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Persistent virus infection can drive CD8+ T-cell responses which are markedly divergent

in terms of frequency, phenotype, function, and distribution. On the one hand

viruses such as Lymphocytic Choriomeningitis Virus (LCMV) Clone 13 can drive T-cell

“exhaustion”, associated with upregulation of checkpoint molecules, loss of effector

functions, and diminished control of viral replication. On the other, low-level persistence of

viruses such as Cytomegalovirus and Adenoviral vaccines can drive memory “inflation,”

associated with sustained populations of CD8+ T-cells over time, with maintained

effector functions and a distinct phenotype. Underpinning these divergent memory

pools are distinct transcriptional patterns—we aimed to compare these to explore the

regulation of CD8+ T-cell memory against persistent viruses at the level of molecular

networks and address whether dysregulation of specific modules may account for the

phenotype observed. By exploring in parallel and also merging existing datasets derived

from different investigators we attempted to develop a combined model of inflation

vs. exhaustion and investigate the gene expression networks that are shared in these

memory pools. In such comparisons, co-ordination of a critical module of genes driven

by Tbx21 is markedly different between the two memory types. These exploratory data

highlight both the molecular similarities as well as the differences between inflation and

exhaustion and we hypothesize that co-ordinated regulation of a key genetic module

may underpin the markedly different resultant functions and phenotypes in vivo—an

idea which could be tested directly in future experiments.

Keywords: exhaustion, inflation, bioinformatics, LCMV (lymphocytic choriomeningitis virus), CMV

(cytomegalovirus)

INTRODUCTION

CD8+ T cell responses play a critical role in control of many virus infections. In the case of
Lymphocytic Choriomeningitis (LCMV) it has been extensively modeled in the mouse and the
dynamics, specificity, and function of antiviral CD8+ T cell responses are well-understood. One
feature of this infection is the development of CD8+ T cell exhaustion, a feature first described
in the pre-tetramer era as loss of function and finally deletion in the presence of persisting viruses
such as DOCILE strains (1), and subsequently investigated at a molecular level using LCMV Clone
13, which shows similar features (2). Mapping the transcriptional underpinning of CD8+ T cell
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exhaustion was crucial in defining its mechanisms—key of which
include expression of checkpoint molecules such as PD-1 (3).
These discoveries have been very influential in understanding
both antiviral and also anti-cancer responses and have driven the
development of new checkpoint blockade therapies.

In contrast, persistent infection with cytomegaloviruses
(CMVs)—human and murine CMV (MCMV)—is linked with
the development of memory “inflation” (4). This is marked
by the late expansion and maintenance of a number of
CD8+ T cell pools directed at a subset of peptides (5). Their
phenotype lacks the expression of checkpoint molecules, rather
showing acquisition of markers of cellular differentiation over
time. Importantly, in contrast to the exhausted phenotype,
these cells retain strong effector functions. The transcriptional
underpinning of this—and of the related model of memory
inflation driven by adenoviral vectors (6)—has also been
explored, and this is also highly distinct from the development
of conventional “central” long-lived memory cells (7).

Both models are associated with viral persistence—high level
viremia in the case of LCMV, and very low level local reactivation
in the case of MCMV. How is the development of these two
apparently very distinct forms of CD8+ T cell memory driven?
To address this we aimed to compare the gene expression profiles
and gene networks in these different settings. Such datasets
are complex to generate and require highly reproducible and
well-established models, coupled with adequate T cell numbers
specific for individual epitopes. Thus, currently such data are
valuable and remain an important resource to explore. Typically,
even with newer techniques such as RNA-Seq, such studies only
focus on immune responses to a single pathogen rather than
comparing diverse pathogens.

To achieve the comparison we sought, distinct datasets
generated from different platforms by two different laboratories
were merged, and an integrated model created and subjected to
validation. We explored whether two data sets generated from
comparable experimental designs were sufficiently suitable to be
merged, despite differences in array platforms, mouse suppliers
and viruses, and whether this could provide some new insights
into the relationship between these different T cell populations.

As outlined in Figure 1A, data sets comparing memory
Inflation against conventional memory (7) and CD8T cell
Exhaustion vs. conventional memory (8) studies include
comparable or analogous samples in which CD8 transcriptomics
from early and later stages of viral infections where referred
to Naïve cells. In our model, samples from these experiments
were expected to be assimilated to three broad categories,
the common reference samples (Naïve CD8 T cells, the most
comparable expression profiles), the intermediate phenotype
(CD8 T cells from not Inflating or Exhausted samples) and an
Extreme phenotype (CD8 T cells Inflating or Exhausted, hence
expected to diverge significantly from the rest of samples and
hypothetically from each other. The reliability of integration
could be evaluated from the expected distribution of expression
profiles in exploratory analysis (i.e. principal component analysis,
PCA) and further data mining could explore the validity of the
model and hypotheses generated (Figure 1A).

Via such an integrative and comparative bioinformatics
analysis of expression profiles from inflation and exhaustion

murine models, we describe similarities and dissimilarities of
the phenomena at a transcriptomic level. We observe some
predicted and also some unexpected features, with some possible
practical implications for future experimental design. The
results presented here explore the use of such a workflow
as one approach to integrate valuable existing datasets from
different platforms. While data from such in silico comparisons
cannot reach the quality and accuracy of those derived from
a single unified in vivo experiment, there is an opportunity
that existing, publicly available data can be studied further in
order to address questions not originally anticipated at the time
datasets were generated, and to help develop new ideas for
the field.

RESULTS AND DISCUSSION

PCA of Expression Data From Inflation and
Exhaustion Models Reveals Comparable
Events Between the Phenomena
We first addressed the overall transcriptomic similarities between
memory inflation and exhaustion by re-exploring a previously
generated dataset, GSE73314 (7). This dataset was derived from
mice infected with MCMV, tracking one inflationary response,
M38, and one conventionalmemory response (M45) at both early
(acute, d7) and late (memory, d50) timepoints.

Antigen-specific T cell populations were FACS-sorted
following tetramer staining and gene expression analyzed using
microarray. In parallel inflationary and conventional responses
to beta-galactosidase expressed in a replication-deficient
human Adenovirus serotype 5 construct (HuAd5-lacZ) were
studied following HuAd5-lacZ immunization. Responses to the
inflationary epitope βgal96 (referred to as D8V in this paper)
and the conventional epitope βgal497 (referred to as I8V in this
paper) were analyzed again at the peak acute (d21) and late
memory (d100) time points. The analysis of this dataset has been
previously described, including principal components analysis
based on all informative genes or subsets of transcription
factors, and importantly the close relationships between
these expression profiles and those of human “inflationary”
populations derived from studies of CMV were confirmed
(7). Data from Figure 2A from the paper are reproduced here
[previously published as Figure S4 from (7)] which depicts the
first 3 principal components of these data prior to addition
of the integrated exhaustion dataset. A clustering of data
derived from the acute timepoint for the relevant tetramers
[D8V d21 (blue), I8V d21 (yellow), M38 d7 (magenta), and
M45 d7 (pink)] is observed. However, with reference to the
naive (green) dataset, the inflationary populations at the
late timepoints [D8V d100 (red), M38 d50 (turquoise)] sit
slightly further segregated than the acute samples, while the
conventional memory pools at the late timepoints (M45 d50)
have shifted in the opposite direction, with some re-expression
of profiles (M45 d50) linked to resting naive cells. I8V at d100
are slightly divergent from M45 at d50, possibly reflecting
subtle intrinsic differences (e.g., tissue tropism, antigen levels
during infection) between the two infection models, especially
as MCMV is a replicating virus with periodic episodes of viral
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FIGURE 1 | (A) Overview of the data integration process and analysis. (B) Overview of probes-to-gene collapse method and data sets merge.

reactivation while AdHu5 is a non-replicating vector which
does not reactivate. Nonetheless the expression of both groups
of conventional memory cells at the early phase of infection

(M45 d7 and I8V d21) show reduced divergence, suggestive of a
conserved response between acute and conventional cells at the
molecular level.
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FIGURE 2 | (A) A PCA of Inflating/non-Inflating CD8T cells. 3D PCA showing

distribution of transcription profiles of two independent models of Inflating

samples (M38, D8V) and non-Inflating Samples (M45,I8V), at acute stages

(days 7 or 21) and later stages (days 50 or 100), and naive samples. (B) PCA

of Exhausted/non-Exhausted CD8T cells. 3D PCA showing distribution of

transcription profiles of a model of Exhaustion (Cl13,Tetrahedrons), with

non-Exhaustive samples (Arm, spheres) at different stages, and naive samples.

Stages: 6 days (yellow), 8 days (brown), 15 days (pink), 30 days (black),

naive (green).

The same type of descriptive analysis was next performed on
the exhaustion data set, GSE41867 (8). The data points were
derived from acutely-resolved lymphocytic choriomeningitis
(LCMV) infection (Arm) or chronic LCMV infection (Arm
Cl13) groups at days 6, 8, 15, and 30 post-infection and
were generated on the Affymatrix platform. In this study,
gene-expression profiles of exhausted CD8+ T-cells from mice

infected with chronic LCMV (Arm C13) were compared with
functional CD8+ cells, from mice infected with the Armstrong
strain of the virus. The analysis revealed a comparable layout of
sample distribution (Figure 2B), with groups’ relative distances
denoting a good concordance with the experimental outcomes.
Dysfunctional clone-13 specific CD8+ T-cells (tetrahedron) (15
and 30 days, pink and black, respectively), appear to drift away at
late time points and do not cluster around conventional CD8+
T-cells (spheres, pink, and black). In contrast, as was previously
observed in the inflation model, the gene expression profiles of
cells at the early timepoints [day 6 (pink) and 8 (brown) post-
infection] from acutely resolving (spheres) and chronic LCMV
(tetrahedron) are seen to cluster together.

Data set integration, when it is possible and successfully
achieved, should allow more direct comparisons between
samples generated in independent experiments. An alternative
perspective of the differences or similarities between samples,
without redesigning an entirely new experiment (which
could become quite large, complex and very costly) could
allow researchers to investigate new hypotheses and improve
experimental design. In an attempt to improve the comparative
analysis of the two models, the two data sets were merged
(schematic in Figure 1A), following a pipeline aimed to reduce
batch effects from multiple sources (see methods) as much as
possible, which would confound accurate detection of gene
expression signals (Schematic in Figure 1B).

Figure 3 shows a 3D PCA of the two merged data sets [from
Bolinger et al. (7), (B) and Doering et al. (8) (D)], generated
with different microarray platform (Illumina and Affymetrix),
plotting together Inflating and Exhausting samples (in red)
with the respective functional counterparts (in blue). Projections
of the first three principal components capture most of the
variability (>50%) of the total set of common expressed genes
between the two platforms (∼14,000). The results are also
shown as a dendogram in Figure S1A. In order to check the
robustness of the results, 5 outliers were removed and the merged
dataset reprocessed (without extra normalization after ComBat
processing) and the most variable genes were selected, with genes
filtered by variance (interquartile range (IQR) > 0.5, n = 1,660)
(9). As shown in Figures S1A–C, the sample distribution is in
good agreement with the original 3D PCA (Figure 3).

The appropriateness of the data integration is highlighted
by the fact that naive samples [in green, spheres: Affymetrix,
(8); tetrahedron: Illumina, (7)], which are the most comparable
samples between the two data sets cluster in close proximity to
each other. Interestingly, late timepoint Inflation and Exhausted
samples (in red), other than having the tendency to cluster
relatively close to each other, diverge at most from naive and non-
Inflation and non-Exhausted samples (in blue), which instead
occupy an intermediate position in the overall plot (Figure 3).
In accordance with their extremely differentiated phenotype,
Inflating samples are placed at the furthest distance from naive
samples, immediately followed by the exhausted cells.

Batch effects may still play a role in this type of data
analysis, and this was investigated by pvca (10). Prior to ComBat
processing, “platform” factor (Affymetrix, Illumina) was assessed
as the major source of batch effect; following batch effect removal
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FIGURE 3 | 3DPCA of merged samples from Inflating and Exhausted models’

data sets following batch effects removal between different microarray

platforms (spheres: Affymetrix, Exhaustion study, tetrahedron: Illumina, Inflation

study). The plot is showing overall distribution of Naive (green), Non-Inflating

and Non-exhausting (blue), and Inflating and Exhausting (red) samples using

the total common set of expressed genes (∼14,000).

the “State” factor (Naive, Resolving, Inflating_Exhausting, as
batch describing three simplified categories of samples: reference
sample, intermediate phenotype, and extreme phenotype)
represent the major source of variability (Figure S7). This
initial, descriptive statistical approach suggests that immune
responses demonstrating Inflation and Exhaustion share some
common features at molecular level—despite the divergence that
is observed at phenotypic level.

It is reasonable to postulate the existence of a common set
of genes behind these immune responses; a pathway, in which
the behavior and the intrinsic dynamics of its components
could determine the fate of T-cells toward either Inflation
or Exhaustion.

Weighted Gene Co-expression Network
Analysis of Inflating Samples
In order to test the hypothesis of a shared set of genes behind
opposite immune responses, yet highly related at the origin,
we performed Weighted Gene Co-Expression Network Analysis
[WGCNA, (11)] on the Inflation data set only (i.e., without any
potential artifacts generated through merging), prior filtering the
genes by variance (n = 2,231), with the intention of detecting a
module of genes characteristic of the phenomenon.

The dendogram in Figure 4A shows gene hierarchical
clustering highlighting modules of genes with high
interconnectivity based on TOM similarity (Topological
Overlap Measure, a robust measure of network proximity). The
second largest detected module (blue) was found enriched with
immune relevant genes, after checking for the most statistically

represented GO category (GOenrichmentAnalysis in WGCNA
package, Tables S1A,B). Reactome pathway enrichment analysis
(12) confirmed the overrepresentation of immune relevant
pathways within blue module (Figure S2A). Genes such as
Tbx21 and Eomes, known to have pivotal roles in T-cell
differentiation, are contained in the blue module, along with
other genes, such as E2f2, involved in cell proliferation and
consistent with the Inflation phenotype.

We therefore repeated PCA on the whole integrated data
set, using the 588 genes assigned to the blue module, to test
if sample distribution in respect to these genes was unaltered,
improved or changed (Figure 4B); it was observed, in fact, that
the sample layout was conserved: independent naive samples
(in green, spheres, and tetrahedrons), that could function as
calibrating samples, were clustered even closer, while inflating
samples (red, tetrahedrons) were separated further compared to
the PCA plot using the whole gene set (Figure 3). In general, the
rest of Inflating and Exhausted samples appear to cluster tighter
in the context of this subset of genes (blue module genes).

It is important to note that the same analysis performed using
other gene modules, e.g. the turquoise module, can disrupt the
PCA sample layout we observe using all genes (or blue module
genes) and it generates a less informative PCA plot or hierarchical
clustering dendogram. The clustering analysis using genes
from the Turquoise module (not enriched in immune relevant
GO terms, Tables S1A,B or Reactome pathways, Figure S2B)
produced a sample layout (Figure S3) that is noticeably different
from the layout produced when employing blue module genes.
Module detection, clustering analysis, GO terms and Reactome
pathway enrichment (Figures S2A,B) were consistent after
removing outliers and changing parameters to fit best a scale
free topology (more appropriate soft-thresholding power, β =

20). The equivalent approach of hierarchical sample clustering
analysis, employing again blue module genes, shows clearly that
Inflating and Exhausted samples cluster together (in red), along
with recently activated samples at acute phases from both data
sets (Figure 4C).

Graphical Representation of Gene
Networks Obtained in Inflating and
Exhausted Data Sets
A separate WCGNA was executed on Exhaustion data set,
matching the criteria utilized for the Inflation network inference,
and similarly a module containing Tbx21 was detected with
a gene composition significantly enriched in immunological
pathways. Indeed, there is a considerable gene overlap between
the two modules that is even more evident within the context of
transcription factor genes where the overlap reaches the 41% of
the features (Figure 5A).

To have a further insight in the two related Tbx21 modules a
graphical representation of the nodes connectivity was produced.
A circular topology was imposed in both gene modules to
make the networks comparable and observe whether the gene
hubs (nodes with the highest connectivity) were conserved or
changed. Edges between genes reflect their direct correlations and
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FIGURE 4 | (A) Weighted Gene Co-expression Network Analysis of Inflating samples. Gene co-expression network analysis detected 6 gene modules (merging

distance = 0.25, soft-thresholding power β = 9); Blue module (highlighted) genes are enriched with immune relevant GO categories (Table S3A) and contains

relevant genes such as Tbx21, Eomes, Zeb2, and E2f2 (Table S5A). (B) PCA of Inflating/Exhausted samples based on Blue module genes. PCA plot using the first

three principal components and based on a gene set of 588 genes, detected as blue module in Gene co-expression network analysis of Inflating samples only

(Figure 3A). The plot shows distribution of Naïve (green), Non-inflating and Non-exhausting (blue), and Inflating and Exhausting (red) samples (spheres: Exhaustion

study; tetrahedron: Inflation study). (C) Hierarchical clustering of Inflating/Exhausted samples based on Blue module genes. Dendogram plot showing sample

clustering analysis (Euclidian distance) on Inflating-Exhausted merged sets, based on a gene set of 469 genes, detected as blue module in a repeated Gene

co-expression network analysis of Inflating samples after removing outliers (Soft-thresholding power β = 20).

a similar correlation with “third party” genes, measured in the
TOMmatrix.

We discovered that in the module network generated using
the Inflation data set, Tbx21 appeared to be a dominant hub,
connecting with the vast majority of genes in the module,
emphasized clearly when only edges with a weight > 0.41 were
plotted (Figure 5B). Tbx21 has been previously described to be
pivotal in controlling CD8T cell activation (13) and this finding
would extend the role of Tbx21 in maintaining functionality
and effector status of the T cells in a subset of long-term
memory populations.

In contrast, in the corresponding graphical representation of
the analogous module in the Exhaustion data set, Tbx21 does
not appear anymore to be the unique hub, losing its central
role. Even lowering the cut off (weight < 0.54) of plotted edges

shows evidently that other genes are more likely to function
as hubs (Figure 5B). The Tables S2A,C matrices represent the
TOMs (topological overlay measures) used as input to visualize
blue (Tbx21) and turquoise modules networks in Cytoscape and
imposing a circular topology (Figure 5B). In order to corroborate
this finding, we analyzed the data with an alternative approach,
employing a method that searches for genes following a similar
trajectory to Tbx21 across the time points of the two experiments
(Figures 5C,D). We applied the Pavlidis template matching test
(14, 15) using Tbx21 as template, equally for Inflating and
Exhaustedmodules. Consistent with network analysis we observe
that in Exhaustion data there are only 33 genes that match
significantly the expression trajectory of Tbx21 (Figure 5D),
while in Inflating data module over 200 genes display expression
patterns strongly matching the one of Tbx21 (Figure 5C).
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FIGURE 5 | (A) Overlap between Inflation and Exhausted gene modules. Venn diagrams showing gene content overlap between modules containing Tbx21 detected

when WGCNA was performed independently on Inflating and Exhausted data sets. (B) Graphical representation of Blue modules networks. Circular topology imposed

to blue modules (containing Tbx21) detected in Inflating and Exhausting data sets visualize nodes (genes) with highest connectivity. Only edges with a weight >0.41

(for Inflating) and >54 were plotted. Tbx21 (highlighted in red) is the main hub in Inflating blue module, being the gene with the highest number of connection with

other genes. In the Exhausted blue module, although highly expressed, Tbx21 loses the property of being the only hub. (C) Pavlidis Template test in Inflating data Set.

Tbx21 used as template for detecting genes with matching expression trajectory across time points. In the Inflating data set 222 genes match the Tbx21 expression

pattern (R > 0.8); The green line is the template (Tbx21), the violet line represents average expression, and the dotted line is the centralized (z-score) template

expression. (D) Pavlidis Template test in Exhausted data Set. Tbx21 used as template for a method designed to retrieve other genes with a similar expression

trajectory across time points. In Exhausting data set 33 genes match Tbx21 expression pattern (R > 0.8); The red line is the template (Tbx21), while the violet line

represents average expression, and the dotted line is the centralized (z-score) template expression.

In order to further explore the hypothesis that Tbx21 is
the main master regulator driving the inflation and directly
interacting with the genes in its module, we analyzed ChIP-
Seq data publicly available (16) where antibodies against Tbx21
where used to analyze transcription factor-DNA binding in
Cytotoxic T Lymphocytes from mice infected with LCMV
(P14 mice). A Tbx21 binding profile was obtained running
the macs2 peak caller algorithm (17) on wild type sample
(SRR2075567, Tbx21 ChIP-seq on effector P14 CD8+ T cells)
and using an input control (SRR2075584) (q < 0.01). Following
gene annotation of peaks region [Homer bioinformatics tools,
homer.ucsd.edu/homer, (18)], 383 out of 588 genes in Tbx21
module obtained with Inflating samples were found with binding
sites for Tbx21 (in proximity, <1 kbp); 414 genes if we include

peaks within a distance of 2 kbp. A Fisher test was performed to
demonstrate that Tbx21 module was significantly enriched with
peaks: highly significant peaks (macs2 peak score >50) mapping
to blue module (63/588) were significantly more enriched (p =

0.0003) than turquoise module peaks (44/805).
We can formulate the hypothesis that in the case of an

Inflationary response there is the presence of a “homogenous”
genetic program, mainly coordinated by the transcription factor
Tbx21. We postulated that a significant difference between
Inflating and Exhausted populations could be more evident
from differential correlations in expression between genes, rather
than absolute changes in expression levels of the same genes
between models. The strongest correlations that Tbx21 shows
with its putative target genes in the Inflation data, highlight
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its fully functional role as a master regulator, while in the
Exhaustion data its task could be mitigated or disrupted by
other coexisting transcriptional pathways. In order to elucidate
the strongest level of correlation between Tbx21 and genes
within its module, it could be informative to examine the
expression levels across the time points of Tbx21 and one
representative gene. E2f2 is a transcription factor involved in
cell growth and proliferation. The relationship between Tbx21
and E2f2 was analyzed separately in the Exhaustion and Inflation
datasets (Figure S4). In the Inflation time course, E2f2 shows
an expression pattern that matches well to that of Tbx21,
especially at later stages of infection (beyond the dashed line),
while in the Exhaustion time series the pattern of expression is
poorly correlated.

In support of this observation, inflating samples at the
late timepoints are enriched with Reactome pathways involved
in cell division and proliferation. The late timepoints of the
inflation and exhausted samples within the integrated dataset
were checked for enrichment of 674 curated Reactome gene sets
[MSigDB Collections, (19) c2.cp.reactome.v6.2.symbols.gmt].
Direct comparison between inflated (M38, day 50) vs. exhausted
cell populations (Arm Cl13 day 30) was analyzed by GSEA
[Gene Set Enrichment Analysis, (20)] and it was noted that
the top most enriched gene sets in Inflation are homogenous
and belong to categories of cell division and DNA replication
(Table S3, Figure S5). Conversely, the most significant Reactome
pathways enriched in exhausted samples are quite heterogeneous
(Table S4, Figure S4B). Repeating this analysis with inflating
cells from the Adenovirus model (Day 50) vs. exhausted samples
(Arm Cl13 day 30) yielded consistent results in spite of the
presence of a clear outlier in the inflating samples (S11 D8V),
which would have reduced the statistical power (data not shown).
Taken together, these findings lend credence to the idea that
a key difference between inflation and exhausted cells at the
later timepoints is that regulation of the former’s proliferative
capacities is retained, akin to those of activated and highly
proliferating effector and memory CD8T cells after acute Arm
infection (8).

Finally, we further explored the new potential insights gained
from data integration using GSEA of Immunological signatures
from MsigDB (4,872 gene sets, c7.all.v6.2.symbols.gmt). In the
same comparison, between Inflation vs. Exhaustion at late
timepoints (MCMV M38 Days 50 vs. LCMV Cl13 days 30);
significantly enriched gene sets either in Inflation or Exhaustion
populations (FDR< 0.25, based on gene sets permutations) from
comparable studies were found to be biologically interpretable.
Data and relevant examples consistent with experimental data
(21) are shown in Table S5 and Figure S6.

CONCLUSIONS

This analysis of previously published transcriptional data was
aimed to address a simple but important question: what is the
relationship between memory inflation and immune exhaustion?
Both types of memory are distinct from conventional central
memory development where populations contract following an

acute expansion. In the one case the cells remain functional
(inflation) and in the other they lose function (exhaustion)—
associated with distinct phenotypes. We hypothesized that
dysregulation of a key module of genes might account for
the phenotypic and functional differences seen between these
T cell types.

Although it is possible to address this question using parallel
analyses of existing data -and we have done this here—there is
additional power in the merging of datasets, although great care
must be taken to avoid artifacts due to batch and platform effects.
Clearly a repeat set of experiments with mice treated with the
different infections and vaccines in parallel, with a conserved
pipeline for gene expression measurement and downstream data
analysis would be ideal, but also impractical and costly given
constraints on animal models and animal welfare in different
settings (for example in the UK, LCMV Arm Cl13 remains a
biosafety group 3 pathogen). We therefore think approaches
of data integration—using a range of appropriate tools—from
the increasing number of datasets publicly available will have
important potential for future studies. Indeed this potential
should only increase over time with convergence of sequencing
approaches toward high-throughput RNA-Seq methods and
accrual of datasets.

We observed two features of note from this analysis.
Firstly, using a merged dataset, some transcriptional features
of exhaustion and inflation appear to be shared, and cluster
broadly closer to those derived from responses analyzed at
an acute timepoint than to naive T cells or conventional
memory. This is perhaps not a surprise since both inflationary
and exhaustive memory are dependent on persistent/repetitive
antigen stimulation. While the nature and/or the intensity of
this antigen re-encounter may differ between the settings, in
both cases, TCR triggering occurs and it is the response to
this triggering which distinguishes the populations. While the
populations clearly differ in expression of inhibitory receptors
such as PD-1 and TIM-3, these represent only a relatively small
set of genes within the total number up- and down-regulated
in these populations compared to naive cells—and may overall
contribute little to the PCA and hierarchical methods used to
compare these subsets. This is not to say that such features are
not critical and distinctive, but simply that other shared features
may be worth exploration in future.

The second feature of interest relates to the relative
connectivity of Tbx21 amongst genes within the same module—
this analysis was initially performed using the primary non-
merged datasets. All such genes in each setting (inflation or
exhaustion) show a degree of correlation—however the role of
Tbx21 as a central master transcription factor amongst these
genes is fundamentally different in the inflationary pool. This
fits with a well-demonstrated type 1 responsiveness driven by
Tbx21 and associated to these populations, functional control
of virus, and also with a differentiated phenotype which
depends on functional interactions between Tbx21 and Zeb2
(16, 22). The lack of connectivity of Tbx21 in exhaustion
has been previously described and is reproduced in this
comparative analysis—however the cause of this has yet to be
fully elucidated.
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It is interesting to note that in the absence of Eomes, a
transcription factor prominent in exhausted (8) but not in
inflating T cells, memory CD8T cells display a phenotype which
strikingly resembles that of inflating memory cells, being IL-
2 low and high in Granzyme B, Klrg-1, and Perforin (23).
However, thesememory cells were not able to proliferate properly
in the recall response. This does not appear to be the case
in inflating memory cells, and underscores the importance
of the co-ordinated cell cycling module present in inflating
cells which is not observed in exhausted cells. Furthermore,
retention of their proliferative capacity would also explain their
numerical superiority.

Infection with CMV drives not only memory inflation
and conventional memory, but also is associated with the
development of “peripheral memory” and tissue resident
memory. Peripheral memory is linked to an intermediate
expression of the chemokine receptor CX3CR1 (fractalkine
receptor) and with the potential to proliferate in vivo as well as
differentiate to both CX3CR1 high and low subsets, depending
on the exposure to antigen (24, 25). Tissue resident cells have
lost CXC3R1 expression like central memory cells, but have
evolved tissue associated phenotypes such as expression of
CD69 and CD103 (26). It is likely the combination of these
multiple distinct memory types are responsible for long term
virus control, especially the maintenance of inflationary pools
being dependent on longer-lived central and peripheral memory
cells. Further transcriptional analyses of peripheral and tissue-
resident memory within the MCMV and adenovirus model vs.
the LCMVmodel for example using such an integrated approach
as shown here will be of value in defining their key distinguishing
characteristics and how they are inter-related. Overall this will
certainly contribute to our understanding of the host responses
to chronic viral infection and hopefully to the development of
novel vaccines.

In conclusion, we have tried to address an important
immunological question by a deeper analysis of valuable
experimentally derived datasets, and in doing so generate new
ideas about the causes of exhaustion and the mechanisms
involved in robust memory after vaccination. Such studies can
be examined in parallel but the tools available to interrogate
the data as one integrated group are attractive and this area
will doubtless be explored further in future. The major issues
include not only potential batch effects, but also fundamental
differences in mouse strains used, housing and handling, all
of which can lead to artifacts. For immunologic experiments,
the presence of very well-defined/conserved cell populations
(in this case naive and conventional memory CD8+ T cells)
provides some important internal references and controls
following dataset integration. Further mathematical tools should
also be applied to assess the quality of the integration and
avoid biases (e.g., the PVCA-R package). As gene expression
studies develop and cross-referencing of RNA-Seq datasets
becomes both more attractive and more powerful this issue of
normalization and integration will become evenmore important,
for example in initiatives such as the Human Cell Atlas
(https://humancellatlas.org). Further, however well-integrated
mathematically, such data ultimately demand experimental

validation—in this case a deeper analysis of the role of Tbx21 (and
associated genes in the module) in inflationary memory would
be valuable.

METHODS

PCA of expression profiles were performed in R (27) using
princomp/pricomp functions. Three-dimensional plots
employing the first three principal components were generated
using R package rgl (28), providing high-level functions for 3D
interactive graphics.

The merging of data sets from different microarray platforms
(Illumina, Affymetrix) is summarized in the following steps:

1. Independent arrays platform preprocessing and
normalization of Affymetrix and Illumina data (rma
function (oligo) and lumiN(method=”vsn) function
(Lumi), respectively).

2. Probes to gene collapse: in cases where multiple probes were
designed to a gene, the unique best detected features for each
gene symbol was selected (max signal probe) in Affymetrix
and Illumina data (similarly to max probe collapse in GSEA
algorithm, Figure S2).

3. Common gene intersection: a common set of collapsed
symbols between Affymetrix and Illumina arrays were taken
to build a merged data set. (14113 unique symbols x 62 array
samples); in-house R code was written to perform probes
collapse and unique gene symbol intersection between the two
array platform (Figure S2).

4. Removal of platform batch affect: biases due by different arrays
platform employed (Affymetrix and Illumina) using ComBat
R function [sva package (29)] on the new merged data set
using a common set of annotated gene symbols.

5. (Optional) Normalization of the new merged and batch
effect corrected data set was performed to remove residual
biases and make arrays more comparable [methods: “scale,”
“quantile”(30), or ”vsn”(31)].

Weighted Correlation Network Analysis [WGCNA, (32)] was
executed using R package WGCNA (11) on a subset of highly
variable genes (IQR > 0.5, 2231 features).

Hierarchical clustering analysis of samples using gene
modules was performed using edited functions in flashClust R
package (33).

Graphical visualization of gene module networks was
generate on Cytoscape (34), with gene edges based on
Topological Overlap Measures (TOM). Pavlidis matching
template analysis (14) using Tbx21 gene as reference for
expression pattern to match was performed on MeV java-based
application (15).

Peak calling on Tbx21 binding profile data (16) was performed
using macs2 algorithm to identify genome-wide locations of
transcription factor binding from ChIP-seq data (17). Tbx21
peaks were annotated using Homer bioinformatics tools [http://
homer.ucsd.edu/homer/ngs/annotation.html (18)].

Effectiveness of batch value correction was performed using R
package pvca, (10).
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The versions of all the packages used is provided in the
Supplementary Materials and Methods.
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Figure S1 | (A) Clustering analysis of merged samples from Inflating and

Exhausted models. Dendogram showing samples clustering (equivalent to

analysis in Figure 3) after removing outliers and filtering gene by expression

variance (IQR > 0.5). (B) PCA analysis of merged samples from Inflating and

Exhausted models. Samples PCA using first two principal components (equivalent

to analysis in Figure 3) after removing outliers and filtering gene by expression

variance (IQR > 0.5). (C) PCA analysis of merged samples from Inflating and

Exhausted models. Samples PCA using first three principal components

(equivalent to analysis in Figure 3) after removing outliers and filtering gene by

expression variance (IQR > 0.5).

Figure S2 | (A,B) Reactome pathways enrichment analysis. Most represented

pathways in blue module (A) and in turquoise module (B). Gene ratio is the

proportion of pathways genes in the total number of module genes.

Figure S3 | Hierarchical clustering of Inflating/Exhausted samples based on

turquoise module genes. Dendogram plot showing sample clustering analysis

(Euclidian distance) on Inflating-Exhausted merged sets, based on a gene set of

692 genes, detected as turquoise module in a repeated Gene co-expression

network analysis of Inflating samples after removing outliers (Soft-thresholding

power β = 20).

Figure S4 | Tbx21 and E2f2 Expression graphs. Normalized level of expressions

of Tbx21 and E2f2 (in blue) across time points in Exhaustion and Inflation model

experiments. Dash line marks the limit between early and late stage of infection.

Figure S5 | (A,B) GSEA enrichment plots of Reactome gene sets. First 9 top

enriched gene sets pathways in Inflating samples (A) and in Exhausting samples

(B) at late stages (IFNL: M38, 50 Days; EXHA: Cl13, 30 Days).

Figure S6 | (A,B) Representative GSEA enrichment plots of Inflation vs.

Exhaustion. Illustrative enrichments of a CD8 effector signature (exact source:

GSE30962_1570_200_UP) in Inflation samples (A) and a CD8 memory signature

(exact source: GSE1000002_1582_200_DN) in Exhaustion samples (B).

Figure S7 | Assessment of batch effect contribution prior and after ComBat

processing. An analysis by pvca R package was performed to estimate the

variability of experimental effects.

Table S1 | (A,B) GO term enrichment analysis of WGCNA modules. GO

categories enrichment analysis in modules detected including all Inflating samples

(A, β = 9) and excluding possible outliers (B, β = 20).

Table S2 | (A–C) TOM matrices of blue and turquoise modules. Table matrices

with topological overlay measures (TOM) of blue modules detected including all

samples (A) or excluding possible outliers (B); TOM matrix of turquoise module

including all inflating samples (C).

Table S3 | GSEA report of Reactome gene sets enriched in Inflation. GSEA report

of Reactome curated pathways found enriched (FDR < 0.25) in Inflating samples

(M38, days 50) vs. Exhausting samples (Cl13, days 30).

Table S4 | GSEA report of Reactome gene sets enriched in Exhaustion. GSEA

report of Reactome curated pathways found enriched (FDR < 0.25) in Exhausting

samples (Cl13, days 30) vs. Inflating samples (M38, days 50).

Table S5 | (A,B) GSEA reports of MsigDB Immunological Signatures gene sets in

Inflation and Exhaustion. GSEA reports of immunological signatures found

enriched (FDR < 0.25) in Inflating samples (A) (M38, days 50) vs. Exhausting

samples (B) (Cl13, days 30).

Supplementary Materials and Methods | Relevant R and Bioconductor

packages and versions used.
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