
materials

Article

Dual Sensing Performance of 1,2-Squaraine for the
Colorimetric Detection of Fe3+ and Hg2+ Ions

Xiaoqian Liu 1,* , Na Li 1, Min-Min Xu 2 , Chunhui Jiang 3, Jianhao Wang 1, Guoqiang Song 1,*
and Yong Wang 2,*

1 School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China;
16109214@smail.cczu.edu.cn (N.L.); minuswan@cczu.edu.cn (J.W.)

2 College of Chemistry, Chemical Engineering and Materials Science, Soochow University,
Suzhou 215123, China; xumm@suda.edu.cn

3 School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology,
2 Mengxi Road, Zhenjiang 212003, China; chemjiang@just.edu.cn

* Correspondence: chmliux@cczu.edu.cn (X.L.); sgq@cczu.edu.cn (G.S.); yowang@suda.edu.cn (Y.W.)

Received: 12 September 2018; Accepted: 12 October 2018; Published: 16 October 2018
����������
�������

Abstract: A simple 1,2-squaraine based chemosensor material (SQ) has been reported to show
dual sensing performance for colorimetric detection of Fe3+ and Hg2+ ions. Compared to common
instrumental analysis, this method could provide fast and direct detection though colorimetric
changes by the naked eye. The sensor has shown excellent selectivity over the other metal ions
by tuning different solvent environments. The detection limit for Fe3+ could reach to 0.538 µM,
which was lower than that in the environmental agency guideline (U.S. Environmental Protection
Agency, U.S. EPA) in drinking water. And for Hg2+ detection, the limit was calculated as 1.689 µM
in our case. A 1:1 binding mode between SQ–Fe3+ and SQ–Hg2+ ion were evidenced by Job’s plot
measurement and IR analysis. The proposed different binding mechanisms were also supported
by Density Function Theory (DFT) calculation. All these findings provide a unique material and
a simple, facile, and low cost colorimetric method for dual metal ions analysis and have shown
preliminary analytical applications in industrial water sample analysis.

Keywords: 1,2-squaraine; colorimetric sensor material; iron; mercury; molecular modelling;
DFT calculation

1. Introduction

Development of selective and sensitive chemosensor materials for metal cation ions has attracted
considerable attention owing to their key role and potential applications in chemistry, materials,
and the environment [1–11]. Among heavy metals, iron is one of the essential elements playing an
important function in a wide range of biological process, such as cellular metabolism, oxygen carrying,
and regulation of enzyme reactions [12–16]. Meanwhile, mercury is considered a toxic element that
has harmful effects on the human health and the environment. Accumulation of mercury in the
body will cause severe health problem, especially damage of the central nervous system [17–20].
Therefore, a convenient and rapid method for the analysis of Fe3+ and Hg2+ is highly in demand.
Current analytical techniques such as atomic absorption spectroscopy, inductively coupled plasma
mass spectroscopy, and electrochemical analysis require sophisticated instruments and complex sample
preparation procedures, which limit their wide applications [21–25]. It is imperative to develop simple
material and effective methods for the detection of these ions. The use of a chemosensor material
provides unique advantages in a view of sensitivity and response time. One strategy for the design
of such molecules involves introducing an appropriate binding ligand to the chromophore in which
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optical responses are affected by the complexation process [26,27]. A serious of chromophore based
materials has been developed, including squaraines, fluorescein, rhodamine, quinolones, porphyrins,
coumarin, etc. [28–34]. However, design of a binding group which will be highly selective to each
ion individually is not an easy proposition considered many ions share similar optical properties.
Recently, another strategy for applying one single chemosensor material in simultaneous colorimetric
detection of multiple metal ions has attracted great interests. The detection can be straightforward as
long as the analysis shows differential responses to the metal ions. The strategy allows minimizing
the multistep organic synthesis and accelerating the discovery process. A few examples have been
reported to achieve multiple ion detections [35–40]. However, materials for dual detection of Fe3+ and
Hg2+ are relatively rare. In this context, the design and synthesis of simple, facile, low cost colorimetric
material for selectively recognition of Fe3+ and Hg2+ remains a challenge.

Squaraines are a class of versatile organic dyes which exhibit unique optical properties, such as
intense absorption and efficient fluorescence emission in the visible to near infrared region [41,42].
They can be versatile by linking different electron donors based on heterocyclic structure such as aniline,
indole group to the squaric core which acts as an electron acceptor [43–47]. Squaraines are suitable for
use in chemosensors because the optical properties can be tuned by external factors such as change
in polarity and pH of solvent, temperature or the addition of additives. We are gratifying to present
3,4-bis((Z)-(3-butylbenzo[d]thiazol-2(3H)-ylidene)methyl) cyclobut-3-ene-1,2-dione (SQ) to perform
dual colorimetric sensing of Fe3+ and Hg2+, spontaneously, by tuning the solution environment.
The sensor was sensitive in diverse solvent environments. It gave a selective color change from orange
to cream yellow for addition of Fe3+ in acetic acid with a limit of 0.538 µM which was much lower than
the limit in the U.S. environmental protection agency guideline (5.37 µM), while presenting a color
change from orange to grain yellow for Hg2+ detection in the high concentrations of anionic surfactant
sodium dodecyl sulfonate (SDS) solution with a detection limit of 1.689 µM. The binding constants
and properties of 1,2-squanraine towards these two metal ions were further investigated by Job’s
plot measurements, IR spectrums, and Election Spray Ionization-Mass spectra (ESI-MS), respectively.
Other excess metal ions as interferences in the system show both negligible effects on the 1,2-squaraine
towards Fe3+ and Hg2+ detections. Two different complexation patterns were then proposed. The two
adjacent oxygen atoms at the electron deficient cyclobutene ring provided extra electron pairs with
Fe3+ while the complexation towards Hg2+ differed another way. Further Density Function Theory
(DFT) calculations have supported the hypothesis. Finally, the SQ material has proven to be successful
in real sample applications.

2. Materials and Methods

2.1. Chemicals and Materials

Unless stated, all the chemicals used were purchased from commercial sources without
purification. 1H NMR (400 MHz) and 13C NMR (400 MHz) spectra were recorded on a Bruker AV-400
spectrometer (Bruker, Beijing, China, Tetramethylsilane as internal standard). Mass spectrometry
analysis was performed on a Q Exactive mass spectrometer (Thermo Fisher Scientific, Shanghai,
China). Absorption spectra were measured on Molecular Device Spectrometer 5 (Molecular Devices
Corporation, San Jose, CA, USA). Infrared spectra were performed on a Digilab FTS-3000 FT-IR
spectrophotometer (Digilab, Hopkinton, MA, USA).

2.2. General Procedures for UV-Vis Experiments

A stock solution of SQ was prepared 10 mM in dimethyl sulfoxide, DMSO. Further dilutions were
made to prepare 100 µM of SQ by adding different solutions. Heavy metal ions stock solutions were
prepared 10 mM in distilled water and diluted further accordingly. In UV-Vis experiments, 2 µL of
10 mM SQ solution and 2 µL of 10 mM heavy metal ions were extracted from stock solution and diluted
with 196 µL of solvent to make a total volume of 200 µL. In this case, the concentration for SQ was
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fixed at 100 µM (100 time dilutions from the stock solution). After mixing for 1 min, the absorption
measurements were made in 96 well plates on Molecular Device Spectrometer 5 (Molecular Devices
Corporation, San Jose, CA, USA) at the wavelength range of 350 nm to 750 nm.

2.3. Job’s Plot Measurements

The stock solutions of sensor SQ (10 mM) in DMSO and FeCl3 (10 mM) in distilled water were
prepared, respectively. 0.2 µL, 0.4 µL, 0.6 µL, 0.8 µL, 1.0 µL, 1.2 µL, 1.4 µL, 1.6 µL, 1.8 µL of the sensor
SQ (10 mM) solution were taken and transferred to the vials. 1.8 µL, 1.6 µL, 1.4 µL, 1.2 µL, 1.0 µL, 0.8 µL,
0.6 µL, 0.4 µL, 0.2 µL of FeCl3 (10 mM) was added to each sensor solution to make a total volume of
200 µL in acetic acid, separately. After stirring the solution for a few seconds, the absorption spectra
were recorded at absorption maximum wavelength. The plots were drawn by plotting Ao/(Ao − A)
vs. 1/[Fe3+], where Ao equaled to absorption intensity of SQ without Fe3+, A was corresponded to
the absorption intensity of SQ with different concentration of Fe3+. The Job’s plot procedures for SQ
towards Hg2+ were similar as above. HgCl2 water solution and 4 mM SDS buffer were used instead.

2.4. Competition Tests

2 µL of NaCl, KCl, LiBr, AgNO3, ZnCl2, HgCl2, CdSO4, FeCl2, CoCl2, CaCl2 salt solutions (stock:
10 mM) was extracted individually and mixed with 2 µL Fe3+ (stock: 2 mM), 2 µL SQ (10 mM) and
filled up with acetic acid to total volume of 200 µL. After stirring the solutions for a few seconds,
UV-Vis spectra were recorded at room temperature. For the case of Hg2+ detection, HgCl2 solution
was used instead of FeCl3.

3. Results

3.1. Spectral Properties of SQ

The synthesis of sensor SQ was followed as reported literature [48] and the characterization for
the compound was summarized in Figures S1–S3. The product was distinct from common squaraine
as two carbonyl groups (C=O) on squaric core were adjacent to form 1,2-regioisomer instead of
1,3-regioisomer. It has two cross-conjugated-electron systems from hetero aromatic donor to the
squaric core as donor acceptor. There are potential binding sites including two carbonyl groups (C=O)
on squaric core and sulfur atom on the substituted 3-butyl-2-methylbenzo[d]thiazol-3-ium iodide
which could provide extra electron pairs to the metal ions. There are many literatures that reported
1,3-regioisomer can be applied in the recognition of several metal ions [49–52]. We believe that besides
1,3-regioisomer, 1,2-regioisomer may also function as a metal ion detector in some circumstances.

An important characteristic of squaraines is their tendency to form different patterns of
aggregations, resulting in a dramatic color modulation [53,54]. We carried out the dilution experiments
in some selected solvents (pure acetic acid and 4 mM SDS solution) by UV-Vis measurements to see if
there were aggregations for SQ and the results were shown in supporting information (Figure S4a,b).
It has shown that the absorption intensities decreased both in pure acetic acid and 4 mM SDS solution
with the decrement of the SQ concentrations (10−4–10−6 M). The linear range of concentration of SQ in
two different solvents was 1 µM to 10 µM by using the Beer–Lambert law. No absorption wavelength
of SQ was shifted which suggest SQ was sensitive to the solvent environment but no aggregation can
be concluded from the current data. The molar absorption coefficient of SQ in the linear range was not
changed. A series of other solvents was applied in the UV-Vis measurements. Two microliters was
extracted from 10 mM SQ stock solution and diluted with 198 µL corresponding solvent to get the
total volume of 200 µL. The final concentration of SQ was 100 µM (100 times dilution). The absorption
data for SQ in different solutions were summarized in Figure 1. SQ exhibited a maximum absorption
wavelength at 475 nm in pure distilled water. While in boric acid buffer (10 mM, pH = 6.8) and
phosphate buffer (10 mM, pH = 6.6), it gave a broad flat band in absorption range of 400 nm to
600 nm. Interestingly, it was found that in pure acetic acid, SQ showed two maximum absorption



Materials 2018, 11, 1998 4 of 16

peaks individually at 430 nm and 525 nm. The addition of the cationic surfactant hexadecyl trimethyl
ammonium bromide (CTAB) gave a relative broad absorption peak with maximum wavelength of
530 nm. SQ in anionic surfactant sodium dodecyl sulfonate (SDS) solution exhibited slight blue shift to
455 nm in the absorption spectra compared to that in the distilled water.
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Figure 1. The absorption spectra of SQ (100 µM) in different solutions.

3.2. Colorimetric Sensing for Fe3+ and Hg2+

To evaluate the sensing properties of SQ (final concentration: 100 µM) towards metal ions, the
UV-Vis spectral changes were investigated with addition of various metal ions including Na+, K+,
Li+, Ag+, Zn2+, Hg2+, Cd2+, Fe2+, Co2+, Ca2+, Fe3+ (final concentration: 100 µM) in pure acetic acid.
As shown in Figure 2, there were no significant spectral changes in the presence of most metal ions,
whereas Fe3+ caused the distinct spectral changes with absorption intensity decreased in 525 nm.
And Fe3+ pronounced color changes from orange to cream yellow by direct visualization. The water
effect on detection of Fe3+ for SQ in AcOH-H2O solutions was further evaluated (Figure 3). There were
gradually decreased absorption bands at 525 nm of SQ with increasing portion of water in acetic acid.
The pH effect on the selectivity of SQ for Fe3+ has been observed as well. With increasing amount of
AcOH in solution, the pH decreased gradually but the absorption intensity of SQ itself dramatically
enhanced. In addition, only a distinct difference in absorption bands was observed in pure acetic acid
for SQ with or without addition of Fe3+. We have also monitored the absorption changes of SQ in pure
acetic acid and after 24 h, there were no significant changes in view of UV-Vis spectral (Figure S5a).
In addition, 1HMR spectrum of SQ in CD2Cl2 after 24 h (Figure S5b) shown with no decomposition
preliminarily revealed its stability in this condition. All these results indicated that SQ can be a good
probe for detecting Fe3+.

Another interesting phenomenon was discovered in the detection of Hg2+ in SDS surfactant
solutions. As shown in Figure 4, when various metal ions were added into SQ solutions in presence of
4 mM SDS, the single absorption band of SQ at 455 nm (maximum absorption wavelength without
metal ions) was red shift to 535 nm except for Hg2+. Upon addition of Hg2+, the absorption band at
535 nm decreased gradually, while the absorption in the range of 650 nm to 750 nm increased with one
clear isosbestic point, which indicating the binding between SQ and Hg2+ afforded only one species.
This new peak might be ascribed to a metal-to-ligand charge transfer [55,56].
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To evaluate the SDS effect on the Hg2+ detection, wide concentrations (1 µM–4 mM) of SDS
solutions were adopted in Figure 5a. It was shown that when SDS concentration reached at 4 mM which
was higher than critical micelle concentration (CMC) of SDS, the maximum absorption wavelength
of SQ without metal ions exhibited a blue shift to 455 nm. It was found that the relative changes of
SQ absorption intensity in 4 mM SDS micellar solution at 535 nm discriminate the most compared to
that in other concentrations in the case of Hg2+ detection (Figure 5b). The solution of SQ in 4 mM SDS
displayed an orange color, and the addition of Hg2+ caused an instant vivid color change from orange
to grain yellow. The difference in color response allowed SQ to easily distinguish between Fe3+ and
Hg2+ in aqueous solution.
Materials 2018, 11, x FOR PEER REVIEW  6 of 16 

 

 
(a) 

 
(b) 

Figure 5. (a) The absorption spectra of SQ (100 μM) in different concentration of SDS (1 μM–4 mM) 

without addition of metal ions. (b) The relative changes of SQ (100 μM) absorption intensity in 4 mM 

SDS micellar solution at 535 nm with or without addition of Hg2+ (100 μM). 

To validate the selectivity for Fe3+ and Hg2+, respectively, the competition experiments have also 

been performed. Other different ions as interferences were added to the mixture of SQ–Fe3+ or SQ–

Hg2+ solution. The final concentration of other cations (100 μM) was 5 times more than that of Fe3+ (20 

μM) and Hg2+ (20 μM) in the SQ solution. As shown in Figure 6a,b, there were no significant 

influences on Fe3+ and Hg2+ detections even extra amounts of other ions were added into the SQ–Fe3+ 

and SQ–Hg2+ system. All these findings suggest SQ exhibit high selectivity for Fe3+ and Hg2+ compared 

to other metal ions and it could be used as a colorimetric chemosensor for dual analytes analysis. 

For the purpose of exploring the relationship between absorption intensity and response time, a 

dynamic study of SQ in the detection of Fe3+ and Hg2+ was carried out. After direct addition of Fe3+, 

the cream yellow color of SQ–Fe3+ was faded instantly and to total colorless after 10 h and for SQ–

Hg2+, it took a longer time to get a total colorless solution (Figure S6a,b). 

The reversibility and regeneration are essential for materials in practical applications. The 

reversibility of the recognition process of sensor SQ was performed by a reversible binding 

experiment. Ethylenediaminetetraacetic acid (EDTA) as a strong chelator was added into both SQ–

Fe3+ and SQ–Hg2+ complex systems. Addition of 1 equivalent EDTA to SQ–Fe3+ system resulted in an 

increasing of absorption signal at 525 nm, indicating the regeneration of free SQ (Figure S7). With the 

alternate addition of constant concentrations of Fe3+ to SQ solution, the instant color change was 

observed again which exhibited good stability with a little signal decay for several cycles (Figure S8). 

For Hg2+, while after addition of 1 equivalent EDTA to SQ–Hg2+ system, a distinct absorption band 

with observed and the alternate addition of constant concentrations of Hg2+ has shown no dominant 

absorption changes (Figures S9 and S10). These clear findings of colorimetric ON/OFF behavior of 

the sensing system suggested that SQ serve as a good reversible sensor for Fe3+ detection. 

400 500 600 700
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
b
s
o
r
b
a
n
c
e

wavelength/nm

 SDS 4 mM
 SDS 1 mM
 SDS 100 μM
 SDS 50 μM
 SDS 10 μM
 SDS 1 μM

Figure 5. (a) The absorption spectra of SQ (100 µM) in different concentration of SDS (1 µM–4 mM)
without addition of metal ions. (b) The relative changes of SQ (100 µM) absorption intensity in 4 mM
SDS micellar solution at 535 nm with or without addition of Hg2+ (100 µM).

To validate the selectivity for Fe3+ and Hg2+, respectively, the competition experiments have also
been performed. Other different ions as interferences were added to the mixture of SQ–Fe3+ or SQ–Hg2+

solution. The final concentration of other cations (100 µM) was 5 times more than that of Fe3+ (20 µM)
and Hg2+ (20 µM) in the SQ solution. As shown in Figure 6a,b, there were no significant influences on
Fe3+ and Hg2+ detections even extra amounts of other ions were added into the SQ–Fe3+ and SQ–Hg2+

system. All these findings suggest SQ exhibit high selectivity for Fe3+ and Hg2+ compared to other
metal ions and it could be used as a colorimetric chemosensor for dual analytes analysis.
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Figure 6. (a) Competition experiments of Fe3+ with other metal ions. Gray bar: absorption intensity
of SQ (100 µM) in AcOH solution. Red bar: absorption intensity of SQ (100 µM) with Fe3+ (20 µM)
in AcOH solution. Blue bar: absorption intensity of SQ (100 µM) with the addition of the respective
competing cations (100 µM) and the Fe3+ (20 µM) in AcOH solution. (b) Competition experiments of
Hg2+ with other metal ions. Gray bar: absorption intensity of SQ (100 µM) in SDS (4 mM) solution. Blue
bar: absorption intensity of SQ (100 µM) with the addition of the respective competing cations (100 µM)
in SDS (4 mM) solution. Red bar: absorption intensity of SQ (100 µM) with the Hg2+ (20 µM) in SDS
(4 mM) solution. Blue bar: absorption intensity of SQ (100 µM) with the addition of the respective
competing cations (100 µM) and the Hg2+ (20 µM) in SDS (4 mM) solution.

For the purpose of exploring the relationship between absorption intensity and response time,
a dynamic study of SQ in the detection of Fe3+ and Hg2+ was carried out. After direct addition of
Fe3+, the cream yellow color of SQ–Fe3+ was faded instantly and to total colorless after 10 h and for
SQ–Hg2+, it took a longer time to get a total colorless solution (Figure S6a,b).

The reversibility and regeneration are essential for materials in practical applications.
The reversibility of the recognition process of sensor SQ was performed by a reversible binding
experiment. Ethylenediaminetetraacetic acid (EDTA) as a strong chelator was added into both SQ–Fe3+

and SQ–Hg2+ complex systems. Addition of 1 equivalent EDTA to SQ–Fe3+ system resulted in an
increasing of absorption signal at 525 nm, indicating the regeneration of free SQ (Figure S7). With the
alternate addition of constant concentrations of Fe3+ to SQ solution, the instant color change was
observed again which exhibited good stability with a little signal decay for several cycles (Figure S8).
For Hg2+, while after addition of 1 equivalent EDTA to SQ–Hg2+ system, a distinct absorption band
with observed and the alternate addition of constant concentrations of Hg2+ has shown no dominant
absorption changes (Figures S9 and S10). These clear findings of colorimetric ON/OFF behavior of the
sensing system suggested that SQ serve as a good reversible sensor for Fe3+ detection.
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3.3. Binding Constant (Ka) and Limit of Detection (LOD) for Fe3+ and Hg2+

To get a further insight into the colorimetric sensing properties of SQ, a quantitative investigation
of the binding affinity of sensor SQ with Fe3+ and Hg2+ was studied by titration. The UV-Vis absorption
spectra of 100 µM SQ in acetic acid and SDS solution were recorded during the titration of various
concentrations of Fe3+ (1 nM–100 µM) and Hg2+ (1 nM–100 µM), respectively. The binding constant
(Ka) was estimated using a Benesi-Hilderbrand plot, which was calculated by absorption changes
of consequent titration (A0/A0 − A) against 1/[M]. The magnitude of Ka was calculated from the
intercept and slope of the straight line. The estimated value was about 1.24 × 106 M−1 for SQ–Fe3+

complex and 1.1 × 106 M−1 for SQ–Hg2+ (Figures 7a and 8a).
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Figure 7. (a) Benesi-Hildebrand plot analysis of the absorption changes for the complexation between
SQ and Fe3+, R2 = 0.9936. (b) Plot of absorption intensity change of SQ (100 µM) against concentrations
of Fe3+ from 0.01 µM to 0.5 µM. R2 = 0.9907.

From the absorption titration, the detection limit for Fe3+ and Hg2+ on the basis of 3σ/k was
therefore calculated and determined to be 0.538 µM (lower than the U. S. Environmental Protection
Agency guideline for drinking water, 5.37 µM) and 1.689 µM (Figures 7b and 8b) for Hg2+ which were
superior than many recent reported Fe3+ and Hg2+ related sensors (Table 1). The limit of detection for
Hg2+ can be further improved by modifying the structure through introducing more functional groups
to increase the solubility of SQ and hydrogen interaction to the metal ions.
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Table 1. Comparison of SQ with recently reported chemosensors.

Sensor Target Response Type LOD (µM) Reaction Media Reversibility Reference

Dansyl based derivative Fe3+ Fluorescence 0.62 C2H5OH-H2O
(1:1, v/v) No [57]

Rhodamine derivative Fe3+ Fluorescence 0.74 CH3CN-H2O(1:1,
v/v) Yes [58]

Sugar-functioned coumarin Fe3+ Color 4.6 H2O No [59]

Julolidine derivative Fe3+ Color 6.8 DMF No [57]

Squaraine
-bis(rhodamine-B)

derivative
Hg2+ Fluorescence 6.48 CH3CN Yes [60]

Coumarin-urea derivative Hg2+ Fluorescence 0.45 CH3CN Yes [61]

Hetarylazo
Fe3+ Color 2.0 CH3CN No

[62]
Hg2+ Color 2.0 CH3CN No

Naphthalimide-rhodamine
Fe3+ Color 0.57 EtOH/PBS

buffer (1:1) No
[63]

Hg2+ Fluorescence 2.72 EtOH/PBS
buffer (1:1) Yes

Our work
Fe3+ Color 0.54 CH3COOH Yes

/
Hg2+ Color 1.69 SDS (4 mM) No

3.4. Complexation Mechanism of SQ–Fe3+ and SQ–Hg2+

Job’s plot measurement was carried out to determine the complexation mode between SQ and Fe3+.
A maximum value of the absorption intensity at 525 nm was observed when the mole fraction of Fe3+

reached 0.5. A signature of 1:1 stoichiometry between SQ and Fe3+ was determined. In addition, a 1:1
stoichiometry between SQ and Hg2+ was also determined following the same process. (Figure 9a,b).
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The Electron Spray Ionization-Mass data of SQ–Fe3+ and SQ–Hg2+ complexes were included in Figures
S11 and S12.Materials 2018, 11, x FOR PEER REVIEW  10 of 16 
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complexation of SQ with Hg2+ in SDS (4 mM).

The involvement of binding sites of SQ in complexation was further confirmed through the IR
analysis in the presence and absence of metal ions (Figure 10). The characteristic carbonyl stretching
frequencies of SQ appeared at 1727.44 cm−1 and 1677.48 cm−1. However, in the SQ–Fe3+ complex,
a new peak at 1617.34 cm−1 was observed instead of those at 1766 cm−1 and 1602 cm−1. At the same
time, another peak appeared at 1584.41 cm−1 instead of 1492.07 cm−1, indicating the SQ binding
with Fe3+ occurs at the two carbonyl groups of squarely moiety in SQ. The IR spectrum for SQ–Hg2+

complex was different to that of SQ–Fe3+ complex. The characteristic carbonyl stretching peak in
SQ–Hg2+ complex at 1766 cm−1 and 1602 cm−1 were replaced by a strong new peak at 1613.52 cm−1.
More importantly, two more new peaks at 3585.58 cm−1 and 3525.71 cm−1 shown up ascribed to
proton vibration. This indicated that more electron pairs were involved in the binding with presence of
Hg2+. Conceptually, in accordance with hard soft acid base (HSAB) principle [64], the complexations
of SQ–Fe3+ and SQ–Hg2+ were undergone two different pathways, which have been proposed in
Scheme 1. For SQ–Fe3+ complex, Fe3+ was proposed to bind two carbonyl groups in squaric moiety
with 1:1 stoichiometry, while for SQ–Hg2+ complex, it carried out in a different way.
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Scheme 1. Proposed complexation mechanism of SQ–Fe3+ and SQ–Hg2+.

Theoretical calculations have been explored as well to understand the nature of the binding of
SQ–Fe3+ and SQ–Hg2+ complexes. All calculations were carried out with the Gaussian 09 package [65].
The density functional theory (DFT) hybrid model with the B3LYP was used for the gas-phase geometry
optimization, Lanl2dz basis set with effective core potential (ECP) for Fe and Hg, and the 6-31G(d)
basis set was used for all remaining atoms. Based on the calculations, the favorable binding modes
between Fe3+ and its Hg2+ complexes were depicted in Figure 11a–c. According to the calculations,
the geometry optimized structure of SQ–Fe3+ complex (Figure 11b) was illustrated the same as our
proposed. It showed lower energy when Fe3+ was bind two carbonyl groups in squarely moiety.
However, the simulated spectra are in good agreement with the proposed complexation mechanism
for only SQ–Fe3+ complexes. For SQ–Hg2+ complex, the Hg atom was far away from the SQ.
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Figure 11. The geometry-optimized structures of (a) SQ (yellow, red and blue atoms representing
as sulfur, oxygen, nitrogen atoms, respectively); (b) SQ–Fe3+ complex (purple atom representing
as Fe3+); (c) SQ–Hg2+ complex (individual atom at left representing as Hg2+ atom) at the SMD
(H2O)-TD-PBE0/TZVP+LANL2DZ level.

3.5. Preliminary Analytical Application

The SQ has been validated for practical applications in the determination of Fe3+ and Hg2+ in
industry waste water (Table 2). Control experiments showed no significant effect on the colorimetric
change of the sensor, the samples were used for the spike and recovery test after treating with acetic
acid and 4 mM SDS solution, respectively. It was revealed that SQ has shown a good recovery at
different concentrations (Figure S13a,b). These results preliminarily demonstrated that SQ could be
potential to be used in selectively and sensitively determine Fe3+ and Hg2+ in real water samples.

Table 2. Determination of ion in industrial waste water samples with SQ.

Sample AAS (µM) Added (mM) Found (mM) Recovery (%)

Industrial
waste water I

Fe3+ 2.01 1.12 1.14 102
Hg2+ 3.20 4.30 4.41 102

Industrial
waste water II

Fe3+ 4.03 2.23 2.19 98
Hg2+ 2.43 2.85 2.77 97

Industrial
waste water III

Fe3+ 6.05 4.41 4.38 99
Hg2+ 1.65 2.20 2.17 99

4. Conclusions

In conclusion, a simple 1,2-squaraine SQ has been developed to performance dual colorimetric
sensing for Fe3+ and Hg2+ ions. An instant color change for selective Fe3+ detection in pure acetic acid
was observed with a detection limit of 0.538 µM, while Hg2+ can be detected selectively in 4 mM SDS
solution by instant colorimetric response with a detection limit of 1.689 µM. The Job’s plot supported
the 1:1 biding mode for both SQ–Fe3+ and SQ–Hg2+ complexes. IR analysis and DFT calculations
demonstrated the SQ–Fe3+ and SQ–Hg2+ complexes undergo a different complex mechanism. Our
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findings provide a simple material and a facile, low cost colorimetric method for dual analytes analysis
and have shown preliminary analytical applications in industrial water samples.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/10/1998/s1;
Figure S1: 1H NMR spectrum for compound SQ; Figure S2: 13C NMR spectrum for compound SQ; Figure S3: high
resolution mass spectrum for SQ; Figure S4: (a) absorption for different concentrations of SQ in pure acetic acid
and (b) absorption for different concentrations of SQ in 4 mM SDS solution; Figure S5: (a) absorption of SQ in pure
acetic acid at different time points; (b) 1HMR spectra of SQ in CD2Cl2 after 24 hours; Figure S6: (a) dynamic study
on the absorption change of SQ–Fe3+ and (b) dynamic study on the absorption change of SQ–Hg2+, Figure S7:
reversible study of SQ–Fe3+ toward addition of EDTA; Figure S8: reversible study of SQ–Hg2+ upon alternate
addition of Fe3+; Figure S9: reversible study of SQ–Hg2+ complex toward addition of EDTA; Figure S10: reversible
absorption changes of SQ upon alternate addition of Hg2+ and EDTA; Figure S11: high resolution mass spectrum
for SQ–Fe3+, Figure S12: high resolution mass spectrum for SQ–Hg2+; Figure S13: (a) titration curve of SQ for Fe3+

(1–6 mM) and (b) titration curve of SQ for Hg2+ (1–6 mM).
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