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Abstract
Sporadic amyotrophic lateral sclerosis (sALS) and FTLD-TDP

are neurodegenerative diseases within the spectrum of TDP-43 pro-

teinopathies. Since abnormal blood vessels and altered blood-brain

barrier have been described in sALS, we wanted to know whether

TDP-43 pathology also occurs in blood vessels in sALS/FTLD-

TDP. TDP-43 deposits were identified in association with small

blood vessels of the spinal cord in 7 of 14 cases of sALS and in small

blood vessels of frontal cortex area 8 in 6 of 11 FTLD-TDP and

sALS cases, one of them carrying a GRN mutation. This was

achieved using single and double-labeling immunohistochemistry,

and double-labeling immunofluorescence and confocal microscopy.

In the sALS spinal cord, P-TDP43 Ser403-404 deposits were elon-

gated and parallel to the lumen, whereas others were granular, sel-

dom forming clusters. In the frontal cortex, the inclusions were

granular, or elongated and parallel to the lumen, or forming small

globules within or in the external surface of the blood vessel wall.

Other deposits were localized in the perivascular space. The present

findings are in line with previous observations of TDP-43 vasculop-

athy in a subset of FTLD-TDP cases and identify this pathology in

the spinal cord and frontal cortex in a subset of cases within the

sALS/FTLD-TDP spectrum.
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INTRODUCTION
Sporadic amyotrophic lateral sclerosis (sALS) and most

cases of frontotemporal lobar degeneration with ubiquitin-
positive inclusions (FTLD-U) are considered to be within the
same spectrum (1). This is supported by the identification of
trans-activation response element (TAR) DNA binding
protein-43 (TDP-43), encoded by TARDBP gene, as the major
pathological protein in the inclusions of FTLD-U (hereinafter
FTLD-TDP) with or without motor neuron disease, and in
sALS (2). Aggregates of TDP-43 are identified in multiple
brain areas in sALS and in FTLD-TDP (3–9).

In sALS and FTLD-TDP, loss of nuclear TDP-43 is ac-
companied by the formation of pathological aggregates con-
taining phosphorylated TDP-43 (P-TDP-43) in the cytoplasm
of neurons and glial cells, and in neuronal processes (2, 10,
11). In sALS, the inclusions are not restricted to the spinal
cord, motor nuclei of the brainstem, or frontal and temporal
cortices, but are also present in other brain regions, such as the
hippocampus (7, 8, 12). Neuronal cytoplasmic TDP-43-
immunoreactive inclusions in sALS have variable morphol-
ogy; they may be skein-like, round hyaline, spicular, dot-like,
fine granular, punctuate granular, thread-like, and perinuclear.
Glial cytoplasmic inclusions (GCIs) occur in oligodendrocytes
(2, 13, 14). In FTLD-TDP, TDP-43-immunoreactive aggre-
gates are neuronal cytoplasmic inclusions (NCIs), thin and
thick dystrophic neurites (DNs), and neuronal intranuclear
inclusions (NIIs), in addition to GCIs (3). TDP-43 inclusions
are found in the neocortex, hippocampus, dentate gyrus, and
other brain regions (15–18). Transitional aggregates can be
seen in sALS and FTLD-TDP (3, 19–22). The type and distri-
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bution of TDP-43 inclusions has permitted an instrumental
classification of FTLD-TDP into types A, B, C, and D (15–
18), as detailed below. Mutations in TDP-43 are causative of
some cases of familial ALS (23–28); a few familial FTLD-
TDP cases are linked to mutations in TARDBP (29–32).

Abnormalities in the wall of blood vessels, and altered
blood-brain barrier (BBB) and SCBB, occur in sALS. Altera-
tions affect the endothelial cells, pericytes, thigh junctions,
matrix metalloproteinases, transport systems, aquaporin 4,
free radicals, cytokines, and VEGF receptors, among others
(33–40). A major consequence is the impairment of the BBB
and the blood-spinal cord barrier (BSCB) (35, 36, 41–44).
Similar alterations are seen in the blood vessels of the spinal
cord in TDP-43 conditional knockout mice (45). Moreover,
loss of TDP-43 in zebrafish produces axonal degeneration of
motor neurons, muscular fiber degeneration, reduced blood
circulation, and miss-patterning of blood vessels (46). BBB
dysfunction in sALS also depends on factors linked to the CSF
and peripheral blood (47–52).

Little information is available on blood vessels in
FTLD-TDP, except for microbleeds (53). However, TDP-43
microvasculopathy has been described in 3 cases with familial
FTLD-TDP type A, one case with familial Lewy body disease,
and one case with Perry syndrome, both with accompanying
TDP-43 proteinopathy; TDP-43 vasculopathy is rarely en-
countered in the cerebral cortex in TDP-43 types B and C (54,
55). Using immunoelectron microscopy, vascular TDP-43
deposits were identified as astrocytic end-feet with abnormal
TDP-43 fibrillary inclusions, although many of them were
enclosed in the capillary basal lamina. Since this important ob-
servation may represent a link between microvascular abnor-
malities within the FTLD-TDP/sALS spectrum and the best-
known TDP-43 pathology affecting neurons, neurites, and oli-
godendroglial inclusions, the present study is geared to gain-
ing knowledge about TDP-43 inclusions in association with
blood vessels in the spinal cord and frontal cortex area 8 of
sALS, and in frontal cortex area 8 of FTLD-TDP cases.

MATERIALS AND METHODS
Postmortem brain cases were obtained from the Institute

of Neuropathology biobank, now a branch of the HUB-ICO-
IDIBELL biobank, following the Spanish legislation (Real
Decreto 1716/2011), and the approval of the local ethics com-
mittee (CEIC, Bellvitge University Hospital). The brain and
spinal cord were obtained at autopsy, and selected samples
were rapidly dissected, kept in labeled plastic bags, and imme-
diately frozen and stored at –80�C for further biochemical
studies, or fixed in 4% buffered formalin for no <3 weeks.
Thirty selected regions of the brain and spinal cord were em-
bedded in paraffin; 4-mm-thick sections were obtained with a
sliding microtome, dewaxed, and processed for current histo-
logical and immunohistochemical methods, including hema-
toxylin and eosin, Luxol fast blue-Klüver Barrera, Sudan
black, and periodic acid Schiff. Other sections were processed
for phospho-tau (AT8), b-amyloid, a-synuclein, phospho-
neurofilament medium and heavy chain, ubiquitin, TDP-43,
P-TDP-43 Ser409-410, glial fibrillary acidic protein (GFAP),
Iba1, and myelin basic protein immunohistochemistry, as de-

tailed elsewhere (56). sALS cases were the same as those de-
tailed elsewhere (57). Patients were evaluated clinically
according to the main signs at onset (spinal, bulbar, and respi-
ratory) and categorized according to disease progression as
fast, expected, and slow progression depending on the sur-
vival. Fast progression included patients who survived
<3 years, normal progression between 3 and 5 years, and slow
progression for those still alive after 5 years. The ALS Func-
tional Rating Scale Revised (ALS-FRS-R, version May 2015)
was used in every case through the clinical course of the dis-
ease. The lumbar spinal cord and the frontal cortex area
8 were examined in 14 sALS (mean age 69.5 6 9.4 years; 6
men and 8 women). Site at onset was spinal (n¼ 6: 4 men and
2 women), bulbar (n¼ 4 female), respiratory (n¼ 1, man).
The site of onset was not known in 3 cases (1 man and 2
women). The duration of the disease was between 3 and
5 years thus corresponding to the expected survival. All cases
presented clinical symptoms consistent with upper and lower
motor neuron damage. None of them presented dementia.
Nine cases needed gastrostomy in the final period. All of them
needed respiratory support at the final stage. The postmortem
delay was between 3 hours and 17 hours. C9orf72 expansions
and mutations in SOD1 and TARDP were not found in any
case. Small DNs and/or TDP-43-positive granules and/or
small cytoplasmic globules in cortical neurons in the contralat-
eral frontal cortex area 8 were observed in 8 of 14 cases but
were only abundant in 3 cases.

FTLD-TDP is categorized into 4 subtypes depending on
the morphology of TDP-43 inclusions, laminar distribution,
and relative proportion of DNs versus NCIs (15–18). Type A
shows abundant short DNs and compact oval or crescent-
shaped NCIs, predominantly in layer II/III of the neocortex.
Moderate numbers of granular NCIs are present in the dentate
granule cells of the hippocampus. TDP-43-immunoreactive
GCIs are present in the cerebral white matter, and in affected
subcortical regions including the striatum, thalamus, and sub-
stantia nigra. Type B shows moderate numbers of compact or
granular NCIs in both superficial and deep cortical layers with
few or no pre-inclusions and delicate wispy neurites which are
often more abundant in the superficial cortical laminae. Char-
acteristic, and almost exclusive to type B, is the presence of
NCIs in lower motor neurons, even in the absence of clinical
features of ALS. GCIs in oligodendrocytes of the cerebral
white matter, medulla, and spinal cord are common. Type C
includes an abundance of tortuously long neurites, predomi-
nantly in the superficial cortical laminae, with few or no NCIs.
NIIs and GCIs are uncommon. Variable numbers of NCIs are
present in the hippocampus, usually with a compact round
morphology. Type D shows an abundance of lentiform NIIs
and a few short DNs in the neocortex, not restricted to any cor-
tical layer, with only rare NCIs. In the present series, 7 cases
of FTLD-TDP-43 were assessed corresponding to 4 type A,
and 3 type C. Patients presented with behavioral variant fron-
totemporal dementia or with semantic dementia. Although no
clinical symptoms of motor neuron disease were present, 3
cases (type A) showed TDP-43-immunoreactive inclusions in
the anterior horn of the spinal cord and the motor nuclei of the
brainstem similar to those seen in sALS. sFLTD-TDP cases in
the present series are a subset of those reported elsewhere (58)
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(cases 17, 18, 19, 24, 25, 26, and 28). There were 6 men and 1
woman (age 67.4 6 8.7 years), categorized as type A (n¼ 4)
and type C (n¼ 3). An additional case was a carrier of the
GRN mutation A303AfsX57; the female patient presented
with late-onset frontotemporal dementia and had eye-shaped
NIIs in addition to NCIs and DNs (59). The postmortem delay
in the FTLD-TDP series was between 4 and 16 hours.

Patients with associated pathology including Alzheimer
disease (excepting neurofibrillary tangle pathology stages I–II
of Braak and Braak), Parkinson disease, tauopathies, vascular
diseases, neoplastic diseases affecting the nervous system,
metabolic syndrome, hypoxia, and prolonged axonal states,
such as those occurring in intensive care units were excluded.
Cases with infectious, inflammatory, and autoimmune dis-
eases, either systemic or limited to the nervous system, were
not included.

Single TDP-43 and P-TDP-43 Immunohisto-
chemistry, Double-Labeling Immunohistochem-
istry, Double-Labeling Immunofluorescence and
Confocal Microscopy

Single-labeling immunohistochemistry was carried out
on de-waxed sections 4-lm-thick in every case. The sections
were boiled in citrate buffer to enhance antigenicity and
blocked for 30 minutes at room temperature with 10% fetal bo-
vine serum diluted in PBS. Then, the sections were incubated
at 4�C overnight with the primary antibody, washed, and
thereafter incubated with EnVision þ system peroxidase
(Dako-Agilent, Santa Clara, CA) for 30 minutes at room tem-
perature. The peroxidase reaction was visualized with diami-
nobenzidine and H2O2. The immunoreactions resulted in a
brown precipitate.

Double-labeling immunohistochemistry was done in 2
steps. The sections were incubated at 4�C overnight with the
first primary antibody, washed and incubated with the appro-
priate secondary antibody liked to horseradish peroxidase
(HRP); the immunoreaction was visualized with diaminoben-
zidine and H2O2 as a brown precipitate. Then, the sections
were incubated at 4�C overnight with the second primary anti-
body, washed and incubated with the appropriate secondary
antibody/HRP. The peroxidase reaction was visualized with
diaminobenzidine, NH4NiSO4, and H2O2. The immunoreac-
tion resulted in a blue-gray precipitate. Control of the immu-
nostaining included omission of the primary antibody; no
signal was obtained following incubation with only the sec-
ondary antibodies.

Primary antibodies were rabbit polyclonal antibodies
TDP43 (G400) (3488, Cell Signaling, Leiden, The Nether-
lands) used at a dilution of 1:100, P-TDP43 Ser403-404 (TIP-
TIP-P05, Cosmo Bio, Carlsbad, CA) diluted 1:2000; rat anti-
P-TDP43 Ser409-410 antibody (MABN14, Millipore, Sigma-
Aldrich, Darmstadt, Germany) diluted 1:100; and mouse
monoclonal GFAP antibody (Diagnostic Biosystems,
Mob064, Palex Medica, Sant Cugat, Spain) used at a dilution
of 1:1000, and MCAM/CD146 antibody (LS-B10746/177120,
LifeSpan Biosciences, Seattle, WA) used at a dilution of
1:100. The secondary antibodies were swine anti-rabbit immu-
noglobulins/HRP (P0217 Dako-Agilent, Santa Clara, CA),

goat anti-mouse immunoglobulins/HRP (P0447, Dako-
Agilent), and donkey anti-rat IgG (HþL)/HRP (A18739,
Invitrogen-Thermo Fisher Scientific, Waltham, MA), all used
at a dilution of 1:100. Combinations for double-labeling im-
munohistochemistry were P-TDP43 Ser403-404 and MCAM/
CD146 antibody, and P-TDP43 Ser403-404 and GFAP.

Double-labeling immunofluorescence was carried out in
de-waxed 4-lm-thick sections which were stained with a satu-
rated solution of Sudan black B (Merck, Glostrup, Denmark)
for 15 minutes to block the autofluorescence of lipofuscin
granules present in cell bodies, and then rinsed in 70% ethanol
and washed in distilled water. Some sections were incubated
at 4�C overnight with anti-GFAP and anti-P-TDP43 Ser403-
404 antibodies; other sections with CD68 (as a marker of mac-
rophages; Abcam ab955, used at a dilution 1:200) and anti-P-
TDP43 Ser403-404 antibodies. After washing, the sections
were incubated with Alexa488 or Alexa546 (1:400, Molecular
Probes, Eugene, OR) fluorescence secondary antibodies
against the corresponding host species. Nuclei were stained
with DR (dilution 1:2000, BioStatus, Loughborough, UK). Af-
ter washing, the sections were mounted in Immuno-Fluore
mounting medium (ICN Biomedicals, Irvine, CA), sealed, and
dried overnight. Sections were examined with a Leica TCS-
SL confocal microscope. No attempt was made to quantify
blood vessels with TDP-43-immunoreactive deposits in line
with the lack of studies quantifying the number of NCIs, NIIs,
and DNs in FTLD-TDP cases.

RESULTS

Spinal Cord in sALS
In the normal spinal cord, TDP-43 immunoreactivity

was observed in the nucleus of neurons and glial cells. In
sALS, TDP-43 was preserved in the nuclei of some motor neu-
rons of the anterior horn and the vast majority of nuclei of glial
cells. TDP43 was translocated to the cytoplasm in a case-
dependent number of motor neurons in sALS to form skein-
like inclusions, dot-like inclusions, and granular and spicular
deposits (Fig. 1A, B). Abnormal deposits were best seen with
anti-P-TDP-43 antibodies which recognized only abnormal
TDP-43 inclusions (Fig. 1C). In addition to neurons, isolated
aberrant neurites and oligodendrocytes in the anterior horn
and the white matter contained P-TDP-43 deposits. In normal
spinal cord, TDP-43 was also expressed in the nucleus of cells
of the blood vessel walls including capillaries of the gray and
white matter, and meninges. Positive cells were in contact
with the lumen or adjacent to the internal lamina (Fig. 1D). Al-
tered TDP-43 immunoreactivity in association with blood ves-
sels was found in 7 of 14 sALS cases. Reduced TDP-43
immunoreactivity was observed in a few vascular nuclei in the
anterior horn and the white matter tracts in sALS; this reduc-
tion was selective, as TDP-43 immunoreactivity was pre-
served in other cells located in the vicinity (Fig. 1E). Also,
abnormal TDP-43 deposits, best seen with anti-P-TDP-43
Ser403-404 antibody, occurred in association with a few small
blood vessels mainly capillaries but also arterioles and venules
(Fig. 1F–L). The morphology of these inclusions was variable;
some of them were elongated and parallel to the lumen
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(Fig. 1F, G, J), whereas others were granular, often forming
clusters bound to the wall of the blood vessel (Fig. 1H, I).
Both types of deposits were rarely detected in a particular
blood vessel along its longitudinal axis (Fig. 1K). Some elon-
gated inclusions were outside the blood vessel wall in the vi-
cinity of the external layer or in the perivascular space
(Fig. 1L).

Frontal Cortex Area 8 in FTLD-TDP and sALS
In the normal frontal cortex, TDP-43 immunoreactivity

was present in the nuclei of neurons, glial cells, and the nuclei
of the cells of the blood vessel walls (Fig. 2A). In frontal cor-
tex area 8 of FTLD-TDP type A, TDP-43 immunoreactivity

was preserved in the majority of the nucleus of neurons, glial
cells and cells of the blood vessel walls. However, TDP-43 im-
munoreactivity was reduced in the nucleus of a subpopulation
of neurons and glial cells in which TDP-43 translocated to the
cytoplasm to form NCIs with strong TDP-43 immunoreactiv-
ity in the upper and inner layers (Fig. 2B, C), and short, coma-
like DNs (Fig. 2F), together with oligodendroglial inclusions
in the subcortical white matter. NIIs were very rare or absent
excepting in the case with the GRN mutation. In the frontal
cortex area 8 type C and the 3 sALS cases with cortical TDP-
43 pathology, TDP-43 immunoreactivity was preserved in the
nucleus of the majority of neurons, glial cells and cells of the
blood vessels. However, variable numbers of thick TDP-43-
immunoreactive neurites (DNs) were present, mainly in the

FIGURE 1. TDP-43 immunoreactivity in the anterior horn of the spinal cord in control (D) and sALS cases (A–C, E-L). TDP-43
immunoreactivity is found in the nucleus of some remaining motor neurons (A, asterisk) and abnormal deposits in the
cytoplasm of motor neurons (A, B, long thick arrows). Abnormal neuronal TDP-43 inclusions are best distinguished with anti-P-
TDP-43 antibodies (C, long thick arrows). TDP-43 is also present in the nucleus of glial cells and the nuclei of cells of the blood
vessels in controls (D). In sALS, TDP-43 immunoreactivity is reduced in some nuclei of the blood vessels (E). Abnormal TDP-43
deposits associated with the blood vessel walls are best seen with anti-P-TDP-43 antibodies (F–L). Abnormal vascular inclusions
are elongated and located parallel to the lumen (thin arrows) or forming granules (short thick arrows), often in clusters. Some
abnormal deposits appear located outside the blood vessel wall (L). V: blood vessel. Paraffin sections, lightly counterstained with
hematoxylin, scale bars ¼ 30 mm excepting I, scale bar ¼ 25 mm.
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upper cortical layers and the sixth layer. NCIs were seldom
observed, and in small numbers, whereas NII and glial inclu-
sions were almost absent.

TDP-43 immunostaining was reduced in the nuclei of
some vascular cells, and diffuse deposits appeared instead in a
few blood vessels in 5 FTLD-TDP cases and one sALS case
(Fig. 2B, C). Abnormal deposits in neurons and glial cells
were best visualized with anti-P-TDP-43 antibodies (Fig. 2D,
E, G). P-TDP-43 Ser403-404 antibody provided better stain-
ing of abnormal deposits than the antibody P-TDP-43 Ser409-
410. Likewise, vascular deposits were best recognized with P-

TDP-43 Ser403-404 antibodies as fine and granular (Fig. 2D,
F), or elongated and parallel to the lumen (Fig. 2F), or forming
small globules in the blood vessel wall (Fig. 2F, G). Besides, a
few dense round TDP-43-immunoreactive bodies were seen in
the neuropil, in the vicinity of, and the wall of the blood ves-
sels in 2 FTLD-TDP types A, and in the case bearing the GRN
mutation (Fig. 3A–D). Elongated inclusions but not round
inclusions were seldom observed in association with a very
few blood vessels in 2 cases of FTLD-TDP types C, and one
sALS case. No inclusions associated with blood vessels were
detected in the remaining FTLD-TDP/sALS cases.

FIGURE 2. TDP-43 immunoreactivity in frontal cortex area 8 and subcortical white matter in control (A) and FTLD-TDP type A
(B–G). In the normal brain, TDP-43 immunoreactivity is found in the nuclei of cells of the blood vessel walls (A) in addition to
the nuclei of neurons and glial cells. In FTLD-TDP, reduced nuclear TDP-43 immunoreactivity is accompanied by TDP-43-
immunoreactive cytoplasmic inclusions in subpopulations of neurons and glial cells (B, C, long thick arrows). Besides TDP-43 is
decreased in the nucleus of some parietal cells of the small blood vessels and blurred TDP-43 granular deposits appeared instead
(B, C, short thick arrows). Abnormal deposits are best seen with anti-P-TDP-43 antibodies. In addition to abnormal deposits in
neurons (D, E, thick arrows), dystrophic neurites (F, white arrow), and glial cells (G, long thick arrows), abnormal P-TDP-43
deposits are seen in the walls of the blood vessels forming fine granular deposits (D, E, short thick arrows), elongated threads (F,
thin arrows), and small globules (F, G, thin arrows) associated with the blood vessel wall. V: blood vessel; asterisks in B and C
indicate TDP-43 immunoreactivity in the nuclei of normal neurons and glial cells. Paraffin sections, slightly counterstained with
hematoxylin, scale bars ¼ 30 mm.
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Double-Labeling Immunohistochemistry
The antibody MCAM/CD146 was used as a marker of

cells of the blood vessels including endothelial cells, peri-
cytes, and smooth muscle cells. Double-labeling immuno-
histochemistry with P-TDP43 Ser403-404 and MCAM/
CD146 antibodies showed the presence of P-TDP-43 inclu-
sions in 2 different compartments concerning the blood ves-
sel walls, independently of the type of inclusion (round or
elongated) in frontal cortex area 8 of FTLD-TDP; some
inclusions appeared to be within the blood vessel wall, but
others were located outside the blood vessel wall close to the
external layer (Fig. 3E–K).

Similarly, double-labeling immunohistochemistry in
sALS cases using the same antibodies displayed P-TDP-43

inclusions outside the MCAM/CD146-immunoreactive blood
vessel wall in the perivascular space (Fig. 4A–C) or in contact
to the external surface of small blood vessels (Fig. 4D–G).

To learn about the relationship between TDP-43-
immunoreactive inclusions and astrocytes, double-labeling
immunohistochemistry with P-TDP43 Ser403-404 and GFAP
antibodies was carried out in the frontal cortex of cases with
FTLD-TDP pathology. GFAP immunoreactivity was rarely
seen in the proximity of P-TDP-43-immunoreactive deposits.
In most cases, it was difficult to ascertain the relationship be-
tween some inclusions and astrocytes; this occurred when as-
trocyte processes wrapped small neurons with NCIs (Fig. 5A,
D), and when podocytes were in proximity with TDP-43-
immunoreactive vascular inclusions (Fig. 5A, B). In some

FIGURE 3. TDP-43 immunoreactivity in frontal cortex area 8 and subcortical white matter in FTLD-TDP type A. TDP-43
immunoreactivity is observed as small round inclusions (A, C) or as elongated or punctate inclusions (B, D) associated with the
wall of blood vessels. Double-labeling immunohistochemistry with P-TDP-43 Ser403-404 (brown) and MCAM/CD146 (dark
blue) antibodies shows the relationship of these inclusions with cells of the blood vessel walls (E–K). Some of them were located
within the blood vessel walls (E, G, K), but others were bounded to the external surface of the blood vessels (F, H, I, J). Short
thick arrows indicate round inclusions, and thin arrows elongated or punctate inclusions in blood vessels; long thick arrows,
neuronal TDP-43-immunoreactive cytoplasmic inclusions in neurons; white arrow, TDP-43 containing neurites; asterisk,
preserved nuclear TDP-43 immunoreactivity in one neuron; V: blood vessel. Paraffin sections, lightly counterstained with
hematoxylin, scale bars: A–D¼30 mm; E–K¼25 mm.
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instances, round TDP-43-immunoreactive vascular inclusions
were not in contact with podocytes (Fig. 5E, F). Rarely, round
TDP-43-immunoreactive inclusions appeared localized in the
cytoplasm of astrocytes (Fig. 5C). The difficulty to verify the
localization of TDP-43-immunoreactive deposits in astrocytes
also occurred using serial reconstruction of sections double-
labeled for immunofluorescence and examined with confocal
microscopy (Fig. 6). Sections double-labeled with CD68 and
TDP-43 Ser403-404 antibodies revealed no relationship be-
tween macrophages and TDP-43-immunofluorescent deposits
(data not shown).

DISCUSSION
The present study identifies TDP-43 proteinopathy in a

very few blood vessels of the spinal cord in 7 of 14 sALS, in
the frontal cortex area 8 in one of 3 sALS, and in the frontal
cortex area 8 in 5 of 8 FTLD-TDP cases, one of them bearing
a GRN mutation (2 type A, 2 type C and the one bearing the
GRN mutation).

Progranulin deficiency is linked to TDP-43 pathology,
including altered autophagy, TDP-43 accumulation, TDP-43
translocation, and abnormal truncation (60–63). The progranu-
lin mutation might represent a factor of TDP-43 vulnerability

FIGURE 4. Double-labeling immunohistochemistry with antibodies P-TDP-43 Ser403-404 (brown) and MCAM/CD146 (dark
blue) showing P-TDP-43-immunoreactive elongated (thin arrows) or globular (short thick arrows) inclusions in association with
the blood vessels (V) in the spinal cord of sALS cases. Some elongated large inclusions were localized in the external layer or the
perivascular space (A–C); others in the blood vessel wall (D), and others were attached to the external surface of small blood
vessels (E–G). Paraffin sections, scale bars ¼ 20 mm, excepting D, scale bar ¼ 25 mm.
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in brain blood vessels. However, this factor cannot be applied
to sALS and the rest of FTLD-TDP cases.

The present observations are in line with pioneering
descriptions of TDP-43 vasculopathy in FTLD-TDP (55).
However, the methods used in the present study are not suffi-
cient to corroborate the astrocytic localization of at least some
globular inclusions as revealed with the more precise
immune-electron-microscopic approach used by Lin et al (55).

RNA processing is essential for regulated gene expres-
sion; therefore, defects at some stages of gene regulation may
contribute to disease-RNA specific alterations (64–66). TDP-
43 is an RNA-processing protein with roles in multiple stages
of RNA regulation including RNA transcription, splicing,
transport and translation, and microRNA production (67–73).
TDP-43 phosphorylation and TDP-43 translocation from the
nucleus to the cytoplasm, forming TDP-43 aggregates impairs
TDP-43 signaling functions in the nervous system (4, 11, 17,
74–76).

Little is known about TDP-43 and blood vessels. How-
ever, the function of TDP-43 in blood vessels is probably simi-
lar to that reported in other settings including RNA
transcription, RNA splicing, and protein interactions. There-
fore, it may be posited that TDP-43 pathology in blood vessels
may have deleterious effects in vascular homeostasis and com-
promise normal BBB and BSCB function in subgroups of
patients with sALS/FTLD-TDP. In this line, altered blood ves-
sels of the spinal cord are found in TDP-43 conditional knock-
out mice (45). Endothelial cells with abnormal mitochondria
and swollen cytoplasm, pericytes containing abnormal mito-
chondria and disorganized materials, edematous podocytes, and
splitting of the basal laminae containing degenerated organellae
are found at early symptomatic stages in TDP-43 conditional
knockout mice (45). Reduced blood circulation, due in part to
abnormal cardiac muscle cells, and miss-patterning of blood
vessels with supernumerous and hyperbranched sprouts are
found in zebrafish with loss of TDP-43 (46).

FIGURE 5. Double-labeling immunohistochemistry with antibodies P-TDP-43 Ser403-404 (brown) and GFAP (dark blue)
showing that astrocytes and their processes may wrap neurons with TDP-43-immunoreactive deposits (A, D, asterisks), and
appear in contact with TDP-43-immunoreactive deposits in the blood vessel walls (A, B), thick arrows. Other vascular TDP-43-
immunoreactive round inclusions are separated from neighboring podocytes (E, F, thin arrows). Only rarely, TDP-43-
immunoreactive deposits appear located in the cytoplasm of astrocytes (C, white arrow). V: blood vessel. Paraffin sections, scale
bar ¼ 30 mm.
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The significance of perivascular and vascular TDP-43
pathology in a subset of ALS/FTLD cases is currently un-
known but could be better understood through mechanistic
and clinicopathological correlation studies. Not all sALS/
FTLD-TDP cases contain vascular TDP-43-immunoreactive
deposits, and when they are present, the number of blood ves-
sels with positive deposits is very small. Yet, the low density
of deposits could be compatible with a toxic impact on vascu-
lar cells and perivascular astrocytes.

These observations also suggest that sALS and FTLD-
TDP are degenerative diseases not limited to neurons and oli-
godendrocytes as other cell types are affected. ALS-derived
fibroblasts show cytoplasmic TDP-43 aggregation under cer-
tain experimental paradigms (77–79). Downregulated proteins
specifically expressed in muscles as C-filamin, and primary
muscular degeneration occur in zebrafish lacking TDP-43

(46). TDP-43 dysfunction in Drosophila causes alterations in
muscle cells (80). TBPH (TDP-43 in drosophila) overexpres-
sion produces TBPH aggregates surrounding nuclei that are
devoid of anti-TBPH immunolabeling suggesting that gain of
function leads to the nuclear depletion of Drosophila TDP-43
in some muscle fibers (80). Abnormal TDP-43-
immunoreactive inclusions occur in muscle cells in inclusion
body myositis (81) and myofibrillar myopathies (82), which
are considered paradigms of degenerative muscular diseases
with abnormal protein aggregates, and inclusion body myopa-
thy, Paget disease, and frontotemporal dementia (IBMPFD),
which can present as a spectrum of ALS, FTLD, and myopa-
thy with abnormal TDP-43 inclusions (83).

In conclusion, the present observations show the pres-
ence of TDP-43 vasculopathy in the cerebral cortex and spinal
cord in a subset of patients within the spectrum of sALS/

FIGURE 6. Serial images of double-labeling immunofluorescence and confocal microscopy with antibodies P-TDP-43 Ser403-404
(red) and GFAP (green) show one round inclusion close to the cytoskeleton of an astrocyte. However, the resolution of the
method does not permit us to visualize whether the inclusion is within the cytoplasm of this cell. Paraffin sections, nuclei stained
with DR (blue); scale bar ¼ 20 lm.
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FTLD-TDP. Since diverse abnormalities converge in the wall
of blood vessels and alter BBB and SCBB in sALS, and vascu-
lar alterations are reported in animal models showing downre-
gulation or overexpression of TDP43 it is tempting to
speculate that TDP-43 vasculopathy contribute to the altered
vascular function in sALS/FTLD-TDP43 spectrum.
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