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Abstract

Background: Genomic prediction (GP) allows breeders to select plants and animals based on their breeding
potential for desirable traits, without lengthy and expensive field trials or progeny testing. We have proposed
to use Dissimilarity-based Partial Least Squares (DPLS) for GP. As a case study, we use the DPLS approach to
predict Bacterial wilt (BW) in tomatoes using SNPs as predictors. The DPLS approach was compared with the
Genomic Best-Linear Unbiased Prediction (GBLUP) and single-SNP regression with SNP as a fixed effect to
assess the performance of DPLS.

Results: Eight genomic distance measures were used to quantify relationships between the tomato accessions from
the SNPs. Subsequently, each of these distance measures was used to predict the BW using the DPLS prediction
model. The DPLS model was found to be robust to the choice of distance measures; similar prediction performances
were obtained for each distance measure. DPLS greatly outperformed the single-SNP regression approach, showing
that BW is a comprehensive trait dependent on several loci. Next, the performance of the DPLS model was compared
to that of GBLUP. Although GBLUP and DPLS are conceptually very different, the prediction quality (PQ) measured by
DPLS models were similar to the prediction statistics obtained from GBLUP. A considerable advantage of DPLS is that
the genotype-phenotype relationship can easily be visualized in a 2-D scatter plot. This so-called score-plot provides
breeders an insight to select candidates for their future breeding program.

Conclusions: DPLS is a highly appropriate method for GP. The model prediction performance was similar to
the GBLUP and far better than the single-SNP approach. The proposed method can be used in combination
with a wide range of genomic dissimilarity measures and genotype representations such as allele-count,
haplotypes or allele-intensity values. Additionally, the data can be insightfully visualized by the DPLS model,
allowing for selection of desirable candidates from the breeding experiments. In this study, we have assessed
the DPLS performance on a single trait.

Keywords: Bacterial wilt, Genomic prediction, Phenotype prediction, Genetic distance, Dissimilarity based
Partial Least Squares

Background

Genome wide association studies (GWAS) have been
widely applied in human, plant and animal studies to
identify genetic variants associated with complex traits
[1-3]. In GWAS, the association between SNPs and a
complex trait is usually analyzed by testing each marker
individually. This requires a large number of significance
tests. Because of this, a stringent p-value is generally
used to select significant SNPs to reduce the number of
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false positive SNPs. At the same time, however, many
real associated variants may be missed. The success of
GWAS relies on the underlying trait architecture [4],
heritability [5-7], effective population size and environ-
mental factors [8, 9]. There is a general consensus that
complex traits are controlled by many quantitative trait
loci (QTL) with small effects. Typically, single marker
GWAS analyses approaches are only able to capture
QTLs with large effects and miss QTLs with small effects
[1]. In addition, these significantly identified SNPs account
for only a small fraction of the variation of the complex
traits. Instead of GWAS where the target is to identify
SNPs associated with a complex trait, one can also use
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SNPs to predict complex traits by fitting all SNPs simul-
taneously to select individuals. Prediction of a quantitative
trait using all SNPs is referred as genomic prediction (GP)
[10]. Breeders can use predicted trait values to select
candidates for their future breeding programs, termed
as genomic selection (GS) [11]. It has been shown that
GP provides a cost-effective and time-efficient tool for
breeders to predict traits, which may be difficult and
expensive to measure directly, are limited to sex or only
observable later in life. GP has been successfully applied
in selection of breeding candidates in plants [12—-14] and
animals [15-17]. The approach has also been applied in
humans to predict disease risk and many complex traits
[1, 18]. Several studies have shown that the prediction
accuracy of complex traits may be improved by using all
SNPs simultaneously [1, 9, 12-15]. For example, Yang et
al. [1] have shown that fitting all SNPs simultaneously
leads to approximately ten-fold increase in the predictive
ability of human height compared to the individual SNP.

The accurate prediction of a complex trait can be
extremely challenging, as the trait may be affected by
multiple loci that interact. Another major challenge is
the fact that the number of SNPs in GP studies greatly
exceeds the number of samples leading to the so-called
‘large-p - small-n’ problem. Because of this, many trad-
itional statistical approaches are not applicable to such
data. Deriving an accurate prediction of complex traits
by the high-density SNPs, while at the same time taking
into account possible interactions between multiple loci,
requires powerful feature reduction methods. A variety of
methods such as Bayesian regression [19-21], Genomic
Best-Linear Unbiased Prediction (GBLUP) [19, 22, 23],
kernel regression [24] and dimension reduction methods
[25] have been developed and applied in GP.

Most of the suggested statistical models differ in their
assumptions of the distribution of the SNPs effect. For
example, the GBLUP model assumes that the SNPs effect
size is drawn from a common Gaussian distribution and
the variances of SNPs effect are equal. This unrealistic
assumption of GBLUP corresponds to use of a single ran-
dom effect term in the model, which is a severe and
unnecessary limitation. Whereas the Bayesian methods
[21, 26] assume that the variance of SNPs effect differs
among loci with most of the SNPs having a zero to low
effect and only a few having moderate to large effect.
Several studies have shown that Bayesian regression out-
performed GBLUP for the prediction of traits with few
QTLs with large effect [4, 27, 28].

Multiple Linear Regression (MLR) is an often used
quantitative technique for prediction from predictors
[29, 30]. However, MLR can be applied for prediction
when the number of independent variables does not
significantly exceed the number of observations and no
significant collinearity between predictors exists [31].
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Considering the characteristics of genomic data, MLR is
not directly applicable for GP. Partial Least Squares (PLS)
[32, 33] may overcome these issues for high-dimensional
and collinear data by combining the principles of Principal
Component Analysis (PCA) and MLR. It has been suc-
cessfully applied in metabolomics for analysis of high-
dimensional chromatography, and mass spectrometry data
[34, 35]. PLS tries to extract latent variables (LVs) that
combine SNPs to optimally predict a dependent variable
such as a complex trait, taking into account their mutual
correlation. However, PLS cannot be directly used for
SNPs, as these are generally discrete (often represented as
0, 1, 2 for bi-allelic SNPs) while conventional PLS has
been developed for the analysis of continuous data.

Therefore, we propose to use Dissimilarity-based Partial
Least Squares (DPLS) to predict one or multiple traits
from a large set of SNPs. In DPLS, measurements of the
dissimilarity between the accessions (instead of the raw
SNPs) are used for prediction. Because of this, DPLS may
also be used for GP, when the method is used in combin-
ation with a suitable measure of the genomic distance
between genotype accessions. Note that, during the dis-
similarity calculation (between accessions), SNPs informa-
tion is lost, which means effect of SNPs on the traits
cannot be directly calculated from DPLS. However, there
is a pseudo-sample technique proposed in literature to
extract variables interaction effect from DPLS model [36].
Unlikely PLS, which uses PCA-like technique to extract
LVs, DPLS takes the advantages of Multi-Dimensional
Scaling (MDS)-like technique to extract LVs to predict
complex trait. Both PCA and MDS techniques are widely
used for dimension reduction purposes. MDS uses a
distance matrix and is often recommended to analyze
distance matrices. MDS minimize the dimensions, while
preserving actual distance between data points. The DPLS
combines features of MDS and PLS in order to perform
GP. Several measures have been developed and proposed
in literature to calculate dissimilarity between genomic
accessions from SNPs [37, 38]. As a case study, we have
explored and compared eight of such widely used genomic
distance measures (Table 1) in combination with DPLS to
predict bacterial wilt (BW) in tomato. In this study we
have used SNPs as predictors to predict BW. BW is a
complex trait caused by bacteria Ralstonia solanacearum
and is considered as one of the most destructive diseases
for a wide range of crops, including tomato [39]. In this
analysis we have not accounted for any environmental
factor in the prediction model. We have focused this study
on genotype effects, by comparing accessions grown in
the same controlled greenhouse environment.

The prediction quality (PQ) of the DPLS model was
measured in term of R2 estimated from observed and pre-
dicted trait values in a cross validation (CV) setup. Fur-
thermore, we have compared the prediction performance
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Table 1 The selected dissimilarity measures used to calculate genomic distance among tomato accessions from SNPs®
Distance Equation R-packages References
Euclidean K . gstudio [65]
diti = Z (Xitk—Xizk )
Gower = daisy [66]
K
dinig = Zk:?('smzk*dmzk
Zk:1 Sinik
For nominal or factor variables
ditiz=0, (i_f Xi1k = Xi2k)
ditizk=1, ﬂl(f Xitk F Xi2k)
Allele share Diin = %dez(k) Custom-R-script [67]
k=1
Where dipip(k) = {0, If individual i; and i, have two alleles in common at the k™ locus,
1, If individual i; and i, have only single alleles in common at the k™ locus,
2, If individual i; and i, have no alleles in common at the k™ locus}
L I
(2N-1) . - PijxPij,
Nei dnei = —In - Z|.=1Z,:1 ’ Jyl gstudio [68]
V(0 e ) () )
Where, the summation L is across loci and I is across alleles at each locus in
population x and y (here individual)
K
Bray diiz = M vegan [69]
Zk:1xi|k+xizk
Jaccard diia = % vegan [70]
K K
Kulczynski disip =1-0.5 Z":‘Tn(xnk' o) + Zk:‘ ':m(x”k'xm) vegan [70]
k=1 Xitk k=1 Xizk
GRM G= 2z Custom R-script 22

2ZPk(1*Pk)

Xi1k and Xizx = SNPs at locus k for accession xi; and x;, respectively
diyiak = distance between i; and i, samples for SNPs at locus k

B Bray- Curtis dissimilarity

G Genomic relationship matrix

Z genotype information for all tomato accessions

px frequency of allele at locus k

2di;i» = distance between tomato accession i; and i,

of DPLS with a prediction based on SNPs found as signifi-
cant in a Univariate association analysis (where SNP was
used as fixed effect) and GBLUP (where SNP was used as
random effect). We demonstrate GP with DPLS on a
single trait. The method can however be applied to simul-
taneously predict multiple, possibly correlated traits.

Results and discussion

The differences in information captured by various gen-
omic distance measures for GP have not been explored.
Therefore, we first explored the properties of the eight
genomic distance measures of interest to this study by
the Mantel test, heatmap visualization, and their appli-
cation in Multi-Dimensional Scaling (MDS) before we
studied their application in DPLS.

Comparison of genomic information captured by
different distance measures

Mantel correlation

The Mantel test was used to compare the relation be-
tween two distance matrices in terms of correlation (r)
statistics. The pair-wise correlation results obtained from
the comparison of genomic distance measures by the
Mantel test are presented in Table 2. On the basis of the
Mantel correlation statistics, the eight genomic distance
measures can be grouped into two categories for the
data investigated in this study. Any two genomic distance
matrices, which show a Mantels test correlation > 0.70,
are placed together in one group. The first group (here-
after Group-I) includes Euclidean, Gower, Nei and allele-
share distance and the other four genomic distances i.e.,
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Table 2 Summarized Mantel correlation statistics for analyzed genomic dissimilarity matrices*

Bray | Jaccard | Kulezynski | GRM

ing of Bray, GRM, Jaccard and Kulczynski

Distances Euclidean | Gower Allele Nei
Share

Euclidean —_
Gower %
Allele share 2

. <]
Nei
Bray = 0.55 0.46 0.46 0.42
Jaccard % 0.54 0.44 0.44 0.39
Kulezynski | 2 036 024 024 0.9
GRM © 0.53 0.43 0.48 0.44
*The cells are gray scaled according to correlation (r) values. The summary shows that the distance measures can be classified to two groups:
Group 1 isting of i Gower, Allele-share and Nei di: and Group 11 ( i
distances)

Bray, Kulczynski, Jaccard and genomic relationship matrix
(GRM) were placed in second group (hereafter Group-II).

Heatmap visualization

In Fig. 1, the quantitative distance patterns between the
242 tomato accessions are visualized as a heatmap for
the Euclidean and Bray distance. Both heatmaps show
many sub-clusters of closely related tomato accessions.
However, in contrast to the heatmap of the Euclidean
distance (Group-I distance) the heatmap of the Bray
distance (Group-II distance) shows many small clusters.
The heatmap plot clearly shows that tomato accessions
cluster differently in Euclidean and Bray distance space.
In Fig. 1, the Euclidean and Bray distance were selected
as representative distances of Groups-I and II identified
by the Mantel test. Similar results were observed for
the other distance measures within each group.

Multi-Dimensional Scaling (MDS) analysis

MDS models based on the two selected representative
distance measures (i.e., Bray and Euclidean) were used
to visualize the relations between the tomato accessions

in a scatter plot (Fig. 2). The MDS plot of the Euclidean
distance matrix suggests that most tomato accessions are
genetically similar and form a big cluster with few smaller
clusters of genetically less similar accessions. In the analo-
gous representation of the Bray distances, tomato acces-
sions were distributed throughout the entire plot with few
accessions forming small clusters in MDS space.

In both plots the observed clusters do not clearly re-
late to the phenotype. We conclude that the two groups
of distance metrics represent different structures within
the genotype data, neither of which can be strongly asso-
ciated to the phenotype measures by MDS. However,
this insight could only be obtained from the MDS score
plot that represents the relative differences and similar-
ities between all accessions used in the study.

Phenotype prediction with DPLS

In this study, DPLS was used to relate genomic informa-
tion captured by the distance measures indicated in Table 1
to the BW. For each distance measure repeated double
cross validation (rDCV) (see Methods) was used to choose
the optimal number of latent variables (LVs) to fit the
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Fig. 1 Heatmap representation of dissimilarity scores between 242 tomato accessions for Bray (a) and Euclidean (b). The pixels are colored in
proportion to the genotypic dissimilarity between tomato accessions. Euclidean and Bray heatmap represents distance group-l and Il respectively
J
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Fig. 2 Multi-dimensional scaling (MDS) scores representation of Bray (a) and Euclidean (b) distances. MDS scores are visualized in first two
dimension of MDS space, where MDS1 and MDS2 represents scores in first and second dimension respectively. The size and colors of bubbles are
in proportion to the actual trait values (the measure of resistance against Bacterial wilt) of tomato accessions. The bigger bubble size represents
higher resistance accessions

DPLS model (see Table 3). As explained in the Methods
section (equation 3) a big advantage of the DPLS method
is that it also returns so-called score values for each acces-
sion. These scores represent the relative position of each
accession in terms of their genomic distances associate to
the trait values. As shown in Fig. 3, these scores can be
visualized in a plot similar to the MDS analysis (Fig. 3),
where large distances between accessions in the plot
(the different dots) indicate large genomic differences.
The score plots show a better arrangement of tomato

Table 3 Dissimilarity based partial least squares (DPLS)
prediction results over all dataset in a 10-fold CV setup

Distance PQ° (R™) RMSE® Optimal LVs®
Euclidean 0.62 +0.005 370+27 4

Gower 0.60 £ 0.0052 380+28 6

Allele share 0.61 +0.005 380+28 6

Nei 0.59+0.005 390£29 6

Bray 0.63 +0.004 37026 4

Jaccard 0.64 +0.0043 360+ 2.8 4

Kulczynski 061 +0.0053 380+28 4

GRM 0.62 £ 0.005 370+£29 5

GBLUP 0.61£0.001 369.9 +0.66 NA

All the results presented in table are significant (with respect to p-value
computed from permutation analysis). The results are averaged over 10-fold
CV scheme. The 10-fold CV procedure was repeated 50 times. The standard
error (se) calculated over 10-fold CV repetition. The last row present prediction
results obtained from GBLUP. The PQ (R?%), RMSE and LVs represents prediction
quality, root mean square error and latent variables respectively

“RMSE stands for root mean square error

PLVs stands for latent variables used for model building

°PQ represent prediction quality

9R? presented in the table are estimated for testset and not from training
model. The value is calculated in a cross validation setup (some time indicated
as Q). This value is refer as prediction quality in this study

accessions in the space of DPLS LVs when compared to
the original data structure observed in exploratory ana-
lysis by MDS (see Fig. 2). The accessions are arranged
according to their trait values; tomato accessions with
similar trait values are close together in DPLS LVs
space. The DPLS model is therefore better able to pre-
dict the trait values from the genotype dissimilarity
scores data. Although the score plots of DPLS models
based on different distance measures differ consider-
ably, a direction within the space along which the trait
value increases can be identified in both score plots.
The DPLS prediction performance with respect to each
distance measure is presented in Table 3. The perform-
ance statistics for each distance measure consist of PQ
(ie. R? estimated on testset), model error measured in
terms of Root Mean Square Error (RMSE) and the optimal
number of LVs used for building prediction models. PQ
range from 0.59 to 0.64 for analyzed genomic distance
measures. The resulting RMSE was found to be similar for
each genomic distance measure. These results (Table 3)
indicate that the DPLS models may predict the trait simi-
larly well between all distance measures for the studied
BW-tomato data. The correlation (r) between measured
and predicted BW values is visualized in Fig. 4 (hereafter
prediction plot). The prediction plot shows a linear trend
for the prediction based on both the distances (i.e., Bray
and Euclidean). However, it seems from the prediction
plot (Fig. 4) that accessions with higher BW values were
predicted better than accessions with lower values. This
follows from least-squares criterion used within DPLS,
which it shares with conventional PLS, MLR and most
other ‘conventional’ data analysis methods. This criterion
gives more importance to the prediction of more distant
accession. The heritability of the trait has also direct
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Fig. 3 Dissimilarity based partial least squares (DPLS) scores representation for Bray (a) and Euclidean (b) distances. The DPLS scores are visualized in
first two latent variables (LVs) where PLST and PLS2 present scores in first and second LVs space respectively. Each bubble represents a tomato
accession. The size and color of the bubbles are corresponding to the actual trait values of tomato accessions where bigger size of the bubble
corresponds to higher resistance accession. The PVE represents phenotypic variance explained by the DPLS prediction model

influence on GP. This is considered as theoretical upper
limit for prediction accuracy and maximum variance ex-
plained due to genetic effects [8]. The estimated heritabil-
ity for the BW is 0.76. The prediction results PQ (which is
also a measure for variance explained in test set from pre-
diction model) in Table 3, indicates that the variance ex-
plained by the DPLS model for the BW is close to the
upper limit set by the estimated BW heritability.

Phenotype prediction with GBLUP

The performance of DPLS was compared to that of
GBLUP in a 10-fold double cross-validation setup. The
BW prediction results from the GBLUP model are indi-
cated in Table 3. The trait can be predicted similarly well
by GBLUP and DPLS. However, GBLUP does not pro-
vide any visual representation of the relations between
individual accessions. A disadvantage of DPLS compared
to GBLUP is that it does not provide information about

SNPs effect directly. The genotype-based distance matrix
from DPLS implies that information on individual SNP
is lost during the modeling, which is retained by GBLUP.
However, approaches such as pseudo-sampling [36, 40, 41]
are available to interpret the effect of each individual SNP
in GP. From this, the SNPs most relevant to the DPLS
model can be obtained. However, Pseudo-sampling has not
yet been applied to high-dimensional genomic data. There-
fore this will be subject of a future study.

Phenotype prediction based on single SNP analysis

In previous studies using Univariate models for analysis of
the BW-tomato data, 29 SNPs were found to be signifi-
cantly associated with the studied BW (Unpublished). The
phenotypic variance predicted from each SNP ranges from
~0.04 to ~50 %, which is lower than the variance ex-
plained by DPLS (59-64 %). This analysis clearly shows
DPLS prediction has edge over single-SNP regression

3000 3000
R (PQ) = 0.63 R’ (PQ) = 0.62
2500 1 2500
% 2000 5 2000
3 3
£ 1500 5 1500
el el
< 4
o 1000 | a 1000 —
500 — 500 —
0- 0-
T T T T T T 1 T T T T T T 1
0 500 1000 1500 2000 2500 3000 b 0 500 1000 1500 2000 2500 3000
a Observed trait Observed trait
Fig. 4 Dissimilarity based partial least squares (DPLS) prediction plot for Bray (a) and Euclidean (b). The prediction for each accession obtained in
repeated 10-fold-CV scheme. Each point indicates mean value of accession prediction. Original and predicted value of BW traits are plotted on X
and Y axis respectively. The R? represent prediction quality and the red line indicates trend line for regression model
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approach. The analysis clearly indicates that BW is a
complex trait, which should be analyzed by multivariate
methods that observe all SNPs within all accessions.

Advantages of DPLS as genomic prediction model

The results obtained from the proposed DPLS method
indicate that its prediction performance is on par with
that of GBLUP. Together with that DPLS provides some
other beneficial characteristics. It can be applied to data-
set of any dimension. DPLS reduces the dimensionality
drastically and can handle missing values while comput-
ing distances or dissimilarities. It can handle the multi-
colinearity that is omnipresent in genomic data and can
be easily implemented using widely available software
and methodology for conventional PLS. A major advan-
tage of DPLS over other methods is the DPLS score plot,
which represents arrangement of tomato accessions in
DPLS space. This visualization provides a tool for the
breeders to select the optimal candidates for their future
breeding program. For instance, breeders can select the
specific tomato accessions from the right panel of the
score plot presented in Fig. 3, as candidates to specific-
ally breed for a BW resistant tomato variety. This score
plot based on the Bray distance shows that the first two
LVs of DPLS explain about 56 % of variation in the
phenotype. Additionally, the arrangement of tomato ac-
cessions with respect to the trait values in the plot shows
that there seem to be at least two discrete groups of
disease resistant accessions in the dataset. By inspecting
this score plot, breeders can select candidates from
both groups to breed for resistant varieties, to grasp
more trait variability than with selection based on high
resistant accessions. The score plot therefore enables,
selection of multiple germplasm sources, which would
be impossible if a single phenotype summary such as
Estimated Breeding Values (EBVs) or other transforma-
tions of the trait. No existing method for GP provide
such scores to compare individual accessions.

The other advantage of DPLS is that, it is flexible to
various genotype representations. For Example, SNPs are
usually encoded as discrete variables (i.e. 0, 1, 2 or 1, 0,
-1) and many models uses this encoding as standard
input for GP. The DPLS prediction model does not rely
on such standard genotype representation since a dis-
tance matrix between accessions is used as input for the
model. This makes it more flexible to data representation
and may possibly be better applicable for GP in diploid or
polyploid crops. The approach can also be very useful for
analyzing complex phenotypes which are often collected
in form of multiple traits to gather more information [42].
These traits are generally correlated and share a common
genetic mechanism. The analysis of multiple traits to-
gether in a multivariate model may bring more power and
increase chances of detecting SNPs, which have effect on
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individual or multiple traits [42, 43]. However, there is
limited number of methods available, which can be applic-
able to multivariate trait analysis [44]. Successful predic-
tion of multivariate responses with PLS has been reported
in numerous references [45, 46]. We therefore expect that
the DPLS may efficiently exploit the information from
high-dimension SNPs to predict multiple potentially cor-
related traits. Assessing the DPLS performance on simul-
taneous prediction of multiple traits is a topic for future
study.

Conclusions

In this study DPLS, a novel approach for genomic pre-
diction, is proposed for dealing with genomic data. This
method employs the strengths of multivariate partial
least squares (PLS) based prediction with the expression
of genomic distances (calculated from SNPs) between
individual accessions. This way, problems in the data
such as the categorical nature of the variables, the large
number of variables and their multi-collinearity are
avoided. It was found that DPLS performs on par with
GBLUP and better than Univariate prediction approach
for GP. The prediction performance of the proposed
method was close to the biologically imposed upper
limit boundary set by the heritability of the trait. DPLS
allows for visualization of the accessions with respect to
the trait of interest, which may be invaluable for selection
of specific candidates in agricultural breeding programmes.

Methods

Genotype

329 tomato breeding accessions were genotyped for 7321
SNPs using “SolCAP” array. The data was kindly provided
by Bezo Zaden and East—west Seed. The SNPs are distrib-
uted across 12 chromosomes of tomato genome. A quality
check (QC) was performed on the genotype data to ex-
clude low quality SNPs and accessions from the analyses.
SNPs were excluded if minor allele frequency (MAF)
<0.01, proportion of missing value (PMV) > 0.10 or both.
Tomato accessions with genotypes, but not phenotyped
were excluded from the analyses. 242 tomato accessions
and 6517 SNPs remains after the quality filtering and were
used for GP.

Phenotype

BW disease is caused by the Ralstonia solanacearum
bacteria. It is one of the most destructive crop diseases
in tropical, subtropical and some warm temperate regions
of the world [39]. BW is a complex trait. In the current
analysis, the trait was measured as percentage wilted
plants at several time points (14, 21 and 28 days after
disease inoculation, four replicates per accession), under
greenhouse conditions. Based on the percentage-wilted
plants, an area under disease progression curve (AUDPC)
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was calculated. Thus AUDPC is quantitative summarization
of BW disease intensity over time. In this analysis we have
focused on the interval between 0 and 28 days because
measurements in this interval were available for most
accessions. The AUDPC of the BW was calculated using
equation below

AUDPC = Z (yl +ZYi+l)

i=1

(ti1-t;)

Where n = total number of observation, y; = percentage
wilted plat at the i™ observation and t=time at the i
observation.

Genomic distance measurement

Eight dissimilarity measures (see Table 1) were explored
and analyzed to find the most appropriate distance meas-
ure to use for genomic prediction. These measures were
used to calculate distances between the tomato accessions
based on SNPs. Furthermore, these calculated distances
between tomato accessions were used in a DPLS model to
predict BW. The evaluation of distances measures was
based on the trait prediction accuracy for BW with the
DPLS model. Additionally, initial exploratory analysis with
the Mantel test [47, 48], heatmap visualization and MDS
analysis were performed first on the distance measures to
understand the correlation between the selected measures
and their respective behaviors in the dataset.

Exploratory analysis of distance measures

Mantel test

Relationships between distance matrices based on differ-
ent genomic measures (see Table 1) were quantified using
the Mantel test [48]. This statistical test constructs a linear
comparison of two genomic distance matrices. The
Mantel test first calculates the correlation between two
distance matrices followed by a randomization proced-
ure (permutation) to evaluate whether the observed
correlation between two distance matrices is random or
not [47, 49]. The Mantel test was performed with 1000
permutations, using the R package ade4 [50].

Heatmap visualization

Visual inspection of the distance matrices based on
the measures in Table 1 was performed by plotting
heatmaps of the genomic distances between the acces-
sions within the BW-tomato data using the R-package
‘seriation’ [51].

Multi-Dimensional Scaling (MDS)

MDS is generally used to examine multivariate structure
within a dataset by representing dissimilarity measures
between specific accessions as distances in a much lower-
dimensional space [52, 53]; we chose two dimensions
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for all MDS models. MDS analysis on genomic distance
measures (see Table 1) was performed using the R-
package ‘stats’ [54].

Prediction model building and validation
Dissimilarity-based Partial Least Squares (DPLS)

The aim of this study is to determine if DPLS is a viable
method for genomic prediction from whole genome
marker data. The DPLS method employs the strengths
of PLS based prediction with the expression of genomic
distances (calculated from SNPs) between individual
accessions. The general goal of PLS is to predict a set
of response (dependent) variablesY from very large set
of independent variables X (predictors), where for the
BW- tomato data example X is the genotype matrix
and Y is disease trait or response vector [55]. This
prediction is achieved by first extracting a set of or-
thogonal factors called latent variables (LVs) from the
predictors set. These latent variables (LVs) are consid-
ered to have best predictive power [31, 55]. The PLS
model can be represented as

X =TP' +E (1)
Y=UC' +F (2)
Where,

T = X-factors scores (analogous to principal components
in PCA although they are not the same)

T = XW (3)

U = Y-factors scores

P = X-factors loadings and

C = Y-factors loadings

E and F = matrices of residuals

The regression coefficient that relates X to Y is
obtained by:

B=W(P'W) 'C" (4)

Where,

W = X-factors weights i.e., projections of the objects of
X-space onto Y-factor scores. The decomposition of X
and Y are made so as to maximize the covariance between
Tand U.

In DPLS [56], the original data matrix X (genotype
matrix) is replaced by dissimilarity matrix D (distance
between tomato accessions). A summarized overview of
genomic distance measures used to fit a DPLS predic-
tion model in this study are given in Table 1. The DPLS
model can be presented in following form.
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D=TP' +E (5)
Y=UC" +F (6)

The D matrix is a square matrix. A double centering
(i.e., subtracting row and column means of a distance
matrix from its elements) has to be applied to matrix D.
This means for DPLS the score matrix is same as the
loading matrix (linear combination of predictors in D
matrix), up to a scaling constanat « to identify the
model.

T = aP (7)

The regression coefficient from the DPLS model can
be calculated in similar equation as in classical PLS (see
equation (4)). However, the regression coefficient B ob-
tained from DPLS model is based on D matrix and not
on X matrix as in PLS. The DPLS method also calculates
scores for each accession. These scores are linear combi-
nations of the predictor variables and are calculated in
similar fashion as presented in equation (3). In DPLS,
the predictors are the columns of the distance matrix,
which contains the distance information on the samples
in the dataset. The scores are calculated by using an ap-
propriate weight matrix (W), which reflects the covariance
structure between predictors and response variables. We
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have used the R-package ‘pls’ [57] and a custom script to
perform DPLS for GP. Extensive validation methodology
is available for PLS, that we adapt here for DPLS [58].

Repeated double cross validation (rDCV)
Three steps are critical when building a PLS/DPLS predic-
tion model of 1) selection of optimal number of latent vari-
ables (LVs), and model building 2) the assessment of the
overall model quality (or model reproducibility) 3) assessing
significance of prediction model (model transportability).
Several approaches including cross-validation (CV)
setups are recommended for selection of LVs [58-60].
Here we used a so-called Double Cross-Validation (DCV)
setup. In DCV [61], the data is first split into a test and
calibration set. The calibration set is then further split into
training and a validation set. In DPLS, the predictors
are columns of the distance matrix, which contain the
distance information on the samples in the dataset. The
distance matrix is square, which requires specific splits
for DCV. This matrix segmentation needs to be done
in a specific fashion, to truly separate the information
contained within them. The distance matrix is segmented
such that the calibration training sets are square, as
depicted in Fig. 5. The training and validation sets were
used to determine the number of latent variables with
optimal model error statistics. The error rate of the model

-

N

training matrix
D, =M, x M,

original distance matrix
D=MxM (Where M>M_>M,)

Fig. 5 lllustration of distance matrix segmentation in double cross validation. Where D, D and D are squared distance matrix and represents
distance scores between total accessions (M), accessions in calibration set (M) and accessions in training set (M,) respectively
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with this optimal number of LVs to predict the phenotype
was then determined by the test set. This procedure was
repeated several times (in this case 50 times) hence
in this study, we called this strategy as repeated-DCV
(rDCV). The details concerning DCV/rDCV can be
found elsewhere [58, 61].

Permutation analysis

Permutation analysis is often used for validation of PLS-
based classification or regression [58, 61, 62]. Predictive
multivariate models may be highly prone to overfit. There-
fore it is common practice to assess their predictive per-
formance against a benchmark where the effect of interest
has been removed by randomization of the dependent
variable, i.e. the trait value in this case. The model should
not have any predictive power for such randomized data.
A permutation test may be used to assess significance of
reproducibility and transportability (prediction of new
external validation set) of the model [63]. A permutation
analysis was carried out in this study to validate the pre-
diction accuracy observed with double-cross validation.
The BW labels were permuted and randomly assigned to
different accessions. A new DPLS model was then fitted to
the permuted BW and the same model statistics were
calculated. This procedure was repeated 5000 times and
the model statistics were compared to the statistics
obtained from the DPLS model on un-permuted labels. A
p-value was obtained by combining all obtained statistics
(mean and standard deviation RMSE) to assess the signifi-
cance of difference between statistics (mean and standard
deviation of RMSE) from original and permuted dataset.

Conventional analysis methods

Genomic best linear unbiased prediction model (GBLUP)
Genomic BLUP [22] is considered a standard statistical
method for genomic prediction. Several variations of BLUP
models have been proposed in literatures for genomic pre-
diction. We have used ridge regression best linear unbiased
prediction (RR-BLUP) to predict BW t from SNPs. RR-
BLUP assumes that all SNPs effect are normally distributed
and have equal variance [28]. The model considered is:

y=1lp+Zg+e

Where, y is a vector of phenotype, p is the overall
mean, Z is design matrix corresponding to g, g is the
vector of SNP effects and e is the vector of residuals. It
was assumed that g~ N(0, G(r;) where 0; is additive gen-
etic variance and Gis genomic relationship matrix derived
from SNP markers. These analyses were performed using
the R-package rrBLUP [64].
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Univariate analysis

In an unpublished study, 29 SNPs were found to be sig-
nificantly associated with bacterial wilt s resistance. These
SNPs were extracted from the BW-tomato data and fit in
a univariate linear model. The SNPs were treated as fixed
effect in this univariate model. The predictive ability (R?)
was calculated for each individual SNP and compared
with the R* value obtained from multivariate approach
DPLS.
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