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Abstract: Evaluating the eutrophication level of lakes with a single method alone is challenging since
uncertain, fuzzy, and complex processes exist in eutrophication evaluations. The parameters selected
for assessing eutrophication include chlorophyII-a, chemical oxygen demand, total phosphorus,
total nitrogen, and clarity. Firstly, to deal with the uncertainties and fuzziness of data, triangular
fuzzy numbers (TFN) were applied to describe the fuzziness of parameters. Secondly, to assess the
eutrophication grade of lakes comprehensively, an improved fuzzy matter element (FME) approach
was incorporated with TFNs with weights determined by combination of entropy method and
analytic hierarchy process (AHP). In addition, the Monte Carlo (MC) approach was applied to
easily simulate the arithmetic operations of eutrophication evaluation. The hybrid model of TFN,
FME, and MC method is termed as the TFN–MC–FME model, which can provide more valuable
information for decision makers. The developed model was applied to assess the eutrophication
levels of 24 typical lakes in China. The evaluation indicators were expressed by TFNs input into the
FME model to evaluate eutrophication grade. The results of MC simulation supplied quantitative
information of possible intervals, the corresponding probabilities, as well as the comprehensive
eutrophication levels. The eutrophication grades obtained for most lakes were identical to the results
of the other three methods, which proved the correctness of the model. The presented methodology
can be employed to process the data uncertainties and fuzziness by stochastically simulating their
distribution characteristics, and obtain a better understanding of eutrophication levels. Moreover, the
proposed model can also describe the trend of eutrophication development in lakes, and provide
more valuable information for lake management authorities.

Keywords: triangle fuzzy number; Monte Carlo approach; fuzzy matter element model; eutrophication
evaluation

1. Introduction

Water resources of desirable quantity and suitable quality are a prerequisite for sustainable
development of the economy, society and ecology [1]. In China, most lakes have serious water
environmental problems, such as shrinkage of water surface area, eutrophication of lakes, organic
pollution, etc. Among them, eutrophication due to natural process (e.g., weathering, precipitation, soil
erosion, etc.) and anthropogenic activities (industrial pollution, domestic drainage, etc.), has become
a serious and common concern which threatens the public health and the ecological environment,
even inducing water-borne diseases [2–6].
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Table 1. Comparison of eutrophication evaluation methods.

Approach Examples Advantages Limitations

Multivariate
statistical techniques

Including cluster analysis (CA), discriminant
analysis (DA), principle component analysis/factor
analysis (PCA/FA).

-Can solve randomness of monitored data
-Reduce a complex data set to a considerably
low dimension
-Obtain the underlying patterns within the original data

-Require larger samples
-Data are difficult to obtain

Comprehensive
assessment method

Including fuzzy set theory based on fuzzy
membership function, matter element model, etc.

-Reflected the fuzziness in the evaluation of the
classification standard, evaluation class, and degree
of eutrophication
-Solve uncertainty

Weak to distinguish the adjacent
characteristic indicators

Machine
learning approaches

Including artificial neural networks (ANN), support
vector machine, and random forests (RF), etc.

-Provide predictive models with good
generalization abilities
-Capture unknown patterns in the assessment process
-Infer complex relationships without knowledge of
a system

-Lacks to accurately analyze each
performance index

Hybrid models
Including method combined with neuro fuzzy
networks with factor analysis, cloud model
considering randomness with fuzziness, etc.

Combine the advantages of different methods -Complicated model structure
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Therefore, it is significant to understand lakes’ eutrophication conditions by assessing their
eutrophication level scientifically and objectively. In previous studies, various mathematical approaches,
listed in Table 1, were applied to evaluate the eutrophication of lakes and reservoirs [5,7–11].

Since the methods applied have their advantages and limitations, to avoid the disadvantages as
well as develop the advantages, it is necessary to combine multifarious methods so as to improve
the assessment process. Indicators used during the process of eutrophication assessment include
chlorophyII-a (Chl-a), chemical oxygen demand (CODMn), total phosphorus (TP), total nitrogen (TN),
and clarity (SD). When indicator monitoring data are scarce, imprecise, varied temporally and spatially
with wide variation intervals, the input data for assessing the eutrophication status are not determinant
but rather have characteristics of uncertainty and inaccuracy. To solve the uncertainty and inaccuracy of
input data, fuzzy set theory had been employed, such as triangular fuzzy numbers (TFN) [12]. The TFN
approach is suitable for processing uncertain data with a triangular distribution. Generally speaking,
the concentrations of indicators obey a Gaussian distribution or an approximate Gaussian distribution.
However, if the input data are scarce and have a wide range, the Gaussian distribution can be replaced
by a triangular distribution [13]. In addition, since contradictory problems exist in eutrophication
evaluation, for example, some indicators belong to eutrophication grade A, while other indicators
belong to eutrophication grade B, this increases the difficulty in determining the eutrophication grade
of a specific lake. To deal with the problem, the fuzzy matter element (FME) model was proposed,
which is suitable for multi-factor assessment based on fuzzy mathematics theory [14]. The fuzzy
matter element model is an approach that combines fuzzy theory and a matter element model, which
takes the advantages of both fuzzy theory and matter element theory, and had been widely used for
assessments [3,8,15,16]. To deal with the data uncertainty and contradiction problems in eutrophication
assessment, a FME model with the input data expressed by TFNs was employed in this paper, which
is termed the TFN–FME method. However, when the indicators are expressed by various TFNs, the
arithmetic and function operations among them in the FME model will result in a complex assessment
process, and generate more uncertain information [17,18]. Therefore, the Monte Carlo (MC) approach
is applied to solve the complex operation of TFNs by converting the arithmetic operations into real
number operations, which can better solve the uncertainty problem existing in data so as to simplify the
operation process. Furthermore, a hybrid model termed as TFN–MC–FME was proposed, which can
approximate a Gaussian distribution of evaluation indicators, deal with complex operations of TFNs,
and avoid the contradiction problems. The proposed method integrates together all the advantages of
the TFN, MC, and FME methods, and was applied to evaluate the eutrophication levels of 24 typical
lakes in China.

In this paper, the TFN method was applied to deal with the uncertainty of monitored data
information, and the FME method was proposed to solve the contradiction problems in the process
of eutrophication assessment. In addition, MC simulation was employed to solve the complex
calculations of TFN, which resulted in the development of the proposed TFN–MC–FME model.
The developed hybrid model was applied to 24 typical lakes and reservoirs in China and the validity
of the proposed model was assessed through comparisons with three other methods. Finally, the
probabilistic eutrophication levels of lakes were obtained, and valuable information was supplied
for environmental management agency to propose and implement reasonable policies to control and
prevent eutrophication.

2. Methodology

2.1. Triangular Fuzzy Numbers (TFN) Approach

The uncertain information of monitoring data can be solved by TFN method according to the
variation intervals considering the average values A and standard deviations σ of the data. The detail
of the TFN approach was explained as follows:
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Suppose A1, A2, and A3 are the lower, expected and upper value of a fuzzy variable, respectively,
with A1 < A2 < A3. The TFN can be expressed by Ã = (A1, A2, A3). The triangular probabilistic
distribution of Ã can be defined by Equation (1) as follows:

Ã =


0 x ≤ A1

(x−A1)/(A2 −A1) A1 < x ≤ A2

(A3 − x)/(A3 −A2) A2 < x ≤ A3

0 x > A3

(1)

The TFN Ã was defined by Equation (2) as follows [12]:

A1 = max(minA, A− 2σ), A2 = A, A3 = min(A + 2σ, maxA) (2)

where A is the average value of the data, and σ is the standard deviation of the data.

2.2. Monte Carlo (MC) Approach

The operation of uncertain variables with triangular distribution was performed by the MC
approach. By generating a series of sample data based on the triangular distribution of each variable,
the MC method can transform the uncertain data expressed by a distribution function into stochastic
numbers, and can perform arithmetic operations easily. Therefore, the MC method can solve the
difficulty of multi-variables’ mathematical operations in the FME model described in detail in Section 2.3.
The MC method was performed by theCrystal Ball software, which is applied as an analytical tool
to help execute, analyze, and make decisions by performing simulations and forecasting of data on
spreadsheet models [18]. It can generate random series of possible values based on the probability
distribution type of variables with settled operation parameters. By running the model, the probability
distribution of predictive variables is obtained. In addition, by setting intervals, the corresponding
probabilities of predictive variables in the set intervals can also be obtained.

2.3. Improved Fuzzy Matter Element Model

The process of performing improved fuzzy matter element model is described as follows:

2.3.1. Establish the Fuzzy Matter Element model of Eutrophication Assessment

The fuzzy matter element model is consisted of a triple ordered matrix of “objects, characteristics,
and fuzzy values”, which were denoted as U = (C, G, µ), expressed as by Equation (3) as follows:

Uk
mn =



G1 G2 · · · Gn

C1 µk
11 µk

12 · · · µk
13

C2 µk
21 µk

22 · · · µk
23

...
...

...
...

...
Cm µk

m1 µk
m2 · · · µk

mn


(3)

where Uk
mn is fuzzy matter element matrix for the k-th studied object (lake), Ci is the i-th indicator,

i = 1, 2, . . . , m; Gj is the j-th eutrophication grade, j = 1, 2, . . . , n; µk
i j is the fuzzy membership

degree of the i-th indicator to the j-th grade, which was calculated based on fuzzy membership
functions and the corresponding eutrophication classifications. The normal membership functions
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were adopted in this paper since normal distributions of membership functions were adopted in
numerous observations [15,19], expressed by Equation (4) as follows:

µk
i j = exp[−(

xk
i − ai j

bi j
)

2

] (4)

where µk
i j is fuzzy the membership function of the i-th indicator to the j-th classification criterion for the

k-th lake, which is calculated by MC method, xk
i is the measured concentration of the i-th indicator in

the k-th lake, which is expressed by variables with triangular distribution, i.e., TFNs expressed by Ã, aij
and bij are the constants with the constraints of ai j > 0, and bi j > 0. The definitions of aij and bij should
satisfy conditions as follows: (1) for cost indicators (i.e., the smaller, the better), such as Chl-a, CODMn,
TN, and TP, when xk

i is equal to the lower boundary in grade I, µk
i1 = 1.0; when xk

i is greater than or
equal to the upper boundary in grade VI in Table 2, µk

i6 = 1.0; (2) for efficiency indicators (i.e., the
larger, the better), such as SD, when xk

i is greater than or equal to upper boundary in grade I, µk
i1 = 1.0;

when xk
i is equal to lower boundary in grade VI, µk

i6 = 1.0; (3) in grade II, III, IV, and V, when xk
i is the

average value of the j-th grade criterion of the i-th indicator for the k-th lake, µk
i j = 1.0. Therefore, the

definitions of aij and bij were expressed by Equations (5) and (6) as follows:

ai j =


xl(xu), j = 1
xl+xu

2 , j = 2, 3, 4, 5

xu(xl), j = 6

(5)

bi j =


xu−xl√

ln 2
, j = 1

xu−xl

2
√

ln 2
, j = 2, 3, 4, 5

xu−xl√
ln 2

, j = 6

(6)

where xl and xu are the lower and upper boundary values of the j-th classification criterion of the i-th
indicator, respectively. In Equation (5), the definitions in the parentheses are for the efficiency indicators.

Table 2. Criteria of grading index for eutrophication of lake.

Rank Chl-a (mg/m3) CODMn (mg/L) TP (mg/m3) TN (mg/m3) SD (m)

I ≤0.5 ≤0.15 ≤1 ≤20 ≥10
II ≤1 ≤0.4 ≤4 ≤50 ≥5
III ≤4 ≤2.0 ≤25 ≤300 ≥1.5
IV ≤10 ≤4.0 ≤50 ≤500 ≥1.0
V ≤64 ≤10.0 ≤200 ≤2000 ≥0.4
VI >64 >10 >200 >2000 <0.4

Note: Chl-a, CODMn, TP, TN, SD refer to chlorophyII-a, chemical oxygen demand, total phosphorus, total nitrogen
(TN), and clarity (SD), respectively.

Since each element in a row is the membership of each grade, the sum of each row should be
equal to 1. Therefore, each element of each line in the fuzzy matter element matrix was normalized
according to Equation (7) as follows:

rk
i j =

µk
i j

n∑
j=1

µk
i j

(7)
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where rk
i j is the normalized fuzzy membership degree of the i-th indicator to the j-th grade for the k-th

lake. The normalized fuzzy matrix is formed in terms of Rk
mn, shown in Equation (8) as follows:

Rk
mn =



G1 G2 · · · Gn

C1 r11 r12 · · · r1n
C2 r21 r22 · · · r2n
...

...
...

...
...

Cm rm1 rm2 · · · rmn


(8)

where Rk
mn is the normalized fuzzy matter element matrix for the k-th studied lake.

The upper boundary as well as lower boundary for each eutrophication grade in Equations (5)
and (6) was determined by the criteria of the characteristic indicators listed in Table 2 [20].

Since the upper boundaries of cost indicators (Chl-a, CODMn, TP, and TN) for grade VI, as well as
upper boundary of efficiency indicator (SD) for grade I are not available in Table 2, nonlinear regression
analysis was performed with the assumption of upper boundary values increases with the grade to
attain the pseudo-boundaries. The results are shown in Figure 1.
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2.3.2. Determination of Weights

In the fuzzy matter element model, the weights of indicators were determined mainly by two
categories of methods: subjective methods (e.g., adjacent indicator comparison, efficiency coefficient
method, and analytical hierarchy process (AHP)), and objective weights (e.g., principal component
analysis, factor analysis, variance coefficient approach, and entropy method [21]). Neither of them
can describe the matter element integrally and systematically. Therefore, in this paper, the widely
used AHP method for multi-criteria analysis and the entropy method were combined to calculate the
weights of indicators in fuzzy matter element model for evaluating eutrophication, which can balance
the potential subjective uncertainty of the AHP approach.

The term “entropy” originated from modern information theory, and regarded as a measure
of disorder or uncertainty of a system [5]. It has been widely applied in the fields of uncertainty
assessment. The entropy of the indicators can be calculated by Equation (9) as follows:

Hi = −
K∑

k=1

pk
i · ln pk

i (9)

where Hi refers to the entropy of the i-th indicator, pk
i is the ratio between yk

i and sum of all the values

for yk
i , pk

i =
yk

i
K∑

k=1
yk

i

, where yk
i is the normalized data of the average value of i-th indicator for the k-th

lake, and if pk
i = 0 then ln pk

i = 0. The normalized data were calculated by Equations (10) and (11) for
cost indicators and efficiency indicators, respectively:

yk
i =

max
k

(xk
i ) − xk

i

max
k

(xk
i ) −min

k
(xk

i )
(10)

yk
i =

xk
i −min

k
(xk

i )

max
k

(xk
i ) −min

k
(xk

i )
(11)

Then weights of indicators based on entropy of the i-th criterion w′i can be calculated by
Equation (12) as follows:

w′i =
1−Hi

m−
m∑

i=1
Hi

(12)

where m is the number of indicators.
The entropy indicates the relative importance of indicators. The indicator with lower entropy

corresponds to lower weights compared to other indicators. For balancing the potential subjective
uncertainty of indicators, the AHP method was combined with entropy technology, given by
Equation (13) as follows:

wi =
riw′i

m∑
i=1

riw′i

(13)

where wi is the weight determined by hybrid entropy–AHP method, ri is the weight determined by
AHP method. Results are shown in Table 3.
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Table 3. Weights of indicators for eutrophication assessment.

Indicators Entropy Entropy Weight AHP Weight Entropy–AHP Weight w

Chl-a 2.97 0.12 0.46 0.32
CODMn 4.54 0.21 0.15 0.19

TP 5.12 0.24 0.09 0.13
TN 4.85 0.23 0.05 0.077
SD 4.48 0.20 0.25 0.30

2.3.3. Calculation of Fuzzy Neartude

Fuzzy neartude (or fuzzy closeness degree) is the proximity between evaluated and standard
samples, which is measured by introducing a similarity measure [8,11]. The greater fuzzy neartude to
a certain eutrophication level indicates that the evaluated sample is closer to the eutrophication level.

The fuzzy neartude of the k-th evaluated object to the j-th eutrophication level ρHk
j is represented

by Hamming neartude (ρH) expressed by Equation (14) as follows:

ρHk
j = 1−

n∑
j=1

wi

∣∣∣∣rk
i j − ri0

∣∣∣∣ (14)

where rk
i j is the element of normalized fuzzy matter element matrix, and ri0 is the element of the ideal

normalized fuzzy matter element matrix, expressed by Equation (15) as follows:

Ri0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣
r10

r20
...

rm0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣
1
1
...
1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(15)

where Ri0 is the ideal normalized fuzzy matter element matrix.

2.3.4. Determine the Eutrophication Grade of Lakes

The eutrophication levels of lakes can be determined according to the non-integral feature value
generated by Equation (16) as follows:

Jk =
n∑

j=1

j× ρH j
n∑

j=1
ρH j

(16)

where Jk is the non-integral eutrophication feature value of the k-th evaluated lake. The lower value of
Jk means better eutrophication grade and vice versa. The eutrophication grade of the k-th lake was
defined according to classification in Table 4.

Table 4. Definition of eutrophication grade by non-integral eutrophication feature value J.

J (1, 1.5] (1.5, 2.5] (2.5, 3.5] (3.5, 4.5] (4.5, 5.5] (5.5, 6]

Grade I II III IV V VI

2.4. Comprehensive Eutrophication Evaluation Based on the TFN–MC–FME Model

The FME model can evaluate the eutrophication grade of lakes, but cannot be utilized to analyze
the uncertainty of observed data for eutrophication evaluation, which can be solved by TFN approach
that expresses data with an interval instead of a real number. Therefore, the combination of the
FME model with the TFN approach can successfully solve the problem of the uncertainty of data.
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However, the calculation of uncertainty information expressed with different FME models is difficult to
perform. Therefore, the MC approach is employed by converting the TFN numbers into real numbers
to stochastically simulate the observed data to obtain the probabilistic results, which resolves the
limitation of the TFN method.

The specific operation processes of hybrid TFN–MC–FME model in the Crystal Ball software for
assessing eutrophication grade are described as follows:

(1) In terms of the data processing method of TFN, the variables of Chl-a, CODMn, TP, TN, and SD in

the FME model were obtained by Equation (1), and expressed with Ã, such as Ã = (A1, A2, A3).
(2) The above variables were defined as the independent variables, and probability distributions of

the actual observed data were set as TFN distribution type in the Crystal Ball software. The A1,
A2, and A3 of variables were typed in each data cell.

(3) According to Equations (3)–(8), the normalized fuzzy matter element matrixs for the k-th studied
lake Rk

mn were established. The weights of indictors were identified by Equations (9)–(13). Then,
the fuzzy neartudes ρHk

j of the k-th lake to the j-th grade were calculated by Equations (14) and

(15). The eutrophication grades of lakes Jk were determined by Equation (16).
(4) By running simulations in the Crystal Ball software, the corresponding probabilistic eutrophication

grade for the k-th lake was obtained by setting the interval values of each eutrophication grade in the
software. By further combining the probabilities with the eutrophication grade, the comprehensive
eutrophication grades were acquired by Equation (17), which was shown as follows:

Lk =

q∑
s=0

Jk
s Ps (17)

where Lk is comprehensive eutrophication grade for the k-th lake, q is the number of lake’s possible
eutrophication grade, Jk

s is the possible eutrophication grade for the k-th lake, Ps is the probabilities of
each eutrophication grade, which was obtained by MC simulation of forecast variable Lk. With reference
to the classification of Table 4, the comprehensive eutrophication grades of lakes were determined.
The variables Lk was defined as the predictive variables. The frequency distribution of results became
convergent when N is large enough.

The flowchart of the hybrid TFN–MC–FME model is shown in Figure 2.
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3. Results and Discussions

3.1. Eutrophication Grade Evaluated by Hybrid TFN–MC–FME Model

The statistics data of indicators for eutrophication evaluation of 24 lakes were expressed with
TFN, given in Table 5 and Figure 3 [22,23]. Based on the developed methodology, the eutrophication
statuses of 24 typical lakes in China were assessed. For each lake, 60,000 simulation instances were
performed to obtain convergent results separately. Bosten Lake was selected to illustrate the typical
simulation course of TFN–MC–FME model, shown in Figure 4. The simulation results are shown in
Table 6. The threshold of each eutrophication grade in the Crystal Ball software was set according to the
classification of eutrophication levels in Table 4 which was determined by non-integral eutrophication
feature value. In addition, the non-integral eutrophication feature values for lakes were calculated
by Equation (14), and the possible intervals of each eutrophication grade and their corresponding
probabilities were obtained, shown in Table 7. Finally, the eutrophication grades of lakes were
determined by Equation (17) by multiplying the probabilities of the eutrophication grades with the
corresponding eutrophication grade, shown in Table 8.
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As shown in Table 7, the possible intervals and the corresponding probabilities for each lake were
obtained. In many lakes, two possible intervals showed a significant probability, which indicate that
the evaluation of eutrophication levels involved a great deal of uncertainties, especially for the lakes
with small difference between two eutrophication levels, such as S4, S5, S14, and S15.
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Table 5. Lower, expected and upper value of TFN approach for Lake (termed as A1, A2, and A3, respectively).

Sampling Sites
Chl-a (mg/m3) CODMn (mg/L) TP (mg/m3) TN (mg/m3) SD (m)

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

Erhai Lake (S1) 0.49 1.86 3.00 1.70 3.09 3.24 4 22 40 160 246 465 1.22 2.77 3.45
Gaoshan Lake (S2) 0.28 1.49 5.24 0.56 1.47 3.28 17 46 86 187 358 652 1.08 1.72 2.54
Bosten Lake (S3) 1.74 3.52 6.59 2.85 5.96 11.08 12 23 41 457 932 1598 0.58 1.46 3.04

Dianshan Lake (S4) 1.35 3.00 9.34 1.76 2.87 4.98 6 29 50 408 1086 1732 0.19 0.67 1.47
Yuqiao reservoir (S5) 2.83 10.79 22.71 1.08 4.11 9.65 4 25 53 325 1220 2564 0.38 1.42 2.16
Gucheng Lake (S6) 0.54 4.99 8.32 0.95 2.75 4.58 12 52 118 598 2374 5462 0.05 0.28 0.59

Nansi Lake (S7) 0.28 3.77 8.76 2.58 6.96 11.49 63 194 432 1248 3201 6325 0.12 0.44 0.76
Ci Lake (S8) 3.68 14.47 42.36 0.87 3.74 7.64 26 77 186 350 1000 2512 0.10 0.36 0.64

Dali Lake (S9) 1.38 7.24 15.24 8.27 16.25 34.58 24 153 354 425 1671 3514 0.16 0.48 1.14
Chao Lake (S10) 3.85 11.80 31.65 2.56 4.01 9.86 36 115 364 546 1786 3256 0.05 0.28 0.62

Dianchi Lake(Outer sea) (S11) 16.52 44.43 85.36 2.58 7.11 14.56 36 108 328 357 1309 2658 0.19 0.49 0.87
Dianchi Lake (Cao Sea) (S12) 98.27 298.86 456.92 5.68 16.58 38.75 357 931 1456 685 15,273 24,365 0.06 0.23 0.42

West Lake (S13) 15.68 58.95 115.64 0.68 6.94 17.28 39 161 426 426 2478 2768 0.15 0.43 0.84
Gantang Lake (S14) 29.56 75.69 158.64 0.98 7.23 21.32 38 141 325 346 1417 2541 0.09 0.38 0.73

Mogu Lake (S15) 8.96 54.77 128.47 2.38 10.38 24.19 56 287 574 624 2206 4567 0.21 0.53 0.87
Li Lake (S16) 37.54 119.51 326.98 2.13 9.92 34.67 84 372 753 1524 3038 5367 0.16 0.34 0.62

Dongshan Lake (S17) 29.34 149.45 514.28 3.48 13.40 25.86 158 428 796 1645 5350 7658 0.08 0.22 0.43
Moshui Lake (S18) 48.37 153.59 358.69 2.49 13.51 38.62 95 232 467 7853 15,692 26,342 0.06 0.22 0.54
Liwan Lake (S19) 46.32 162.92 362.97 5.62 14.46 34.25 249 743 1124 2405 7337 11,246 0.13 0.31 0.64
Liuhua Lake (S20) 75.49 323.51 615.24 8.37 25.26 42.63 342 643 1024 3248 6777 9754 0.03 0.15 0.32

Xuanwu Lake (S21) 28.67 168.14 324.56 3.62 10.08 25.98 158 663 1247 1125 4073 7654 0.05 0.22 0.42
Jingpo Lake (S22) 0.98 4.96 14.35 1.67 5.96 24.37 88 316 647 324 1270 2485 0.26 0.73 1.08
Nan Lake (S23) 21.71 120.60 328.45 2.38 8.22 21.57 65 228 497 1028 2630 3782 0.06 0.22 0.41

Qionghai Lake (S24) 0.19 0.88 3.28 0.54 1.43 4.52 57 130 268 217 410 862 1.08 2.98 4.32

Note: 1. Chl-a, CODMn, TP, TN, SD refer to ChlorophyII-a, chemical oxygen demand, total phosphorus, total nitrogen (TN), and clarity (SD), respectively. 2. The data for calculating A1,
A2, and A3 were taken from literatures published in Chinese during period from 1993 to 2017.
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Table 6. Non-integral eutrophication grade rank feature of each lake.

Cases Minimum Values Average Values Maximum Values

Erhai Lake (S1) 3.33 3.77 4.13
Gaoshan Lake (S2) 3.32 3.89 4.45
Bosten Lake (S3) 3.85 4.24 4.85

Dianshan Lake (S4) 3.90 4.48 4.99
Yuqiao reservoir (S5) 3.56 4.55 5.19
Gucheng Lake (S6) 4.07 4.83 5.19

Nansi Lake (S7) 4.32 5.00 5.37
Ci Lake (S8) 4.56 5.16 5.44

Dali Lake (S9) 4.56 5.13 5.61
Chao Lake (S10) 4.81 5.26 5.56

Dianchi Lake(Outer sea) (S11) 4.87 5.26 5.68
Dianchi Lake (Cao Sea) (S12) 5.60 5.82 5.91

West Lake (S13) 4.82 5.36 5.82
Gantang Lake (S14) 4.93 5.48 5.83

Mogu Lake (S15) 4.96 5.44 5.83
Li Lake (S16) 5.21 5.69 5.87

Dongshan Lake (S17) 5.37 5.78 5.90
Moshui Lake (S18) 5.28 5.75 5.90
Liwan Lake (S19) 5.34 5.74 5.89
Liuhua Lake (S20) 5.69 5.87 5.91

Xuanwu Lake (S21) 5.40 5.77 5.91
Jingpo Lake (S22) 4.39 5.02 5.53
Nan Lake (S23) 5.16 5.69 5.90

Qionghai Lake (S24) 3.41 3.85 4.47

Table 7. Probable intervals of non-integral eutrophication grade, corresponding probabilities, and
comprehensive eutrophication status.

Cases
Possible Intervals of Non-Integral

Eutrophication Feature Value
Eutrophication Grade

Probability (%) Eutrophication
Status

Erhai Lake (S1) [3.30, 3.50] 2.87 III
[3.50, 4.16] 97.13 IV

Gaoshan Lake (S2) [3.32, 3.50] 1.37 III
[3.50, 4.45] 98.63 IV

Bosten Lake (S3) [3.85, 4.50] 92.05 IV
[4.50, 4.85] 7.95 V

Dianshan Lake (S4) [3.90, 4.50] 53.49 IV
[4.50, 4.99] 46.51 V

Yuqiao reservoir (S5) [3.56, 4.50] 41.82 IV
[4.50, 5.19] 58.18 V

Gucheng Lake (S6) [4.07, 4.50] 1.09 IV
[4.50. 5.19] 98.91 V

Nansi Lake (S7) [4.32, 4.50] 0.14 IV
[4.50, 5.37] 99.86 V

Ci Lake (S8) [4.56, 5.44] 100 V

Dali Lake (S9) [4.56, 5.50] 99.63 V
[5.50, 5.61] 0.37 VI

Chao Lake (S10) [4.81, 5.50] 99.66 V
[5.50, 5.56] 0.34 VI

Dianchi Lake (Outer sea) (S11) [4.87, 5.50] 99.26 V
[5.50, 5.68] 0.74 VI

Dianchi Lake (Cao Sea) (S12) [5.60, 5.91] 100 VI
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Table 7. Cont.

Cases
Possible Intervals of Non-Integral

Eutrophication Feature Value
Eutrophication Grade

Probability (%) Eutrophication
Status

West Lake (S13) [4.82, 5.50] 85.66 V
[5.50, 5.82] 14.34 VI

Gantang Lake (S14) [4.93, 5.50] 54.03 V
[5.50, 5.83] 45.97 VI

Mogu Lake (S15) [4.96, 5.50] 69.41 V
[5.50, 5.83] 30.59 VI

Li Lake (S16) [5.21, 5.50] 3.50 V
[5.50, 5.87] 96.50 VI

Dongshan Lake (S17) [5.37, 5.50] 0.19 V
[5.50, 5.90] 99.81 VI

Moshui Lake (S18) [5.28, 5.50] 0.59 V
[5.50, 5.90] 99.41 VI

Liwan Lake (S19) [5.34, 5.50] 0.29 V
[5.50, 5.89] 99.71 VI

Liuhua Lake (S20) [5.69, 5.91] 100 VI

Xuanwu Lake (S21) [5.40, 5.50] 0.04 V
[5.50, 5.91] 99.61 VI

Jingpo Lake (S22)
[4.39, 4.50] 0.04 IV
[4.50, 5.50] 99.94 V
[5.50, 5.53] 0.02 VI

Nan Lake (S23) [5.16, 5.50] 4.13 V
[5.50, 5.90] 95.87 VI

Qionghai Lake (S24) [3.41, 3.50] 1.31 III
[3.50, 4.47] 98.69 IV

Table 8. Comprehensive eutrophication values of lakes.

Cases Comprehensive Eutrophication Values Final Eutrophication Grades

Erhai Lake (S1) 3.971 IV
Gaoshan Lake (S2) 3.986 IV
Bosten Lake (S3) 4.080 IV

Dianshan Lake (S4) 4.465 IV
Yuqiao reservoir (S5) 4.582 V
Gucheng Lake (S6) 4.989 V

Nansi Lake (S7) 4.999 V
Ci Lake (S8) 5.000 V

Dali Lake (S9) 5.004 V
Chao Lake (S10) 5.003 V

Dianchi Lake(Outer sea) (S11) 5.007 V
Dianchi Lake (Cao Sea) (S12) 6.000 VI

West Lake (S13) 5.143 V
Gantang Lake (S14) 5.460 V

Mogu Lake (S15) 5.306 V
Li Lake (S16) 5.965 VI

Dongshan Lake (S17) 5.998 VI
Moshui Lake (S18) 5.994 VI
Liwan Lake (S19) 5.997 VI
Liuhua Lake (S20) 6.000 VI

Xuanwu Lake (S21) 5.979 VI
Jingpo Lake (S22) 5.000 V
Nan Lake (S23) 5.959 VI

Qionghai Lake (S24) 3.987 IV
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As shown in Table 8, the comprehensive eutrophication levels were in the order of S12 = S20 >

S17 > S19 > S18 > S21 > S16 > S23 > S14 > S15 > S13 > S11 > S9 > S10 > S8 = S22 > S7 > S6 > S5
> S4 > S3 > S24 > S2 > S1. With respect to the probabilities of the eutrophication grades in Table 7,
Erhai Lake (S1), Gaoshan Lake (S2), Bosten Lake (S3), and Qionghai Lake (S24) have the greatest
likelihood of being in grade IV. In addition, Gucheng Lake (S6), Nansi Lake (S7), Dali Lake (S9), Chao
Lake (S10), Dianchi Lake (Outer sea) (S11), West Lake (S13), and Jingpo Lake (S22) have the greatest
likelihood to be in the grade V. Moreover, Li Lake (S16), Dongshan Lake (S17), Moshui Lake (S18),
Liwan Lake (S19), Xuanwu Lake (S21), and Nan Lake (S23) have the greatest likelihood to be in the
grade VI. For Dianshan Lake (S4), the comprehensive eutrophication grade of Dianshan Lake is grade
IV, and the probability of being in the grade IV is close to being in the grade V, which means that
the lake has a worsening tendency to become grade V. For Yuqiao reservoir (S5), the comprehensive
eutrophication grade is V, and the probability of being in the grade V approximates the probability of
being in the grade IV, which indicates that the lake has an improving tendency from grade V to grade
IV. The comprehensive eutrophication grades for Gantang Lake (S14) and Mogu Lake (S15) are grade V
as well, and the probability of being in the grade V approximates the probability of being in the grade
VI, which means that Gantang Lake (S14) and Mogu Lake (S15) have the worsening trend from grade V
to grade VI. Specifically, for Ci Lake (S8), the probability of being in grade V is 100%, which means that
although there is the uncertainty in data of Ci Lake, the eutrophication grade is V without exception.
Similarly, for Dianchi Lake (Cao Sea) (S12) and Liuhua Lake (S20), the probability of being in grade VI
is 100%, which indicates that the eutrophication grade is VI without exception. Therefore, compared
with the determined method, the proposed TFN–MC–FME model can identify the developing trends
of eutrophication in lakes and provide lake managers with more valuable information. For example,
lake managers can get the variation intervals of eutrophication status, and find the seasons or zones in
the lake that may be seriously threatened by eutrophication, which can help make scientific schemes
and planning relate to lakes.

3.2. Comparison with Other Approaches

The eutrophication evaluation of these 24 lakes was performed by researchers with methods of
trophic level index method (TLI), back propagation neutral network (BNN), and projection pursuit (PP)
method. The comparison of the proposed model with the three methods is shown in Table 9. For almost
all lakes except for Erhai Lake (S1), Gaozhou Reservoir (S2), Bosten Lake (S3), Yuqiao Reservoir
(S5), and Qionghai Lake (S24), the evaluation results were completely consistent with the other three
methods, which proved the correctness of TFN–MC–FME model. However, for some lakes, there are
some differences between the developed method and the deterministic method which used the average
values of water quality data. For Erhai Lake (S1) and Gaozhou Reservoir (S2), the eutrophication grade
is IV according to the results of developed method. However, for the results of the other deterministic
methods, they were in grade III. For Bosten Lake (S3), the result obtained by the proposed method
is grade IV, which is not consistent with the results obtained by PP method. In addition, For Yuqiao
Reservoir (S5), the result obtained by proposed model is grade V, which is not the same as the result of
TLI and BNN methods. For Qionghai Lake (S24), the result obtained by the proposed model is grade IV,
which is not consistent with the result of TLI method. It can be explained that in the proposed model,
the distributions of data were considered comprehensively, which leads to different results from other
methods. In addition, the assessment results of TLI, BNN, and PP are based on the average values
of indicators, while the assessment result of hybrid method is based on the triangular distribution
of indicators, which leads to the difference between proposed model and other methods. When the
monitoring data of indicators are asymmetrical with a great variation, the hybrid method is more
useful than the other methods. Although for most of the lakes, the assessment results of hybrid
method are consistent with the deterministic methods that seem to be easier to perform, the hybrid
model can supply more information of eutrophication status including the probability distribution
of eutrophication feature value shown in Tables 6 and 7, and Figure 3. For example, for Erhai Lake
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(S1), Gaozhou Reservoir (S2), Bosten Lake (S3), and Dianshan Lake (S4), the eutrophication status is
the same of IV. However, the comprehensive eutrophication values from Table 8 are 3.971, 3.986, 4.08,
and 4.465, respectively, which indicated that the eutrophication degree increased in the order of S1
< S2 < S3 < S4. By stochastically simulating the data according to the distribution character of data,
the possible eutrophication grades with the corresponding probabilities were obtained. Therefore, the
occurrence of the accidental value that may affect the assessment result can be prevented. Since the
hybrid model is based on the probability distribution, when the distributions of indicators cannot be
obtained from the monitoring data correctly, the application of the hybrid method will be constrained.

Table 9. Comparison of eutrophication grade between the proposed TFN–MC–FME model and the
other relevant methods.

Cases Hybrid
Method

Trophic Level
Index (TLI) [24]

Back Propagation
Neutral Network [25]

Projection Pursuit
Method [26]

Erhai Lake (S1) IV III III III
Gaozhou Reservoir (S2) IV III III III

Bosten Lake (S3) IV IV IV V
Dianshan Lake (S4) IV IV IV IV

Yuqiao reservoir (S5) V IV IV V
Gucheng Lake (S6) V V V V

Nansi Lake (S7) V V V V
Ci Lake (S8) V V V V

Dali Lake (S9) V V V V
Chao Lake (S10) V V V V

Dianchi Lake(Outer sea) (S11) V V V V
Dianchi Lake (Cao Sea) (S12) VI VI VI VI

West Lake (S13) V V V V
Gantang Lake (S14) V V V V

Mogu Lake (S15) V V V VI
Li Lake (S16) VI VI VI VI

Dongshan Lake (S17) VI VI VI VI
Moshui Lake (S18) VI VI VI VI
Liwan Lake (S19) VI VI VI VI
Liuhua Lake (S20) VI VI VI VI

Xuanwu Lake (S21) VI VI VI VI
Jingpo Lake (S22) V V V V
Nan Lake (S23) VI VI VI VI

Qionghai Lake (S24) IV III VI IV

4. Conclusions

In this study, a method coupling the TFN method, MC approach, and FME model was proposed
and applied to evaluate the eutrophication status of typical lakes in China. The results indicated
that the model can be used to evaluate the eutrophication grade scientifically and objectively, and
eutrophication grades in the studied typical lakes in China ranged from IV to VI, which means that
the service function of these lakes will be unavailable except for taking measures to protect the water
environment of lakes. With the developed model, the eutrophication trends of lakes can be obtained
by the considering the possible intervals and corresponding probabilities. The uncertainties of data
can be processed by the TFN method, the fuzziness of the evaluation method can be improved by the
FME model, and the operation difficulty of TFN in the FME model can be solved by the MC approach.
Therefore, the proposed method can also be applied to other evaluation fields involving uncertainty.

Author Contributions: Investigation, W.R.; Conceptualization, W.R. and Y.W.; Methodology, Y.W.; Analysis, Y.W.;
Writing, W.R. and Y.W.; Writing-reviewing and editing, Y.W.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Environ. Res. Public Health 2019, 16, 1769 16 of 17

References

1. Wu, Z.; Wang, X.; Chen, Y.; Cai, Y.; Deng, J. Assessing river water quality using water quality index in Lake
Taihu Basin, China. Sci. Total Environ. 2008, 612, 914–922. [CrossRef] [PubMed]

2. Ali, E.M.; Khairy, H.M. Environmental assessment of drainage water impacts on water quality and
eutrophication level of Lake Idku, Egypt. Environ. Pollut. 2016, 216, 437–449. [CrossRef]

3. Li, B.; Yang, G.; Wan, R.; Hörmann, G.; Huang, J.; Fohrer, N.; Zhang, L. Combining multivariate statistical
techniques and random forests model to assess and diagnose the trophic status of Poyang Lake in China.
Ecol. Indic. 2017, 83, 74–83. [CrossRef]

4. Todd, A.S.; Manning, A.H.; Verplanck, P.L.; Crouch, C.; McKnight, D.M.; Dunham, R. Climate-change-driven
deterioration of water quality in a mineralized watershed. Environ. Sci. Technol. 2012, 46, 9324–9332.
[CrossRef]

5. Wang, D.; Liu, D.; Ding, H.; Singh, V.P.; Wang, Y.; Zeng, X.; Wu, J.; Wang, L. A cloud model-based approach
for water quality assessment. Environ. Res. 2016, 148, 24–35. [CrossRef]

6. Wu, Z.; Zhang, D.; Cai, Y.; Wang, X.; Zhang, L.; Chen, Y. Water quality assessment based on the water quality
index method in Lake Poyang: The largest freshwater lake in China. Sci. Rep. 2017, 7, 17999. [CrossRef]
[PubMed]

7. Chang, F.J.; Chung, C.H.; Chen, P.A.; Liu, C.W.; Coynel, A.; Vachaud, G. Assessment of arsenic concentration
in stream water using neuro fuzzy networks with factor analysis. Sci. Total Environ. 2014, 494–495, 202–210.
[CrossRef]

8. Deng, X.; Xu, Y.; Han, L.; Yu, Z.; Yang, M.; Pan, G. Assessment of river health based on an improved
entropy-based fuzzy matter-element model in the Taihu Plain, China. Ecol. Indic. 2015, 57, 85–95. [CrossRef]

9. He, Y.; Dai, A.; Zhu, J.; He, H.; Li, F. Risk assessment of urban network planning in china based on the
matter-element model and extension analysis. Int. J. Electr. Power 2011, 33, 775–782. [CrossRef]

10. Ocampo-Duque, W.; Osorio, C.; Piamba, C.; Schuhmacher, M.; Domingo, J.L. Water quality analysis in rivers
with non-parametric probability distributions and fuzzy inference systems: Application to the Cauca River,
Colombia. Environ. Int. 2013, 52, 17–28. [CrossRef]

11. Wong, H.; Hu, B.Q. Application of improved extension evaluation method to water quality evaluation.
J. Hydrol. 2014, 509, 539–548. [CrossRef]

12. Zhi, G.; Chen, Y.; Liao, Z.; Walther, M.; Yuan, X. Comprehensive assessment of eutrophication status based
on Monte Carlo–triangular fuzzy numbers model: Site study of Dongting Lake, Mid-South China. Environ.
Earth Sci. 2016, 75. [CrossRef]

13. Mpimpas, H.; Anagnostopoulos, P.; Ganoulis, J. Modelling of water pollution in the Thermaikos Gulf with
fuzzy parameters. Ecol. Model. 2001, 142, 91–104. [CrossRef]

14. Cai, W. Extension theory and its application. Chin. Sci. Bull. 1999, 44, 1538–1548. (In Chinese) [CrossRef]
15. Li, B.; Yang, G.; Wan, R.; Hormann, G. Dynamic water quality evaluation based on fuzzy matter-element

model and functional data analysis, a case study in Poyang Lake. Environ. Sci. Pollut. Res. Int. 2017.
[CrossRef]

16. Zhao, Z.; Guo, Y.; Wei, H.; Ran, Q.; Gu, W. Predictions of the Potential Geographical Distribution and Quality
of a Gynostemma Pentaphyllum Base on the Fuzzy Matter Element Model in China. Sustainability 2017,
9, 1114. [CrossRef]

17. Giachetti, R.E.; Young, R.E. A parametric representation of fuzzy numbers and their arithmetic operators.
Fuzzy. Set. Syst. 1997, 91, 185–202. [CrossRef]

18. Andersen, N.J.H.; Brandstrup, J. Monte Carlo Simulation in Crystal Ball 7.3. Available
online: http://medarbejdere.au.dk/fileadmin/www.asb.dk/servicekatalog/IT/Analysevaerktoejer/Crystal_
Ball/Crystal_Ball_7.3_UK.pdf (accessed on 1 May 2008).

19. Liu, W.; Li, S.; Bu, H.; Zhang, Q.; Liu, G. Eutrophication in the Yunnan Plateau lakes: The influence of lake
morphology, watershed land use, and socioeconomic factors. Environ. Sci. Pollut. Res. Int. 2012, 19, 858–870.
[CrossRef] [PubMed]

20. Yan, H.; Wu, D.; Huang, Y.; Wang, G.; Shang, M.; Xu, J.; Shi, X.; Shan, K.; Zhou, B.; Zhao, Y. Water
eutrophication assessment based on rough set and multidimensional cloud model. Chemometr. Intell. Lab.
2017, 164, 103–112. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2017.08.293
http://www.ncbi.nlm.nih.gov/pubmed/28886543
http://dx.doi.org/10.1016/j.envpol.2016.05.064
http://dx.doi.org/10.1016/j.ecolind.2017.07.033
http://dx.doi.org/10.1021/es3020056
http://dx.doi.org/10.1016/j.envres.2016.03.005
http://dx.doi.org/10.1038/s41598-017-18285-y
http://www.ncbi.nlm.nih.gov/pubmed/29269834
http://dx.doi.org/10.1016/j.scitotenv.2014.06.133
http://dx.doi.org/10.1016/j.ecolind.2015.04.020
http://dx.doi.org/10.1016/j.ijepes.2010.12.037
http://dx.doi.org/10.1016/j.envint.2012.11.007
http://dx.doi.org/10.1016/j.jhydrol.2013.12.003
http://dx.doi.org/10.1007/s12665-016-5819-7
http://dx.doi.org/10.1016/S0304-3800(01)00281-2
http://dx.doi.org/10.1007/BF02886090
http://dx.doi.org/10.1007/s11356-017-9371-0
http://dx.doi.org/10.3390/su9071114
http://dx.doi.org/10.1016/S0165-0114(97)00140-1
http://medarbejdere.au.dk/fileadmin/www.asb.dk/servicekatalog/IT/Analysevaerktoejer/Crystal_Ball/Crystal_Ball_7.3_UK.pdf
http://medarbejdere.au.dk/fileadmin/www.asb.dk/servicekatalog/IT/Analysevaerktoejer/Crystal_Ball/Crystal_Ball_7.3_UK.pdf
http://dx.doi.org/10.1007/s11356-011-0616-z
http://www.ncbi.nlm.nih.gov/pubmed/21948141
http://dx.doi.org/10.1016/j.chemolab.2017.02.005


Int. J. Environ. Res. Public Health 2019, 16, 1769 17 of 17

21. Wei, C.; Guo, Z.; Wu, J.; Ye, S. Constructing an assessment indices system to analyze integrated regional
carrying capacity in the coastal zones—A case in Nantong. Ocean Coast Manag. 2014, 93, 51–59. [CrossRef]

22. Ding, H.; Wang, D. The evaluation method of water eutrophication based on cloud model. Acta Sci. Circumst.
2013, 33, 251–257. [CrossRef]

23. Shu, J. Assessment of eutrophication in main lakes of China. Oceanologia et Limnologia Sinica 1993, 24, 616–620.
(In Chinese)

24. Liu, D.; Zou, Z. Water quality evaluation based on improved fuzzy matter-element method. J. Environ. Sci.
China 2012, 24, 1210–1216. [CrossRef]

25. Cui, D. Application of MATLAB neural network in evaluating eutrophication degree of lakes and reservoirs.
Environ. Res. Monit. 2012, 25, 42–48. (In Chinese)

26. Wang, G.; Ren, L.; Wang, B.; Yu, Z. Lake eutrophication evaluation model based on projection pursuit method.
Water Resour. Prot. 2009, 25, 13–18. (In Chinese)

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ocecoaman.2014.02.009
http://dx.doi.org/10.13671/j.hjkxxb.2013.01.036
http://dx.doi.org/10.1016/S1001-0742(11)60938-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Triangular Fuzzy Numbers (TFN) Approach 
	Monte Carlo (MC) Approach 
	Improved Fuzzy Matter Element Model 
	Establish the Fuzzy Matter Element model of Eutrophication Assessment 
	Determination of Weights 
	Calculation of Fuzzy Neartude 
	Determine the Eutrophication Grade of Lakes 

	Comprehensive Eutrophication Evaluation Based on the TFN–MC–FME Model 

	Results and Discussions 
	Eutrophication Grade Evaluated by Hybrid TFN–MC–FME Model 
	Comparison with Other Approaches 

	Conclusions 
	References

