Green (BioRad, Hercules,
CA, USA). Precisely, to analyze the expression of miR-126-5P and ERG, we used Mys-
tiCq microRNA Primer HSA-miR-126-5P (Merck KGaA, Darmstadt, Germany) and Mys-
tiCq Universal PCR Primer (Merck KGaA, Darmstadt, Germany), ERG primer forward
5′-GGAGTGGGCGGTGAAAGA-3′ and ERG primer reverse 5′-AAGGATGTCGGCGTTG
TAGC-3′ (Sigma Aldrich, St. Louis, MO, USA), respectively. Real-time PCR was performed
on Applied Biosystem StepOnePLus (Thermofisher Scientific, Waltham, MA, USA). HSA-
miR-126-5P was normalized to the expression of U6, while ERG was normalized to the
expression of GAPDH. Changes in target gene expression levels were calculated using the
comparative ∆∆CT method. Fold change was considered significant for values≥2.0 and≤0.5.

4.4. Statistical Analysis

Statistical analyses were performed using STATA software version 20. Significant
differences among qualitative variables were calculated by using Fisher test. Continuous
variables (including systemic blood molecule, protein, and gene expression levels) were
expressed as mean ± SD (Standard deviation). Unpaired t-test (Welch corrected) was
utilized to analyze the data between two groups, while one-way ANOVA or Kruskal-Wallis
‘s test followed by Bonferroni correction or Dunn test was applied to compare more than



Int. J. Mol. Sci. 2022, 23, 10848 14 of 17

two groups. To identify possible correlations, a non-parametrical Spearman correlation
test was also used, as well as a linear logistic regression using Pearson test. Differences
were considered significant when a p value < 0.05 was obtained by comparison between
the different groups.

5. Conclusions

In conclusion, our results strongly support ERG as a novel regulator of EC-specific
targets and pathways, including canonical TGF-β-SMAD, Notch, and NO pathways, by
modulating a differential progression (i.e., fibrotic or calcified) of AAA in BAV and TAV aor-
tas. We provided evidence that levels of ERG expression (as gene and protein), particularly
in aortic EC, appear to be in close relationship with Notch signaling and, when increased,
can induce early calcification in aortas with BAV valve and aneurysmatic, favoring the
progression towards dissection or rupture. In TAV aneurysmatic aortas, ERG appears to
modulate fibrogenesis. This finding is in accordance to the specific function of ERG factor in
regulating a complex transcriptional pathway involved in the development and function of
endothelium, and consequently in the maintenance of vascular integrity of cardiovascular
system, during both embryological and adult life, as well as in evocating disease. ERG
knockout mice demonstrated to have an altered vascular development, incompatible with
the life at E10.5–12.5 [31]. In addition, such defect is related to activation and stability of
β-catenin/Wnt pathway [32].

Therefore, we propose that ERG may represent a sensitive tissue biomarker to monitor
AAA progression and a target to develop therapeutic strategies and surgical procedures.
We also suggest a model of context-specific combinatorial networks, that integrates this
transcriptional factor with the pathways abovementioned in the onset and progression of
aneurysmatic aorta with BAV or TAV, and studied in others recent studies conducted by
our group [9,11,53] (Figure 5).
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6. Limitations

Our study may be defined as a preliminary investigation, given the reduced number
of patients enrolled. However, both AAA, even if in increase in old populations, and BAV
syndrome are rare pathologies [4], and consequently the relative limited number of cases
examined provides important evidence to develop on large numbers, and preferentially
performing multicentered studies.
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