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Simple Summary: Milk somatic cell count, referring to the total number of somatic cells per milliliter
of bovine milk, changes regularly during the lactation cycle. The somatic cell count of healthy cows
is usually higher in late lactation than in peak lactation. When the inflammatory response in dairy
cow mammary gland becomes more intense, the milk somatic cell count increases together with the
reduction of milk quality and yield. Autoimmunity was thought to play an important role in the
prevention of mastitis in late lactation of dairy cattle. However, the underlying mechanisms related to
the gene expression levels during the process remain unknown. In this study, transcriptome sequencing
was performed to screen the differentially expressed genes related to the inflammation and immunity in
healthy Chinese Holstein mammary glands. Our findings are helpful to understand the physiological
functions of mammary inflammation of Chinese Holstein during late lactation.

Abstract: Somatic cell count (SCC) in milk is widely used in the dairy industry, as an indicator of
the health of mammary gland. While the SCC of dairy cattle was higher in late lactation than in
peak lactation, its association with gene expressions of mammary gland were largely unknown.
In this study, a transcriptomic sequencing approach and bioinformatics analysis were used to
investigate the differential expressed genes (DEGs) associated with inflammation and immunity
between peak and late periods of lactation in Chinese Holstein. A total of 446 DEGs (padj < 0.05 and
fold change >2) were identified, 50 of which belonged to seven pathways and five terms related to
inflammation and immunity. Our data suggested that the activation of nuclear transcription factor-κB
(NF-κB) pathway and Toll-like receptor signaling pathway caused inflammatory response, and the
activation of chemokine signaling pathway and cytokine–cytokine receptor interaction signaling
pathway caused a protective immune response to ensure dairy cows health during late lactation.
Our findings deepen the understanding of the molecular mechanism and physiological functions of
mammary inflammation in Chinese Holstein during late lactation.

Keywords: Chinese Holstein; transcriptome; lactation initiation; mammary gland; differentially
expressed genes
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1. Introduction

The somatic cell count (SCC) referred to as the total number of somatic cells per milliliter of milk is
widely used to measure the health status of dairy cows and the quality of milk [1]. In general, the quality
and yield of milk was negatively associated with SCC [2], which is an important indicator of clinical
and subclinical bovine mastitis. The United States stipulates that SCC in bovine milk must be less than
750,000/mL, while the European Union is stricter, which adheres to SCC in bovine milk must be less than
400,000/mL, and China’s standard is that SCC in bovine milk must be less than 500,000/mL [3,4].

Previous studies have focused on the interfering factors of SCC and its association with the quality
and yield of milk [2,5,6]. Several studies have demonstrated that the SCC was higher in late lactation
than that in peak lactation [7–11]. Moreover, the autoimmune reaction and the innate immune response
of dairy cattle protect them from mastitis during lactation, especially in the late stage [12], the changes
in gene expression level in mammary gland tissue at different stages of lactation are largely unknown.
In recent years, transcriptome technology was used to detect changes in dairy cow gene expression
level, however, most sampling methods cannot eliminate individual differences [13,14].

The purpose of this study is to screen differential expression genes (DEGs) related to inflammation
and immunity in healthy Chinese Holstein during the peak and late lactation period by transcriptome
sequencing without slaughter.

2. Materials and Methods

2.1. Ethics Statement

This study was performed in strict accordance with the Regulations of the Administration of
Affairs Concerning Experimental Animals (Ministry of Science and Technology, China, revised in
2004) and approved by the Institutional Animal Care and Use Committee (IACUC) of the Yangzhou
University Animal Experiments Ethics Committee (Permit Number: SYXK (Su) IACUC 2012-0029).
All animals were reared in compliance with national regulations and according to procedures approved
by the veterinary services of China.

2.2. Animals Selection and Samples Collection

A total of 33 healthy Chinese Holstein used in this study were selected from the experimental farm
of Yangzhou University. All the animals with similar body weights (628.33 ± 20.05 kg) in the second
lactation period did not have a history of mastitis, and fed with total mixed ration (TMR), including 23%
alfalfa hay and 7% Chinese wild rye hay with a forage-to-concentrate ratio of 45:55 [15]. The milk yield of
each individual was recorded twice per day. Milk samples were collected into 5 mL (for bacterial isolation
and identification) and 50 mL (for the determination of SCC) from the left anterior mammary region on
the 90th, 150th, 210th, and 270th day of lactation and transported on ice to the lab within 2 h. Three
Chinese Holstein (A, B, C) were randomly selected to obtain a biopsy: 1−2 g mammary gland tissue in
the same quarter that was providing the milk sample by surgical methods in vivo on the 90th and 270th
day of lactation [16,17]. The skin of the selected biopsy site was shaved and disinfected with ethanol
(75%), then anaesthetized with SU-MIAN-XIN (846 compound anesthetic agent, 35 mg, intravenously)
and injected subcutaneously with 1 mL of procaine. A 1.5 cm incision was made at the midpoint of the
selected quarter. The connective tissue was blunt-dissected away to expose the mammary parenchymal
tissue using disinfectant shears and tweezers. The mammary tissues biopsy (1–2 g) was obtained and
washed with diethylpyrocarbonate (DEPC)-treated double-distilled water. Then, mammary tissues were
immediately frozen in liquid nitrogen until RNA isolation. While obtaining mammary tissue samples,
11-mm Michel wound clips (#9534503, Henry Stein, Inc., Melville, NY, USA) were used to close the skin
incision. Then, the skin incision was covered with iodine ointment (#1048023, Povidone Iodine Ointment,
Guangdong qingfa pharmaceutical co. LTD, Guangzhou, China).
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2.3. Microbiological Study

Upon arrival, bacterial isolation was performed as described with minor modification [18]. In brief,
2 mL of milk was diluted into 2 mL of phosphate buffer saline (PBS) and 100 µL of diluent was plated
onto a blood agar and a MacConkey plate, and incubated at 37 ◦C aerobically for 24–48 h. Based on the
morphology of colonies, one of identical colony of each sample was expended cultured in nutrient
broth at 37 ◦C. After 24–48 h incubation, 200 µL of culture was used for DNA extraction with the Roche
High Pure PCR Template Preparation Kit (Roche Diagnostics GmbH, Mannheim, Germany). Extracted
DNA was subjected to a PCR assay with a broad-range PCR primer targeting the 16S rDNA gene of
pathogenic and nonpathogenic bacteria [19]: Forward primer = 5′- AGAGTTTGATCCTGGCTCAG -3′;
reverse primer = 5′- TACGGCTACCTTGTTACGACT -3′. The amplicons were sequenced (Genscript,
Nanjing, China) and the BLASTn was performed to determine the bacterial species.

2.4. Determination and Analysis of SCC in Milk Samples

The 20-mL milk samples with 0.015 g of potassium dichromate were sent to Nanjing Agricultural
University to determine SCC (Agricultural Product Safety Testing Center of Nanjing Agricultural
University, Jiangsu Province, China). Further analysis was performed with SCS calculated with SCC as
described [20].

2.5. Total RNA Extraction and cDNA Library Construction

Total RNA was extracted using the mirVana™miRNA Isolation Kit (Ambion-1561) following the
manufacturer’s protocol. RNA integrity was evaluated using the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). The samples with RNA Integrity Number (RIN) ≥ 7 were
subjected to the subsequent analysis.

The libraries were constructed using TruSeq Stranded mRNA LT Sample Prep Kit (Illumina,
San Diego, CA, USA, RS-122-2101) according to the manufacturer’s instructions. Then, these libraries
were sequenced on the Illumina sequencing platform (HiSeq™ 2500) and 125 bp paired-end reads
were generated.

Raw reads were processed using NGS QC Toolkit [20,21]. The reads containing ploy-N and the
low-quality reads were removed to obtain the clean reads. Then, the clean reads were mapped to reference
bovine genome UMD3.1 using Bowtie2 2.3.5.1 [21,22] and TopHat 2.1.1 [22,23].

2.6. Gene Expression Level Analysis

Gene expression was calculated using the FPKM method, which is the number of fragments per
kilobase length from a gene in each million fragments [24]. The read counts of each gene were obtained
by HtSeq-count 0.9.1 [25]. PCA analysis was performed using the gene expression profiles. Genes were
divided into high (≥500 FPKM), medium (≥10 to 500 FPKM), and low expression (<10 FPKM) [26].
DEGs were identified using the DESeq R package (1.18.0) (2012) functions estimate size factors and
nbinom test [27]. False discovery rate (FDR, padj) <0.05 and fold change >2 was set as the threshold
for DEGs.

2.7. Functional Annotation and Pathway Analysis of DEGs

Hierarchical cluster analysis of DEGs was performed to explore transcripts expression pattern.
DAVID 6.8 (https://david.ncifcrf.gov/) [28] were used for GO (gene ontology) annotation analyses
of DEGs. KEGG pathways analyses of DEGs were implemented by KOBAS 3.0 online program
(http://kobas.cbi.pku.edu.cn/index.php) [29]. GO enrichment and KEGG pathway enrichment analysis of
DEGs were, respectively, performed using R based on the hypergeometric distribution. The calculation
for this was formula (1), where N is the number of genes with a pathway annotation in all genes; n is
the number of differentially expressed genes in N; M is the number of genes annotated as a particular

https://david.ncifcrf.gov/
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pathway in all genes; and m is the number of differentially expressed genes annotated as a particular
pathway. GO terms and KEGG pathways with padj < 0.05 were significantly enriched in DEGs.

p = 1−
m−1∑
i=0

(
M
i

)(
N −M
n− i

)
(

N
n

) (1)

2.8. PPI Network Construction and Analysis

A protein–protein interaction (PPI) network was created using Cytoscape v3.7.2 to further
understand and predict the biological activity of the identified DEGs related to inflammation and
immunity based on GO and KEGG enrichment analysis [30]. The DEGs’ encoding proteins and their
interacting partners were computed from the String v11.0 database for PPI network construction [31].
This PPI network was subsequently visualized in Cytoscape.

2.9. Validation of Sequencing Data by qRT-PCR

Ten DEGs were selected from DEGs at random to validate the transcriptome sequencing results.
The primers (Table 1) used for quantification in the study were designed using Primer-BLAST on
the NCBI website. In all cases, primers designed for quantitative real-time PCR (qRT-PCR) spanned
exon–exon boundaries. In the study, ribosomal protein S9 (RPS9) [32] and β-actin were used as the
housekeeping gene. qRT-PCR was performed using the Light Cycler® 480 System (Roche, Hercules,
CA, USA) with SYBR Green PCR Master Mix (TaKaRa SYBR® PrimeScript™RT-PCR Kit, Dalian, China)
according to the manufacturer’s instructions (n = 9 experiments, three replicates per experiment).
Relative expression was calculated using the 2−∆∆Ct method [33]. qRT-PCR response procedures for:
40 cycles of 95 ◦C for 30 s, 95 ◦C for 10 s, 60 ◦C for 30 s.

Table 1. Primers used in quantitative real-time PCR.

Gene Forward Primers (5′-3′) Reverse Primers (5′-3′) Length (bp) GenBank ID

SLC11A2 AGTTGACCTCCCTGGACATCT CACGTTCGGAGGAACACTGG 132 NM_001101103.1
CD40 GAACAACACGTGGGGACGAA CCGCTTCTTGGTTATGTTCCTG 147 NM_001105611.2

ICAM1 GGAGGTGCCGGAATATCAAT GGCCCACTTCCTCCTTGATTA 139 NM_174348.2
CCR1 TCCGACTCACTCAGGACCTT CCACGGGTCAAGGGAAATGT 146 NM_001077839.1
IL1R2 ACTGAAGGTGAAAGGCCTGG CGAAGGTGGACACACCCATT 150 NM_001046210.2

ATP1A2 AGCTGTGGTCATCGTCACTG TCCGCGTTGATCTGCATCTT 138 NM_001081524.1
FXYD2 TATGGACAGGTGGTACCTGGG CAGCGGAATCTTTTGCTGAGG 150 NM_174320.4

SLC30A1 TCACGCTACCACCATTCAGC TTTCCAGACTGGGCTTGTGG 135 NM_001205893.2
CCL28 AAGCAGCCAAGAAAGAGGCT CCTCTGTGCAGCTTCATCTGT 150 NM_001101163.1
TGFB2 ACCCTCGGAAAATGCCATCC GCACTCTGGCTTTTGGGTTC 149 NM_001113252.1
RPS9 CCTCGACCAAGAGCTGAAG CCTCCAGACCTCACGTTTGTTC 62 NM_001034034.2
β-actin CATCCTGACCCTCAAGTA CTCGTTGTAGAAGGTGTG 91 NM_173979.3

2.10. Statistical Analysis

All the statistical analyses were performed with Software Package for Social Sciences (SPSS) Version
19.0 (IBM, Among, New York, NY, USA). The differences in SCS of milk collected during different days
of lactation was compared with one-way analysis of variance (ANOVA) with comparison among means
made by Duncan’s multiple range test. The day of lactation was set as the X (independent) variable and
the SCS in milk was set as the Y (outcome) variable. The relative expressions of mRNA were analyzed by
using independent sample T-test and mean plots ± 95% confidence intervals. The Pearson correlation
coefficient analysis were performed to compare the data obtained from transcriptome sequencing and
qRT-PCR. Each biological repetition was carried out involving three replicates. All data were presented
as the mean ± standard error (SE) and considered statistically significant when p < 0.05.
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3. Results

3.1. Microbiological Analysis

Among the milk samples from enrolled cows, 91.67% (22/24) of them were positive for culturing,
whereas 8.33% (2/24) of them yielded no growth. The sterile growth was from the milk on the 90th and
270th day of lactation of the same individual. One bacterial specie, Escherichia coli was identified in the
positive cultures.

3.2. Daily Milk Yield and SCC in Milk Samples

Daily milk yield, SCC, and SCS were shown in Table 2. The daily milk yield of all the tested
animals showed a continuous decline during the trial period. SCC and SCS of Chinese Holstein
showed an increasing trend during the test period. Compared with the 90th day of lactation, the SCS
of the 33 animals increased significantly on the 270th day of lactation.

Table 2. Milk yield, somatic cell count, somatic cell score in different test days (means ± SE).

Test Days 90 150 210 270

Daily milk yield (Kg) 34.40 ± 0.05 a 33.17 ± 0.04 b 29.62 ± 0.04 c 26.51 ± 0.04 d

Somatic cell count (SCC) (104) 24.03 24.00 32.00 46.98
Somatic cell score (SCS) 4.26 ± 0.01 c 4.26 ± 0.01 c 4.68 ± 0.01 b 5.23 ± 0.01 a

Note: Different letters a, b, c in the same row differ significantly (p < 0.05) by Duncan’s test. The numbers in line 4
reflected a mean.

3.3. Analysis of cDNA Libraries

Transcriptome sequencing results and quality parameters were shown in Table 3. After the quality
control of sequencing data, the number of clean bases accounted for more than 98.05% of the raw bases.
The sequences with Q30 and above accounted for more than 95.92%. The GC content reached between
47.50% and 49.00%. The results of comparison between sequencing data and genome information were
shown in Table 4. The total reads of each sample were more than 90.90% compatible with the bovine
reference genome.

Table 3. Basic information of sequencing reads and bases.

Sample Raw Reads Raw Bases Clean Reads Clean Bases Valid Ratio
(Base) Q30 GC

A-90 61,255,240 7.66 Gb 60,490,684 7.56 Gb 98.72% 97.14% 48.50%
B-90 61,664,866 7.71 Gb 60,994,408 7.62 Gb 98.89% 97.33% 47.50%
C-90 59,050,772 7.38 Gb 58,314,034 7.29 Gb 98.72% 97.11% 49.00%

A-270 71,589,742 8.95 Gb 70,550,840 8.82 Gb 98.53% 96.48% 48.50%
B-270 77,932,606 9.74 Gb 76,857,188 9.61 Gb 98.60% 96.44% 49.00%
C-270 64,104,356 8.01 Gb 62,867,970 7.86 Gb 98.05% 95.92% 49.00%

Table 4. Statistics of total reads and mapped reads.

Item A-90 B-90 C-90 A-270 B-270 C-270

Total reads 60,490,684 60,994,408 58,314,034 70,550,840 76,857,188 62,867,970
Total

mapped
54,988,154
(90.90%)

56,242,133
(92.21%)

54,192,238
(92.93%)

64,298,141
(91.14%)

69,765,025
(90.77%)

58,484,736
(93.03%)

3.4. Gene Expression in Different Samples

Two clusters were found: Peak lactation and late lactation (Figure S1). The same genes from
different dairy cows in same stages could be classified into the same clusters, indicating that the main
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distinctions in the mRNA expression profiles occurred in the different stage. Total expressed genes
are classified into high (≥500 FPKM), medium (≥10 to 500 FPKM), and low (<10 FPKM) expression
(Table 5).

Table 5. Statistics of gene expression in samples.

Gene Expression A-90 B-90 C-90 A-270 B-270 C-270

High expression genes (≥500 FPKM) 82 61 81 63 79 89
Medium expression genes (≥10 to 500 FPKM) 4294 3207 5687 3709 4947 5641

Low expression genes (<10 FPKM) 11,585 12,311 10,692 11,962 11,404 10,490
Nonexpressed genes 5535 5917 5036 5542 4846 5056
Total expressed genes 15,961 15,579 16,460 15,734 16,430 16,220

3.5. Screening of Differentially Expressed Genes

There were 291 upregulated genes and 155 downregulated genes were identified during late
lactation in bovine mammary tissues, compared to peak lactation (Figures 1 and 2).
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Figure 2. Volcano plot displaying differential expressed genes in bovine mammary tissues during
peak (A-90, B-90, C-90) and late (A-270, B-270, C-270) lactation. The y-axis corresponded to the
mean expression value of log10(p-value), and the x-axis displayed the log2 fold change value. The
red and green dots represented the significant differentially expressed gene (padj < 0.05) in bovine
mammary tissue during peak and late lactation; the blue and grey dots represented the transcripts
whose expression levels did not reach statistical significance in bovine mammary tissue during peak
and late lactation.

3.6. GO and KEGG Enrichment Analysis of DEGs

DEGs were classified by GO enrichment according to biological process, cellular component
(GO-CC), and molecular function (GO-MF). The top 10 terms of GO-BP, GO-CC, and GO-MF were
shown in Figure 3, respectively. Among significantly enriched (padj < 0.05) top 10 GO-BP terms, there
were five GO-BP terms related to inflammation and immune, including 30 genes (Table 6).
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Table 6. Significantly enriched gene ontology (GO) terms related to inflammation and immunity.

Term ID Term padj Gene Name Number of Genes

GO:0006953 Acute-phase response <0.001 M-SAA3.2; ORM1; SERPINF2; SAA3;
LBP; IL6; CD163; HP; IL1RN 18

GO:0030593 Neutrophil chemotaxis <0.001 PDE4B; CCL19; CCL20; S100A8;
S100A9; CXCL8; CSF3R; TREM1 8

GO:0098586 Cellular response to virus <0.001 IKBKE; CCL19; GLI2 6

GO:0006954 Inflammatory response < 0.001
RELT; S100A12; TNFRSF6B; OLR1;

CCL19; CCL20; CCR1; MEFV; CASP4;
SLC11A1; CXCL8; GGT5; CD40; TLR2

7

GO:0032722 Positive regulation of
chemokine production <0.001 LBP; IL6; TLR2 9

Note: The gene in bold indicated that the gene was downregulated on the 270th day of lactation. Other genes were
upregulated on the 270th day of lactation.

KEGG enrichment analysis of DEGs revealed 43 significantly enriched pathways. The top 20
significantly enriched pathways (padj < 0.05) were listed in Figure 4. Seven of the 43 significantly
enriched pathways (padj < 0.05) were associated with inflammation and immune response, including
33 genes (Table 7).Animals 2020, 10, x 8 of 14 
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Table 7. Significantly enriched pathways related to inflammation and immunity.

KEGG-Pathway Signal Path padj Gene Name Number of Genes

bta04060 Cytokine–cytokine receptor
interaction <0.001

CCL19; CCL20; CCL28; CCR1; CD40; CSF3R;
CXCL2; CXCL8; CXCR1; CXCR2; EDA; IL1R2;

IL6; LIF; OSMR; RELT; TGFB2; TNFRSF6B
18

bta05323 Rheumatoid arthritis 0.001 ACP5; ATP6V0D2; CCL20; CXCL8; ICAM1; IL6;
TGFB2; TLR2 8

bta04064 NF-kappa B signaling
pathway 0.012 BCL2A1; CCL19; CD40; CXCL8; ICAM1; LBP 6

bta04668 TNF signaling pathway 0.013 CCL20; CXCL2; ICAM1; IL6; LIF; MMP9;
SOCS3 7

bta04620 Toll-like receptor signaling
pathway 0.019 CD40; CXCL8; IKBKE; IL6; LBP; TLR2 6

bta04142 Lysosome 0.024 ABCA2; ACP5; ATP6V0D2; CD68; CTSC;
SLC11A1; SLC11A2 7

bta04062 Chemokine signaling
pathway 0.035 CCL19; CCL20; CCL28; CCR1; CXCL2; CXCL8;

CXCR1; CXCR2; HCK 9

Note: The gene name in bold indicated that the gene was downregulated on the 270th day of lactation. Other genes
were upregulated on the 270th day of lactation.
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3.7. PPI Network Analysis

The PPI network of DEGs related to inflammation and immunity (Figure 5) revealed the biological
activity and interactive relationship of their encoding proteins.
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downregulated in on late lactation compared with peak lactation.

3.8. Verification Results of qRT-PCR

The results showed that the genes expression trends were consistent between sequencing data and
qRT-PCR results. Moreover, the correlation coefficient of the sequencing data and qRT-PCR result using
β-actin as reference gene reached 0.992 (R2 = 0.984) (Figure 6), which was highly significant (p < 0.000).
The correlation coefficient of the sequencing data and qRT-PCR result using RPS9 as reference gene
reached 0.981 (R2 = 0.962) (Figure S2), which was highly significant (p < 0.000) too. The reliability of
the sequencing data was high.
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4. Discussion

The SCS of milk at 270th day of lactation was significantly higher than that at 90th day of lactation.
There were five GO-BP terms and seven pathways (padj < 0.05) related to inflammation and immune
response. The innate immune system of bovine mammary gland is composed of teat duct, body fluid,
and immune cells [34]. The teat duct is closed in nonlactation, scilicet, a physical barrier separates
pathogens from bovine mammary gland. At the late stage of lactation, with the increasing times of
milking, the pathogens can easily enter the bovine mammary gland due to the mechanical injury to
the nipples of cow [35]. Therefore, some pathogens enter bovine mammary gland and the SCC of
milk in late lactation was higher than that in peak lactation. In this study, the expression level of
Toll-like receptor 2 (TLR2) was significantly upregulated in order to receive more signals released
by intruders to activate the Toll-like signaling pathway, inflammatory response term, and positive
regulation of chemokine production term. The activated TLR2 induced the activation of MYD88
innate immune signal transduction adaptor (MyD88) [36,37], which can activate the NF-κB signaling
pathway to produce nuclear transcription signaling, cytokines, and chemokines [38]. From that
moment, the chemokine signaling pathway and the cytokine–cytokine receptor interaction were
activated. Cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) were
responsible for amplifying signals, while C-X-C motif chemokine ligand 8 (CXCL8) was bound to its
specific receptor chemokine (C-X-C motif) receptor 1 (CXCR1) and C-X-C motif chemokine receptor 2
(CXCR2). Neutrophils rapidly respond to chemotactic signals and migrate to inflammatory sites to
kill pathogens [39]. Meanwhile, the neutrophil chemotaxis term was activated. Compared with peak
lactation, the expression levels of CXCL8, CXCR1, CXCR2, TNF-α, and IL-1βwere upregulated at late
lactation. These results were consistent with Gilbert et al. [38].

The study of Gilbert et al. [38] showed that E. coli crude lipopolysaccharide (LPS) preparation
stimulated TLR2 and Toll-like receptor 4 (TLR4) in bovine mammary epithelial cells. In this study,
there was no significant difference in the expression levels of TLR4. We found that there was also no
significant difference in the expression levels of the potential downstream genes of TLR4: Interferon
regulatory factor 3 (IRF3), C-X-C motif chemokine ligand 10 (CXCL10), chemokine (C-C motif) ligand 2
(CCL2), C-C motif chemokine ligand 5 (CCL5). The analysis of DEGs associated with inflammation
and immunity indicated that the analyzed cows have a localized inflammatory reaction, which was
consistent with the determination of SCC. In addition, Tahir Usman et al. [40] found that interleukin
17F (IL-17F) and interleukin 17A (IL-17A) could be powerful candidate genes of mastitis resistance
and the significant single nucleotide polymorphisms (SNPs) might be useful genetic markers against
mastitis in both dairy and dual-purpose cattle. In this study, the expression levels of IL-17F and IL-17A
did not change significantly.

Zinc finger protein A20 (A20), encoded by TNF-α induced protein 3 (TNFAIP3), is a deubiquitinase that
can be induced by TNF-αand IL-1βand then transcribed rapidly [36,37,41,42]. Ubiquitin is activated by the
ubiquitin-activating enzymes (E1) in the presence of ATP and binds to E1. The activated ubiquitin molecule
then transfers to the ubiquitin binding enzyme (E2). Ubiquitin ligases (E3) attract ubiquitin-E2 complexes
and substrate proteins, and ubiquitin is transferred from E2 to the substrate. Substrate-ubiquitin complexes
are removed by deubiquitinating enzyme B [38,43]. In this study, the expression level of TNFAIP3 was
significantly higher at late lactation compared with peak, namely A20 acted on deubiquitinated proteins
such as tumor necrosis factor receptor-associated protein 6 (TRAF6) and receptor-interacting protein
1 (RIP1) in the NF-κB signaling pathway, thereby negatively regulating the NF-κB signaling pathway,
inhibiting the production of inflammatory signals, and ultimately reducing the damage caused by excessive
inflammation [44]. The results showed that there was no significant difference in the expression levels
of TRAF6 and RIP1 during the two test periods, indicating that the activation and inhibition of NF-κB
signaling pathway belonged to the category of innate immune of bovine mammary gland and did not
lead to mastitis and autoimmune diseases of the analyzed cows.

Solute carrier family 11 member 1 (SLC11A1) is known as natural resistance related macrophage protein.
SLC11A1 is mainly distributed in the mammalian reticuloendothelial system, especially in macrophage
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phagocytic lysosome membrane. When pathogens invade cells, they activate pattern-recognition receptors,
such as Toll-like receptors [45]. Endosomes are formed after the pathogens endocytosis by macrophages.
SLC11A1, significantly upregulated at the late lactation, transported the metal ions necessary for the
survival of pathogens out of the endosome, thus killing the pathogens [46]. Studies on dairy cows have
shown that SLC11A1 is resistant to a variety of pathogens [47–50]. Joo et al. have proved that the mRNA
expression of SLC11A1 in resistant dairy cows was significantly higher than that in susceptible dairy cows.
Mastitis resistant dairy cows can be selected according to the difference in SLC11A1 expression [51].

5. Conclusions

In this study, a total of 446 DEGs were identified in the mammary tissue of late lactation (high
SCC period) and peak lactation (low SCC period) of Chinese Holstein. Functional analysis showed that
50 DEGs related to immunity and inflammation such as TLR2, TNF-α, IL-1, CXCR1, CXCR2, CXCL8,
TNFAIP3, TRAF6, RIP1, and SLC11A1. Further studies are warranted to further explore the molecular
mechanism of inflammation and immune response regarding to these DEGs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/3/510/s1,
Figure S1: PCA analysis of the mRNA of genes. Figure S2: Expression level of ten differentially expressed genes
detected by qRT-PCR using RPS9 as reference gene and RNA-Seq.
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