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Gliomas possess complex and heterogeneous vasculatures with abnormal hemodynamics. Despite considerable advances in
diagnostic and therapeutic techniques for improving tumor management and patient care in recent years, the prognosis of
malignant gliomas remains dismal. Perfusion-weighted magnetic resonance imaging techniques that could noninvasively provide
superior information on vascular functionality have attracted much attention for evaluating brain tumors. However, nonconsensus
imaging protocols and postprocessing analysis among different institutions impede their integration into standard-of-care imaging
in clinic. And there have been very few studies providing a comprehensive evidence-based and systematic summary. This review first
outlines the status of glioma theranostics and tumor-associated vascular pathology and then presents an overview of the principles
of dynamic contrast-enhanced MRI (DCE-MRI) and dynamic susceptibility contrast-MRI (DSC-MRI), with emphasis on their
recent clinical applications in gliomas including tumor grading, identification of molecular characteristics, differentiation of glioma
from other brain tumors, treatment response assessment, and predicting prognosis. Current challenges and future perspectives are
also highlighted.

1. Introduction tumor progression, invasiveness, and therapy resistance [4].
Visualization of tumor vasculatures is of great importance for
improved glioma management.

Magnetic resonance imaging (MRI) is currently the prior

Gliomas are the most common primary brain tumors in
adults with varying malignancy ranging from pilocytic astro-

cytoma to glioblastoma multiforme (GBM) [1]. Despite consi-
derable advances in various diagnostic and therapeutic tech-
niques in recent years, the prognosis of malignant gliomas
remains dismal, with median survival less than 5 years
for anaplastic glioma and approximately 14.5-16.6 months
for GBM [2, 3]. Glioma-associated neovascularization with
aberrant structure and functionality is a typical tumor hall-
mark participating in multiple biological behaviors such as

choice for clinical applications in brain tumors [5]. Although
conventional MRI sequences can provide exquisite anatomi-
cal information of tumors, they have the inability to quantita-
tively evaluate vascular physiology and capture tumor biology
at molecular/cellular levels, which contribute to tumor grad-
ing [6], therapeutic assessment [7], and prognosis prediction
[8]. Furthermore, nonenhancing regions representing peri-
tumoral edema with infiltrative tumor cells are not visualized
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FIGURE 1: The versatile clinical applications of contrast-enhanced
perfusion MRI techniques in gliomas.

on conventional MRI, hindering the maximum safe surgical
resection and therapy response assessment [9, 10]. Perfusion-
weighted magnetic resonance imaging (PW-MRI) tech-
niques, such as dynamic contrast-enhanced MRI (DCE-MRI)
and dynamic susceptibility contrast-MRI (DSC-MRI), have
demonstrated much potential as powerful imaging biomark-
ers for glioma management as they can provide information
of vascular hemodynamics [11-13]. PW-MRI is now rapidly
expanding its application spectrum by noninvasively explor-
ing the relationship between imaging parameters and the
molecular characteristics of gliomas [14] (Figure 1).

Despite that numerous studies have explored PW-MRI
for evaluating gliomas, there have been very few studies
providing a comprehensive evidence-based and systematic
summary. This review first outlines the status of glioma
theranostics and tumor-associated vascular pathology and
then presents an overview of the principles of DCE-MRI and
DSC-MRI, with emphasis on their recent clinical applications
in gliomas including tumor grading, identification of molec-
ular characteristics, differentiation of glioma from other
brain tumors, treatment response assessment, and predicting
prognosis. Current challenges and future perspectives are
also highlighted.

2. Glioma Vascular Pathology

Malignant gliomas possess exuberant neovascularization
characterized by disorganized, irregular, and tortuous vessels
with arteriovenous shunting [15, 16]. In low grade glioma
(LGG), tumor vessels are mainly composed of normal
endothelial cells (ECs), with cell-to-cell tight junction and
relatively intact blood brain barrier (BBB) [17]. However, the
vascular ultrastructure of high grade glioma (HGG) is char-
acterized by large caliber and aberrant vascular walls, com-
posed of abundant immature ECs with loose conjunction,
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fenestrated structure, and discontinuous membrane [15]. The
garland-like formation of glomerular capillary loops, con-
sisting of multilayered, actively mitotic ECs and perivascular
cells, is the typical architecture of the abnormal microvascular
proliferation in GBM [18]. Glioma-associated vessels exhibit
prominent spatial heterogeneity. The marginal tumor area
is rich of proliferative and invasive cells, with increased
microvessel density (MVD) and active neovascularization.
However, compressed and tortuous vascular networks with
reduced vascular perfusion are observed in the lesion core,
resulting in hypoxia, cell metabolic scarcity, and necrosis
[19, 20]. The abnormal tumor vascular structure consequently
causes abnormal vascular function with increased permeabil-
ity and perfusion.

3. Principle of PW-MRI

Cerebral vascular hemodynamics can be assessed with PW-
MRI, including DCE-MRI, DSC-MRI, and arterial spin-
labeling (ASL) techniques. Using exogenous gadolinium-
based contrast agents (GBCAs), PW-MRI can characterize
tumor vascular perfusion and permeability with multiple
parameters, by emphasizing either the T1 relaxivity properties
of GBCAs through TI-weighted DCE-MRI or their sus-
ceptibility effects through T2/T2"-weighted DSC-MRI [21].
ASL-MRI is a much less frequently used perfusion modality
that involves magnetically labeled arterial blood water pro-
tons rather than GBCAs for perfusion characterization. As
contrast-enhanced MRI is the most commonly used for brain
tumors assessment in clinical setting, DCE-MRI and DSC-
MRI will be discussed in detail below.

3.1. DCE-MRI. DCE-MRIisbased on T1relaxivity of GBCAs
with fast imaging acquisition. Due to the BBB disruption and
vascular hyperpermeability in gliomas, the GBCAs adminis-
tered intravenously are easy to leak from intravascular com-
partment to extravascular extracellular space (EES), leading
to an increase in T1 signal intensity induced by paramagnetic
effect [22]. By consecutively acquiring a serial of T1 weighted
images before, during, and after GBCAs administration, the
dynamic T1signal intensity can be measured and proportion-
ally depict the concentration distribution of GBCAs between
intravascular space and EES using mode-free (semiquantita-
tive) and model-dependent (quantitative) parameters.

Model-free parameters are calculated based on signal
intensity-acquisition time curve, reflecting an overall kinetics
of GBCAs perfusion (Figure 2(a)). This approach is simple
and straightforward without fitting complicated pharmacoki-
netic (PK) models. However, it often encounters limited
temporal resolution and is weak in providing specific physio-
logical information of tumor vasculatures (e.g., permeability
and blood flow) [23]. Furthermore, measurement of these
parameters is more susceptible to subjectivity, prone to errors
due to experience and bias [24].

Model-dependent parameters can be calculated by fitting
various mathematical PK models. Common-used PK models
for brain tumors include classic Tofts-Kermode (TK) model
and extended TK (ETK) model [25]. Of them ETK model is
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FIGURE 2: An illustration of parameters derived from DCE-MRI and DSC-MRI. (a) Semiquantitative parameters from signal intensity curve in
DCE-MRI. (b) Schematic diagram of ETK model from DCE-MRI. (¢) Calculation of PSR and PH from DSC-MRI. (d) Contrast concentration-
time course curve of DSC-MRI. CBV is proportional to determined area under contrast concentration-time course curve (blue shaded area),

and CBF is easily calculated given the relationship of MTT and CBV.

the most commonly employed in clinical applications (Fig-
ure 2(b)). ETK model-derived parameters are summarized
in Table 1. These quantitative parameters are physiologically
interpretable and better characterize the hemodynamics of
vasculatures with more accurate and less data noise compared
with model-free parameters [24, 26].

3.2. DSC-MRI. DSC-MRI s based on a dynamic series acqui-
sition of T2/T2"-weighted images. During the first pass of a
bolus GBCAs injection through the vessels, the changes of
T2/T2" signal intensity induced by the magnetic susceptibil-
ity effect are described [27]. Using tracer kinetic modeling

and indicator dilution theory, hemodynamic measurements
can be evaluated by several kinetic parameters derived from
the signal intensity-time course curve (SI-TCC) and cor-
responding contrast concentration-time course curve (CC-
TCC) (Figures 2(c)-2(d)) (Table 1).

Although promising in vascular perfusion evaluation,
DSC-MRI has some limitations. The T2"-weighted technique
may generate strong susceptibility artifacts, rendering DSC-
MRI insufficient for assessing infratentorial lesions [27].
More importantly, it is assumed that GBCAs remain in
intravascular space with intact BBB in postprocessing PK
models [28], which is frequently invalid in gliomas character-
ized by BBB disruption and vascular hyperpermeability. The
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GBCAs extravasation can produce a strong and competing
T1 contrast effect, known as T1 shine-through effect [29],
resulting in rCBV misestimate. To this end, several methods
have been proposed to minimize T1 contamination such as
preenhancement, focusing analysis on nonenhancing por-
tions, gamma-variate fitting, and low flip angles [30, 31], and
hence the extent of vascular permeability can be quantified by
K,, a leakage coefficient determined by linear fitting of T2
signal intensity curve.

4. Applications of DCE-MRI and
DSC-MRI in Gliomas

4.1. Tumor Grading. Accurate glioma grading is of great
importance for clinical decision making and personalized
management. Histopathologic biopsy is currently the gold
standard for glioma grading in clinical practice. However, it
encounters inherent sampling bias, invasive procedure, and
interobserver variability. Moreover, biopsy specimen may not
be representative of the tumor panorama characteristics due
to the improper resection and intratumoral heterogeneity. It
is crucial to establish an accurate diagnosis without biopsy
if (1) the lesion is located at critical functional brain areas
or require no surgical removal and (2) patients are in poor
general condition. Conventional structural MRI techniques
are insufficient for accurate glioma grading due to the rela-
tively poor sensitivity and specificity of patterns and extent
of contrast enhancement [32]. Up to 45% of nonenhancing
gliomas are malignant and approximately 20% of enhancing
oligodendrogliomas are benign [33, 34]. PW-MRI techniques
enable qualitative and quantitative delineation of the entire
tumor microvascular hemodynamics, helping in tumor grad-
ing and targeted biopsy (Table 2).

Early studies demonstrated that increased rCBV was
correlated with more active angiogenesis and aggressive
tumor malignancy, being a potential imaging biomarker for
preoperative tumor grading [35-37]. Considering the leakage
effect, several studies introduced correction methods such as
preload and algorithm to improve the rCBV accuracy [38, 39].
The corrected rCBV for tumor grading was more accurate
than uncorrected rCBV. Nevertheless, rCBV obtained from
region of interest- (ROI-) based method is inefficient for
oligodendroglioma grading, which demonstrates elevated
rCBV regardless of tumor grade [40]. rCBV from histogram
analysis allows more objective and reliable evaluation for
glioma grading than ROI-based methods. It could quantify
the extent of tumor heterogeneity and discriminate oligoden-
droglioma from LGG [41-43].

Increased vascular permeability is another predominant
characteristic of tumor vessels, playing an adjuvant role for
glioma grading. PSR was found to be inversely correlated
with vascular permeability [44]. Lower PSR reflects higher
vascular leakiness, indicating higher tumor grade [44-46].
Similarly, significantly elevated K" and V, values reflect
greater extent of BBB disruption and higher tumor grade [37,
47-51]. Gliomas are of vascular spatial heterogeneity. Zhao et
al. [52] presented a comprehensive analysis of the grading effi-
cacy of quantitative DCE-MRI parameters in different tumor
areas. In the tumor parenchyma region, V, showed the highest

diagnostic power, and K" the most specific, and K, the
most sensitive, respectively. While in the peritumoral region,
only K™ could aid in tumor grading. Histogram analy-
sis and phase-derived arterial input function (AIF) could
improve the diagnostic accuracy of DCE-MRI perfusion
parameters, allowing us to differentiate grade III from grade
IV glioma [53-55]. The rCBV/permeability surface-area
product (PS) ratio may also serve as a potential imaging bio-
marker for glioma grading [56]. It was the highest in grade
II and the lowest in grade IV. Moreover, the rCBV/PS ratio
was suggestive of different vasculature formation occurring at
the microvasculature level, with high value to vessel cooption
and low to sprouting angiogenesis. This finding helps inves-
tigators to better understand the pathologic basis of the two
imaging parameters.

In spite of serving as potential imaging biomarkers for
glioma grading, the perfusion parameters are overlapped to
some extent among different tumor grades. The thresholds of
perfusion indexes, specificity, and sensitivity from different
institutions vary considerably, making the comparison diffi-
cult. This may be partly attributed to the difference in sample
sizes, enrollment criteria, and especially imaging methods.
Although there have been a variety of imaging strategies
(e.g., bookend technique and phase-derived arterial input
function) for improving the accuracy and reproducibility
of indexes estimation, standardization and improvement of
the imaging acquisition methodology are indispensable for
further clinical applications.

4.2. Identification of Molecular Characteristics. Recent in-
depth molecular/genetic investigations have led to a pro-
found shift in glioma theranostics based on the substan-
tial progress in genetic alteration profiles. The latest 2016
WHO classification for central nervous system (CNS) tumors
integrates the molecular/genetic criteria into histological
diagnostics [1]. It emphasizes the molecular classification
for gliomas, such as isocitrate dehydrogenase (IDH) gene
mutations, epidermal growth factor receptor (EGFR) sta-
tus, methyl-guanine methyltransferase (MGMT) promoter
methylation status, and chromosome 1p/19q codeletion. Pre-
operative identification of these molecular/genomic charac-
teristics is greatly beneficial for precise diagnosis and person-
alized therapeutics, guiding treatment decision and improv-
ing outcome prediction. The current available method is sur-
gical biopsy along with subsequent genomic and proteomic
analysis. The procedure has inherent sampling error due to
the tumor heterogeneity, inevitably resulting in erroneous
determination. Furthermore, it is invasive, time consuming,
and expensive. Imaging genomics bidirectionally links radio-
graphic features to molecular/genomic expression patterns
and creates specific imaging biomarkers for noninvasive
genomic profiling [58, 59]. Recently, perfusion MRI modal-
ities have attracted considerable attention to distinguish the
genotypic profiles of gliomas (Table 3).

4.2.1. IDH Gene Mutation. IDH (IDH-1/IDH-2) enzymes
catalyze isocitrate oxidative decarboxylation to form a-keto-
glutarate («-KG), protecting cells against oxidative damage
[69, 70]. IDH gene mutations are present in approximately
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50%-80% of grades II and III glioma and nearly all sec-
ondary GBM, with IDH-1 much more common than IDH-2
[71-74]. Mutated IDH-1 induces a neomorphic enzyme activ-
ity, leading to the overproduction of metabolite 2-hydroxy-
glutarate (2-HG) [75]. The accumulated 2-HG in excess can
competitively inhibit the function of «-KG [76, 77]. Patients
with IDHI gene mutations experience more favorable prog-
nosis than those with wild-type IDH1 gliomas. It has demon-
strated that IDHI1 mutations could serve as independent
prognostic indicators [73, 78, 79]. Noninvasive detection of
IDH gene mutations is of great benefit in glioma stratification
management.

Water suppressed proton-magnetic resonance spectros-
copy ("H-MRS) has been explored to noninvasively detect
2-HG in gliomas for identification of IDH-1 gene mutation
[80, 81]. However, caution is currently warranted owing to
the frequent false negative results and it remains to determine
whether 2-HG levels could be qualified to serve as biomarkers
for evaluating treatment response, tumor aggressiveness, and
other malignant features [82]. Considering that IDH muta-
tion status is associated with hypoxia induced factor-l, a
driving factor in hypoxia-dependent angiogenesis, perfusion
MRI may predict this genetic alteration indirectly. Kickin-
gereder et al. [60] found the potential of rCBV for predicting
IDH mutation status in LGG and anaplastic glioma. The IDH
mutant glioma clustered at decreased rCBV compared with
the wild-type counterparts (Figure 3). A one-unit increase
in rCBV corresponded to a 2/3 decrease in the odds for an
IDH-1/2 mutation, verified successfully in 88% of patients.
Similar findings were confirmed by using histogram/ROI-
based analysis of normalized CBV (nCBV) mapping and ASL
technique [61, 83, 84]. IDH-1 wild-type tumors demonstrated
much higher blood perfusion regardless of histologic grade
[84]. Lee et al. [61] demonstrated that the slopes between the
10th and 90th of cumulative nCBV histograms were the
significant variables in differentiation of IDH-1 genetic status.
The results suggested that IDH-1 wild-type glioma possessed
more active angiogenesis and less heterogeneous microenvi-
ronment. rCBV could be a robust and noninvasive imaging
biomarker for predicting IDH mutation status.

4.2.2. EGFR Mutation. EGFR is a transmembrane glycopro-
tein belonging to receptor tyrosine kinase (RTK) family [85].
Various mutations in EGFR occur in approximately 57%
of GBM patients, accompanied with EGFR rearrangement/
amplification [78]. EGFR variant IIT (EGFRVIII), character-
ized by exons 2-7 deletion in the extracellular domain, is the
most common variant of EGFR present in 25%-35% of GBM
patients [86]. Cross-talk between EGFR and EGFRVIII
enables activating downstream signal pathways such as phos-
phoinositide 3-kinase, RTK, and phosphatase and tensin
homolog, participating in tumor progression, angiogenesis,
and treatment resistance [85, 87]. GBM carrying EGFRVIII
mutation has a grim prognosis [88]. It has been recognized
that EGFR was a potential target for immune-mediated ther-
apy such as tyrosine kinase inhibitors [89], chimeric antigen
receptor T-cell (CAR-T) [90], and EGFRvIII-targeted peptide
vaccine [91]. Establishing robust imaging biomarkers is of

great significance for predicting EGFR-defined subtypes of
glioma, to help in clinical decision making.

Previous studies showed that higher contrast enhance-
ment volume and enhancement/necrosis ratio on conven-
tional MRI were associated with EGFR overexpression [92,
93]. Increased T2 intensity to enhancing volume ratio was
more likely to reveal EGFRvIII mutation [94]. It indicated
that tumor angiogenesis with abnormal perfusion and per-
meability may reflect the EGFR status. Tykocinski et al.
[62] demonstrated that rCBV was remarkably higher in
EGFRVIII-positive GBM compared with the negative. The
rCBV threshold value of 4.34 acquired on 1.5 T system corre-
sponded with 100% sensitivity and specificity. Gupta et al. [63]
analyzed the correlation between EGFR amplification and
preoperative DSC-MRI metrics including rCBV, PSR, and
relative peak height (rPH). They found that GBM with EGFR
amplification presented as higher median rCBV and lower
PSR. Also, higher median rPH was associated with EGFRvIII
mutation. Recently, Arevalo-Perez et al. [64] evaluated the
ability of DCE-MRI for reflecting EGFRVIII expression in
GBM patients. Significantly increased K™ and V,, mean/
histogram values were observed in EGFRVIII-positive GBM,
and the predictive power of V, outperformed those of K",

4.2.3. MGMT Methylation Status. MGMT is a ubiquitous
DNA repair enzyme in glioma cells. The MGMT promoter
methylation could induce epigenetic silencing of this gene
and consequently result in DNA damage and cell death [95].
MGMT methylation has been reported in 30%-60% of GBM
and 50%-84% of anaplastic glioma [96-98]. These patients
have more favorable prognosis and prolonged survival [99],
better response to temozolomide chemotherapy [100], and
increased occurrence of pseudoprogression [101]. Currently,
the most universal analytic techniques for MGMT testing
include methylation-specific sequencing and methylation-
specific reverse-transcription polymerase chain reaction (RT-
PCR) [88]. They require invasive procedures and are often
subjected to insufficient biopsy sampling due to the intratu-
moral heterogeneity [102]. Noninvasive detection of MGMT
promoter methylation status with preoperative imaging is
greatly meaningful.

Some conventional imaging features (such as enhance-
ment pattern, tumor margin characteristic and T2/FLAIR
signal intensity) appear to be associated with MGMT pro-
moter methylation status but have some discrepancies among
institutions [66, 103, 104]. Part of the explanation may be
the nonspecificity of the anatomic imaging features. Several
studies have demonstrated perfusion parameters as non-
invasive radiophenotypic surrogates for predicting MGMT
methylation in GBM. The GBM with MGMT methylation
have lower nCBV, with 73.3% sensitivity and 85.7% specificity
for discrimination [65]. Ahn et al. [67] evaluated the efficacy
of conventional imaging features, quantitative parameters
from diffusion tensor imaging (ADC, fractional anisotropy),
and DCE-MRI (K", K, and V) for predicting MGMT

methylation status in GBM. They found that only K"*"
was associated with this genetic alteration. Interestingly,
GBM with MGMT methylation showed significantly higher
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FIGURE 3: DSC-MRI for identification of IDH mutation status in GBM. Six sets of representative FLAIR and corresponding rCBV images
from IDH1/2 mutant and wild-type GBM. Histogram analysis demonstrates that IDH1/2 mutant tumors have substantially lower rCBV value
than the wild-type. Reproduce with permission from Kickingereder et al. [60].

K", indicating that MGMT methylation may be involved
in glioma-associated angiogenesis characterized by high
endothelial permeability vasculatures. Although promising,
very few studies reported the relationship between MGMT
status and PW-MRI parameters. Relevant studies need to be
extended to large-sample trials and great efforts are essential
to provide a deeper insight into the underlying mechanism of
the correlation between imaging features and MGMT status.

4.2.4. Chromosome 1p/19q Codeletion. The unbalanced trans-
location between chromosome arm 1p and 19q results in loss
of heterozygosity (LOH) [105, 106]. The 1p/19q codeletion is
a typical characteristic in 40%-90% of oligodendroglioma
[107]. Oligodendrogliomas harboring 1p/19q codeletion are
associated with higher sensitivity to chemoradiotherapy and
prolonged survival than those with intact 1p/19q alleles, irres-
pective of the tumor grade [108, 109]. Noninvasive identifica-
tion of this genetic profile is of prominent benefit for progno-
sis prediction and improved treatment strategies.

Jenkinson et al. [110] reported that rCBV was associated
with 1p/19q genotype of oligodendroglioma using ROI-based
analysis. Higher rCBV was suggestive of intact 1p/19q alleles
and shorter PFS and OS following vincristine chemotherapy
but not predictive of chemosensitivity, indicating that rCBV
seemed merely a prognostic biomarker in oligodendroglioma
with different 1p/19q genotypes. The histogram analysis of
rCBV maps could identify low grade oligodendroglial tumor
without 1p/19q LOH with high interobserver agreement, with

100% sensitivity and 91% specificity [42]. Combined use of
multiparameters from different imaging techniques may
improve the discriminative performance in preoperative
genetic profiling. High rCBV is associated with angiogenesis
and increased mitotic activity. In a recent study by Chawla
et al. [111], rCBV,,, was used for guiding the selection of
optimal 'H-MRS voxels. The incorporation of rCBV . and
metabolite ratios provided improved diagnostic accuracy in
distinguishing 1p/19q genotypic profile of oligodendrogli-
oma.

Above-mentioned studies demonstrate that PW-MRI
parameters hold great potential implications for reflecting
glioma-associated molecular characteristics. However, given
the intrinsic limitations of PW-MRI imaging technique, the
physiologic description or significance of perfusion param-
eters is intricate at molecular level and is difficult to reca-
pitulate a certain molecule/gene characterization. For exam-
ple, EGFR amplification and mutation can result in the over-
expression of various downstream effector molecules such
as VEGE interleukin-18, and angiopoietin-like 4 to make syn-
ergic effect on tumor neovascularization, consequently alter-
ing the vascular structure and function [112-114]. Therefore,
perfusion parameters are the comprehensive embodiment of
multiple molecule characteristics of glioma indeed. Multi-
modal and multiparametric imaging based on radiomics and
imaging genomics could be a foreground strategy to narrow
the gap between imaging features and gene status. Large-scale
prospective studies are warranted before being translated into
clinical routine.
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4.3. Differentiation of Gliomas from Other Brain Tumors. The
therapeutics and prognosis of different CNS tumors are of
extreme disparity. Preoperative differentiation of gliomas
from other brain tumors is important for preoperative stag-
ing, intraoperative management, and postoperative treat-
ment. Conventional MRI cannot provide pathophysiological
information for identifying glioma, solitary brain metastasis
(MET), and primary central nervous system lymphoma
(PCNSL), due to their similar imaging performance such
as space-occupying and enhancing patterns [115]. Perfusion
MRI techniques can delineate the characteristics of tumor
vascularity and quantifying vascular perfusion and perme-
ability. They have shown satisfactory efficacy to differentiate
glioma from other intracranial tumors (Table 4).

4.3.1. Solitary Brain Metastasis. GBM and metastatic brain
tumor are the two most common malignant intracranial
tumors representing similar imaging appearances and enha-
ncing patterns on conventional MRI [124], whereas therapeu-
tic decisions and prognosis are substantially different. Accu-
rate differentiation of the two distinct entities is of great
importance for clinical management. The morphology and
functional status of tumor vasculature differ greatly between
the two types of tumors. GBM is characterized by increased
perfusion and heterogeneous BBB disruption with microvas-
cular morphology and permeability varying from relatively
normal to increased [125]. The tumor margin represents vaso-
genic edema with infiltrative tumor cells along with perivas-
cular spaces [126]. In contrast, the absence of BBB compo-
nents in brain metastasis often results in relatively low perfu-
sion and uniformly increased capillary permeability through-
out the tumor, causing pure vasogenic edema without infil-
trative tumor cells or abundant angiogenesis [126, 127]. DCE-
MRI and DSC-MRI can provide physiological information
which is unavailable on conventional MRI to settle the
diagnostic dilemma.

DSC-MRI could differentiate subtle differences of vascu-
lar perfusion. Higher rCBV . in the peritumoral region and
higher PSR were present in HGG compared with metastasis
(Figure 4(a)) [116-118, 128]. Similarly, DCE-MRI can also
identify the two malignancies. Although there is no difference
for K™ and V, between GBM and melanoma metastasis,
hypovascular metastasis could be differentiated from GBM
using logarithmic slope of the wash-out phase and AUC
[123]. Zhao et al. [52] found that V, and IAUC in the tumor
parenchyma and K" in peritumoral area could discrim-
inate HGG from solitary metastasis (Figure 4(a)). All the
parameters in LGG, HGG, and metastasis were lower, inter-
mediate, and higher, respectively.

Although PW-MRI provides valuable information for
antidiastole between gliomas and solitary brain metastases,
it is undeniable that the threshold of indexes for diagnosis
varies among the studies because of different origin of
metastases except for various imaging acquisitions. More
importantly, DCE-MRI is weak in differentiating GBM and
highly vascular brain metastasis such as melanoma metastasis
on account of their similar vascular function. DWI-derived
ADC value could be an alternative and complementary

1

imaging biomarker to differentiate the two tumor entities
[129].

4.3.2. Primary Central Nervous System Lymphoma (PCNSL).
PCNSL is a rare neoplasm constituting up to 6% of intracra-
nial malignant tumors [130]. The diffusely infiltrative pattern
of PCNSL resembles the infiltrative behavior of gliomas
[131]. PCNSL is also known to have greatly destroyed ves-
sel architecture and lack abundant neovascularization, thus
demonstrating relatively low blood perfusion and increased
vascular permeability [132]. The medical staging, surgical
planning, and therapeutic decisions between PCNSL and
HGG are completely different. Despite having some charac-
teristics on conventional MRI, differentiation of the imaging
appearances of PCNSL from those of HGG is difficult or
even impractical [133, 134]. Preoperative differentiation of
HGG from PCNSL using advanced imaging techniques is of
great clinical significance. PW-MRI has gained an important
clinical role for differentiation of GBM from PCNSL.

Higher rCBV and lower PSR were suggestive of GBM
(Figure 4(b)) [120,135-138]. Despite the consistent results, the
cut-off values of rCBV and PSR were considerably variable
among different studies [118-120]. It seems to indicate that
these indexes not only reflect the pathophysiologic features
but also are influenced by different imaging protocols and
acquisitions. rCBV with leakage correction is regarded to
own improved accuracy. However, Toh et al. [119] found
that uncorrected rCBV seemed to have better diagnostic
performance than corrected rCBV in differentiating PCNSL
from GBM. This may be partly explained by the greater
restoration of CBV in PCNSL because of its higher vascular
permeability, leading to decreased CBV differences between
the two tumors. Similar results were observed by Nakajima
et al. [137]. Thus, it is more rational and reliable to evaluate
the vascular permeability for differentiation. As expected,
PCNSL demonstrated significantly higher K"**", K,, and Kep
than GBM due to their severe vascular leakage [52, 119, 137],
and K" had far superior diagnostic performance than K,
[119, 121] (Figure 4(b)). Furthermore, integration of advanced
MRI techniques has been explored to improve the diagnostic
performance by various studies [122, 139, 140]. Kickingereder
et al. [122] demonstrated that combined evaluation of mean
ADC, mean rCBYV, and presence of intratumoral susceptibil-
ity signals (ITSS) improved the probability for differentiating
PCNSL from atypical GBM. The integrated multiparametric
assessment correctly predicted histologic results in 95% of
PCNSL and 96% of atypical GBM. However, one recent study
showed that relative V}, from DCE-MRI did not outperform
ADC alone, or in combination for diagnostic accuracy [141].
Despite the fact that more prospective studies are necessary
to confirm these findings, PW-MRI may be helpful to
support presumed diagnosis of GBM marked by higher blood
perfusion and decreased permeability.

4.4. Treatment Response Assessment. The current standard of
care for GBM is concomitant and adjuvant chemoradiother-
apy following maximum safe surgical resection. The treat-
ment options are influenced by various factors and need to be
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Figure 4: DSC-MRI (a) and DCE-MRI (b) for differentiation of GBM, PCNSL, and metastasis. rCBV maps demonstrate different
characteristic features in the three distinct entities, with significantly higher rCBV value of GBM compared with metastasis and PCNSL.
The K" value of GBM is significantly lower than metastasis and PCNSL. Reproduce with permission from Mangla et al. [118], Xing et al.

[120], Zhao et al. [52], and Kickingereder et al. [121].

timely adjusted at different stages of care. Accurate treatment
response assessment is greatly important to clinical decision
making and personalized medicine. Macdonald Criteria is
based on treatment response assessment via evaluation of the
contrast-enhancing areas on MRI [142]. This criterion has
critical limitation as it only focuses on the contrast-enhanced
component of the tumor. With the recognition of the impor-
tance of nonenhancing region when monitoring therapeutic
response, the nonenhancing region of the tumor is taken into
account in updated guidelines for Response Assessment in
Neuro-Oncology (RANO) [143, 144]. Yet, the morphologic
features underlying complicated treatment response (such as
pseudoprogression, pseudoresponse, and radiation reaction),
tumor progression, recurrent lesion, and detection of nonen-
hancing region with conventional MRI are insufficient to fully
evaluate therapy response [145]. Perfusion MRI techniques
offering vascular functional information have demonstrated
their powerful capacity to help characterize these treatment-
related imaging changes.

4.4.1. Pseudoprogression. Approximately up to 50% of glioma
patients treated with chemoradiotherapy can develop tran-
sient new areas of increasing contrast enhancement or edema,
termed pseudoprogression (PsP), which is easily confounded
with true progressive disease (PD) [146]. PsP is typically rec-
ognized at the follow-up MRI examinations obtained within
the first 3 months after chemoradiotherapy. It is characterized
by increased capillary permeability with edema and reduced

overall vessel perfusion, considered to be induced by chemo-
radiotherapy-related vascular damage/inflammation [147].
This reaction is often clinically asymptomatic and can resolve
spontaneously. PsP has been found to be associated with
increased survival, possibly because of more active inflamma-
tory response and increased probability of MGMT promoter
methylation in this population [147,148]. Failure to accurately
identify PsP would lead to needless surgical intervention, pre-
mature termination of an effective treatment, or redundant
chemotherapeutics [149]. DCE-MRI and DSC-MRI have
been widely proposed to differentiate PsP from PD (Table 5).

PD demonstrated higher rCBV and lower PSR, while PsP
exhibited decreased rCBV and rPH [145, 150-152, 158, 159]
(Figure 5(a)). Considering the significant tumor heterogene-
ity and series changes of chemoradiation-induced vascular
architectures, rCBV_.,, from ROI-based method is subjec-
tive and insufficient for delineating the exhaustive tumor
characteristics. Percent changes of skewness and kurtosis on
nCBYV histograms were effective in predicting early treatment
response, and the histographic pattern of nCBV demon-
strated the best independent predictive efficacy [153]. Tsien et
al. [154] developed parametric response map (PRM), a voxel-
wise analytic approach, for quantifying treatment-associated
hemodynamic alterations in HGG. Paradoxically, they found
that decreased PRM, gy at week 3 after chemoradiotherapy
was associated with true progression. One possible explana-
tion is that the parameters obtained at different time points
only reflect the vascular characteristics of a specific stage.
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FIGURE 5: Discrimination of PsP from PD using DSC-MRI and DCE-MRI. (a) Contrast-enhanced TIWI of GBM treated with temozolomide
demonstrates increased contrast enhancement suspicious for both PsP (top row) and PD (bottom row). Corresponding rCBV maps show low
perfusion in PsP and high perfusion in PD; (b) K" maps demonstrate decreased K"™*™ value in PsP (top row) compared with PD (bottom
row). Reproduce with permission from Shin et al. [158] and Thomas et al. [161].

The decreased rCBV may actually be attributed to the higher
BBB permeability at tumor progressive stage and the nonuse
of leakage correction. Ferumoxytol is a nanosized blood
pool agent requiring no contrast agent leakage correction.
rCBV, .., using ferumoxytol has been found to be superior
to that of gadoteridol for differentiation of PsP from tumor
progression [155, 160].

DSC-MRI has intrinsic sensitivity to susceptibility arti-
fact, commonly caused by posttreatment hemorrhage and
calcification [11]. Therefore, DCE-MRI has advantages over
DSC-MRI for differentiating PsP from PD. Variations of
K" V. and V,, are effective diagnostic indicators [157, 161]
(Figure 5(b)). However, these quantitative parameters are
inevitably affected by various methodological factors, such as
parameter coupling, AIF measurement, and model fitting
instability [162]. Semiquantitative parameters, while not
physiologic, can be easily obtained and have also been inves-
tigated for treatment response assessment. The maximum
slope of initial enhancement and final area under the time-
signal intensity curve ratio (AUCR) could differentiate PsP
from early tumor progression in GBM patients [156, 163].
Suh et al. [156] showed that the mean AUCR at a higher
curve (mAUCRy) and the 50th cumulative AUCR histogram
parameter (AUCR;,) were the best and the most specific
independent predictor of PsP, respectively.

While a number of studies have employed PW-MRI to
discriminate PsP from PD in GBM, cut-oft values of param-
eters with specificity and sensitivity across institutions are
somewhat different even not comparable because of small
sample size, as well as lack of standardization of imaging
protocols and accordant inclusive criterion of individuals.
Accuracy and reproducibility of perfusion parameters are

inevitably affected by technical aspects (e.g., leakage correc-
tion, types of GBCAs, and PK model fitting) and parameter
analysis (e.g., ROI-based/histogram analysis and parametric
response map). The inclusion of patients who have already
received corticoid therapy may bias the results of parameters
evaluation. In addition, the initial and end timing for imaging
monitoring, types, and doses of drug are inconsistent. There-
fore, more well-controlled studies and coregistration of PW-
MRI with corresponding histological mapping are urgently
needed for reconfirmation of these results.

4.4.2. Pseudoresponse. Antiangiogenic therapies (such as
bevacizumab and cediranib) could induce early decrease in
contrast enhancement and edema on conventional MRI due
to the restored BBB integrity and reduced endothelial per-
meability, resulting in prolonged progress-free survival (PFS)
but modest benefit of overall survival (OS) [164, 165]. This
phenomenon is termed as pseudoresponse. The explanation
may be attributed to transient vascular normalization [166,
167], rather than true improvement in tumor status. Rebound
enhancement and edema appeared when a “drug holiday” is
encountered, arising from the reversal of vascular normal-
ization. And pseudoresponse could occur when restarting
antiangiogenic therapy [168]. Conventional MRI fails to
prognosticate and stratify OS of patients treated with antian-
giogenic therapy. Although the degree of decreased contrast
enhancement to these therapies after one day of treatment
is associated well with survival, progressive enhancement is
predictive of shorter OS. However, patients with improved
enhancement corresponding to those with stable enhance-
ment have no survival benefits because of pseudoresponse
[167, 169]. It is of great importance to stratify early therapy
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response and predict treatment success after antiangiogenic
therapy initiation.

PW-MRI may help differentiate true response from PD by
predicting OS. A multicenter trial investigated the efficacy of
standardized rCBV (sRCBV) and mean tumor rCBV normal-
ized to white matter (nRCBV) for predicting OS in recurrent
GBM after treatment initiation [170]. The nRCBV at week
2 and sRCBV at week 16 significantly decreased in patients
surviving at least one year (OS-1). Increased rCBV values
indicated significantly shorter OS, being a good prognostic
marker for OS-1. Similarly, reduced K™ and V, could
be predictive of pharmacodynamic effect as early as one
day following antiangiogenic treatment initiation [171-173].
Sorensen et al. [167] described vascular normalization index
incorporating K™, CBV, and circulating collagen IV. The
index was a potential early candidate predictor for PFS and
OS. Similarly, by comparing the baseline and 1-day posttreat-
ment value of DSC-MRI indexes using leakage correction
method, Emblem et al. [174] showed a novel vascular nor-
malization parameter combining CBV and apparent transfer
constant (K,) to predict PFS and OS in GBM patients after
anti-VEGF treatment.

Due to the diverse imaging protocols applied, the use of
standardized parameters (SRCBV) and model-free param-
eters (IAUC) could be alternative to reduce variability
and improve accuracy and reproducibility when comparing
results from multiple institutions or using different acquisi-
tion strategies.

4.4.3. Nonenhancing Regions of Tumor. The current standard
response assessment of glioma is lined with the RANO
criteria, especially including the abnormal hyperintensity of
T2/FLAIR in nonenhancing regions [143]. However, vaso-
genic edema and gliosis in nonenhancing regions always con-
found the changes related to antiangiogenic treatment, which
may mislead the response assessment. Differentiation of
vasogenic edema from infiltrative tumors is of great signifi-
cance. In a study by Artzi et al. [175] the nonenhancing hyper-
intense area on FLAIR was classified into vasogenic edema
and infiltrative tumor area based on multiple MRI param-
eters. The former was characterized by decreased rCBY,
rCBF and increased FLAIR values, and the latter increased
perfusion. All perfusion parameters were correlated with PFS
after bevacizumab therapy. Subsequently, they segmented
GBM into three components using DSC-MRI and DCE-
MRI [176], which include enhancing permeable area, the
nonenhancing hypoperfusion area representing vasogenic
edema, and the nonenhancing hyperperfusion area repre-
senting infiltrative tumor. Alternatively, DSC-MRI data with
FL temporal principal component analysis in GBM could
help discriminate peritumoral regions infiltrated with tumor
cells from surrounding normal tissues [177]. Higher rCBV in
nonenhancing tumor region was also suggestive of shorter
OS and served as an independent prognostic marker [178].
Recently, Akbari et al. [179] reported multiparametric imag-
ing pattern analysis including rCBV to delineate surrounding
infiltrative tumor margin. The visually imperceptible imaging
patterns on conventional MRI were revealed. They could
delineate the extent of infiltrative tumor and predict the

Contrast Media & Molecular Imaging

location of tumor recurrence. Integrating perfusion MRI
and conventional MRI could hence improve the therapeutic
response assessment and pave the way for personalized
treatment strategies.

4.4.4. Tumor Recurrence and Late Radiation Necrosis. Radia-
tion-induced brain injuries are mainly classified into three
stages based on the occurrence time: acute (during radiation),
subacute (within 3 months after radiation), and late (months
to years after radiation). The acute and early subacute
injuries are mainly caused by vasodilation, BBB disruption,
and edema, usually present as relatively unchanged MR
appearance [147]. The late radiation necrosis (RN) frequently
occurred in GBM patients within 3 to 12 months after
radiotherapy [180]. Due to the fibrinous necrosis triggered by
ischemia, vasodilation and endothelial damage, late RN can
present as brain edema, new lesions, or progressive contrast
enhancement on conventional MRI, which is indistinguish-
able from that of recurrent tumor lesions [181]. Accurate
differentiation of tumor recurrence from treatment-related
changes is clinically important for follow-up patient manage-
ment strategies. Perfusion MRI has shown great capability to
differentiate the two entities (Table 6).

Several studies demonstrated that recurrent glioma
owned higher rCBV and lower PSR compared with radiation
injury [152, 182, 183]. However, there is an overlap of DSC-
MRI parameters between RN and recurrent tumor. It presents
as variable cut-oft values among institutions, leading to
inconsistent sensitivity and specificity [182, 183]. As the vas-
cular permeability in recurrent HGG differs from RN, Bisdas
et al. [184] showed increased K™ and TAUC indicating
recurrent lesions and decreased values for radiation injury
(Figure 6(a)), whereas V, and K, held no differentiating
value. Shin et al. [158] compared the utility of DCE-MRI and
DSC-MRLI. It showed no significant difference for differen-
tiating performance between these two imaging modalities
using single index. However, when combination of relative
K" (pK™) and relative IAUC (rIAUC) was used, DCE-
MRI seemed to outweigh DSC-MRI. CBV measured by DCE-
MRI using deconvolution technique could offer equivalent
or improved evaluation compared to fluorodeoxyglucose-
positron emission tomography (FDG-PET) for differentia-
tion [185]. The CBV threshold of 2.0 ml/100 g enabled the
detection of regressing lesions with 100% sensitivity and
100% specificity. In addition, combined assessment using
diffusion tensor imaging (ADC, mean parallel eigenvalues,
and mean perpendicular eigenvalues) and DSC-MRI (rCBV)
characteristics showed improved differentiation, particularly
in the lesions with increased rCBV and decreased ADC values
[186] (Figure 6(b)).

Nonstandardized imaging acquisition renders a wide
range of sensitivity and specificity using PW-MRIL. Some
other factors such as different inclusive criteria, tumor grades
and radiation timing, and dose may also disturb the diagnos-
tic accuracy of perfusion parameters. Moreover, histopatho-
logical validation lacks in published studies. Further work on
significant improvement of imaging method and correlation
between the imaging and histologic features is warranted to
draw a definite conclusion.
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Contrast-enhanced
TIWI

rCBV map

FIGURE 6: Discrimination of RN from recurrent GBM using DCE-MRI (a) and DSC-MRI (b). Contrast-enhanced TIWI demonstrates similar
contrast enhancement in recurrent glioblastoma (top row) and RN (bottom row). Corresponding rCBV and K"*™ maps show significant
difference between these two entities, with higher K" and rCBV for recurrent tumor (i top row) but low for RN (bottom row). Reproduce

with permission from Bisdas et al. [184] and Masch et al. [186].

4.5. Predicting Prognosis. Initial patient stratification is clini-
cally important for optimized and individualized therapeutic
regimens. Multiple efforts are ongoing for survival prediction
in glioma patients. Glioma is characterized by abnormal
vasculature with active angiogenesis. Perfusion MRI tech-
niques providing physiologic information have been widely
investigated for noninvasive prognosis prediction in glioma
patients.

rCBV has demonstrated predictive value for gliomas
regardless of treatment [150, 178, 187-189]. Elevated rCBV in
untreated glioma was associated with OS [178]. It is because
that tumor angiogenesis induces increased CBV, resulting in
aggressive tumor growth. High rCBV (>1.75) indicated more
rapid and earlier progression [188]. Increased rCBV could
predict the malignant transformation of LGGs as early as 12
months in advance compared to apparent contrast enhance-
ment on Tl-weighted imaging [187]. In addition, rCBV of the
nonenhancing region in GBM was associated with OS and
PES and could provide unique prognostic information inde-
pendent of the morphologic, genomic, and clinical features
(190]. DCE-MRI parameters (K™ and V) also appear to be
prognostic markers [191, 192]. Very recently, Kim et al. [193]
evaluated the prognostic value of T2 high signal intensity
lesions without enhancement in GBM using DCE-MRI. They
found that the percentile of K™, V, and V, could iden-

tify early disease progression. The 99th percentile of K"*"
holds potential as a candidate prognostic imaging biomarker.

Combination of K™ and rCBV seems to be more power-
ful than single parameter for survival prediction of newly
diagnosed GBM patients [194]. Burth et al. [195] found that
clinical parameters (age, sex, resection extent, and Karnofsky
performance scale) outperformed MRI parameters (K",
rCBYV, and ADC) for predicting prognosis of GBM patients.
It suggests that physiologic MRI parameters may be auxiliary
indexes for patient prognostication but offer additional values
to clinical data for improved prognosis prediction.

5. Current Challenges

Contrast-enhanced PW-MRI techniques are becoming inc-
reasingly common approaches for clinical applications in
gliomas. They facilitate better understanding of a variety of
hemodynamic pathologies and the underlying mechanisms
of tumor neovascularization. However, there are still some
unresolved issues when implementing PW-MRI in contem-
porary radiology practice. We noted that perfusion param-
eters are inevitably influenced by various hemodynamic
factors, types of GBCAs, and total acquisition time. For
example, K" is determined by blood flow and PS. In high
leakage condition or low-molecular-weight contrast agents
administrated, K" depends almost entirely on blood flow.
Increased acquisition time with low temporal resolution can
also disturb the accuracy of K™, resulting in underestimate.
Furthermore, glioma vasculatures describe the anatomical
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and functional abnormalities within tumors in spatiality. The
frequently used hotspot analysis pays too little attention to the
tumor heterogeneity, which cannot realistically delineate the
tumor panorama. Heterogeneity analysis such as histogram
and texture methods can provide more detailed information
and benefit over simple “average value” measurement [196,
197]. In addition, several studies focused on optimizing the
postprocessing analysis [198-200]. Standardization of rCBV
combined with leakage correction may be better than nor-
malized rCBV for eliminating the subjective ROI selection,
helping to reduce variability of quantitative comparison
across studies [200].

Perfusion parameters are affected by a complex inter-
action of factors. In multicenter clinical trials, even minor
differences of benchmarked standards may result in sig-
nificant changes in perfusion parameters. These variables
include (1) MR scanners (e.g., field strength, gradient sys-
tem and manufacturer, and pulse sequences); (2) imaging
acquisition protocols (e.g., acquisition parameters, spatial
and temporal resolution, and coverage); (3) GBCAs admin-
istration (e.g., preload, dynamic bolus, injection dose and
rate, and timing); and (4) postprocessing methods (e.g., mod-
eling selection, leakage correction, AIF determination, and
ROI/histogram/voxel-wise analysis). These integrated factors
across institutions hinder the accuracy and reproducibility of
results and thus impede further development of these two
powerful imaging modalities into routine clinical setting. A
recent joint meeting provided consensus recommendations
for a standardized Brain Tumor Imaging Protocol (BTIP)
for multicenter studies in GBM [201]. The Clinical Practice
Committee of the American Society of Functional Neurora-
diology (ASFNR) proposed recommendations for DSC-MRI
acquisition protocols and validation of imaging biomarkers
[31]. And, the Quantitative Imaging Biomarkers Alliance of
the Radiological Society of North American (QIBA of RSNA)
established an updated technical guideline for DCE-MRI data
acquisition and analysis, in which K" and TAUC were
recommended as standard endpoints [202, 203]. These pro-
posed recommendations will significantly reduce variability
and allow interpretation of imaging results and also provide
benchmarks for comparison to further improvements and
innovations.

6. Conclusion and Perspectives

Despite some clinical limitations and unsolved issues, the
current evidence available demonstrated the tremendous
foreground of PW-MRI for improving glioma management.
Imaging protocols standardization is urgently demanded for
accelerating the translation of PW-MRI into routine clinical
applications. For DSC-MRI, sustained and focused efforts
on exploiting novel imaging sequences, contrast agents,
and better algorithm to maximally eliminate T1 and T2"-
dominant extravasation effects, reduce susceptibility arti-
facts, and enhance imaging signal-noise ratio will better
augment parameters accuracy and repeatability in glioma
settings. For DCE-MRI, modeling more exquisite PK models
based on real transvascular transport process and calculating
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more physiologic indicators will comprehensively recapitu-
late the tumor vascular microenvironment and elaborate a
certain specific tumor biology process. With the rapid devel-
opment of imaging genomics and the latest 2016 WHO
classification criteria for CNS tumors, ongoing research is
needed to illuminate and define the molecular mechanism or
genotype underlying the variation of perfusion parameters.
Establishing the correlation between glioma genetic charac-
teristics and PW-MRI features will provide deep insight into
tumor angiogenesis processes and vascular heterogeneity, sig-
nificantly improving our understanding of tumor biology and
finally allowing more precise diagnosis and individual ther-
apeutics. Meanwhile, multimodal and parametric imaging
strategies incorporating anatomy, permeability, perfusion,
and other characterizations of tumor biology like cellularity
from DWI and metabolism from MRS consist of big data
archive to delineate cancer landscape. This will tremendously
push forward the development of glioma management and
theranostics.
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ECs: Endothelial cells
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K'ens: The volume transfer constant between blood
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V. The volume of EES per unit volume of tissue

Kep: Rate constant between EES and blood plasma

Vi Fractional plasma volume per unit of tissue
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SE-EPI:  Spin echo-echo planar imaging

GRE-EPI:  Gradient echo-echo planar imaging

SI-TCC:  Signal intensity-time course curve

CC-TCC: Contrast concentration-time course curve

CBV: Cerebral blood volume

CBE: Cerebral blood flow

PH: Peak height

MTT: Mean transit time
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rCBV: Relative CBV
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ROL Region of interest

PS: Permeability surface-area product

CNS: Central nervous system

IDH: Isocitrate dehydrogenase

EGFR: Epidermal growth factor receptor

EGFR,,: EGEFR amplification

MGMT: Methyl-guanine methyltransferase

a-KG: a-Ketoglutarate
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'H -MRS: Water suppressed proton-magnetic
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ADC: Apparent diffusion coeflicient

EGFRVIII: EGFR variant I1I

CAR-T: Chimeric antigen receptor T-cell

rPH: Relative peak height

RT-PCR: Reverse-transcription polymerase chain
reaction

LOH: Loss of heterozygosity

MET: Metastasis

PCNSL: Primary central nervous system
lymphoma

ITSS: Intratumoral susceptibility signals

RANO: Response Assessment in Neuro-Oncology

PRM: Parametric response map

AUCR: The initial and final area under the
time-signal intensity curves ratio

mAUCRy: The mean AUCR at a higher curve

AUCR;: The 50th cumulative AUCR histogram
parameter

nRCBV: rCBV normalized to white matter

sRCBV: Standardized rCBV

PsP: Pseudoprogression

PD: Progressive disease

RN: Radiation necrosis

Sp%: Percentage of specificity
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K,: Apparent transfer constant

PFS: Progress-free survival

0OS: Overall survival

rCBF: Relative cerebral blood flow
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