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Citizen science for monitoring 
seasonal‑scale beach erosion 
and behaviour with aerial drones
Nicolas Pucino1*, David M. Kennedy2, Rafael C. Carvalho1, Blake Allan1 & 
Daniel Ierodiaconou1

Sandy beaches are highly dynamic systems which provide natural protection from the impact of waves 
to coastal communities. With coastal erosion hazards predicted to increase globally, data to inform 
decision making on erosion mitigation and adaptation strategies is becoming critical. However, multi-
temporal topographic data over wide geographical areas is expensive and time consuming and often 
requires highly trained professionals. In this study we demonstrate a novel approach combining citizen 
science with low-cost unmanned aerial vehicles that reliably produces survey-grade morphological 
data able to model sediment dynamics from event to annual scales. The high-energy wave-dominated 
coast of south-eastern Australia, in Victoria, is used as a field laboratory to test the reliability of our 
protocol and develop a set of indices to study multi-scale erosional dynamics. We found that citizen 
scientists provide unbiased data as accurate as professional researchers. We then observed that 
open-ocean beaches mobilise three times as much sediment as embayed beaches and distinguished 
between slowed and accelerated erosional modes. The data was also able to assess the efficiency of 
sand nourishment for shore protection. Our citizen science protocol provides high quality monitoring 
capabilities, which although subject to important legislative preconditions, it is applicable in other 
parts of the world and transferable to other landscape systems where the understanding of sediment 
dynamics is critical for management of natural or anthropogenic processes.

The coastal zone accommodates 40% of today’s population1,2, with densities much greater than non-coastal land 
especially in low income countries3. Sandy beaches are extremely dynamic morphological sub-systems of the 
coastal zone, offering, amongst others, coastal protection and erosion control eco-services4,5. However, global 
studies have reported that one-quarter of the world’s sandy beaches are eroding at rates exceeding 0.5 m/year6, 
contributing to a global coastal land loss of 20,000 km2 in the last 35 years7, posing an increasing threat to coastal 
populations and economies. Beach erosion is not uniformly distributed along the coast, but concentrated on 
discrete areas6,7 often referred as erosional hotspots8,9. These hotspots are spatiotemporally variable ranging from 
days to decades and from hundreds to thousands of meters10. As a consequence, erosion mitigation strategies 
(beach nourishment, rockwalls, sand fencing) tend to be highly localized11. In these areas, the measurement of 
high-temporal volumetric variations is critical for discerning short-term beach behaviour and recovery from 
erosional events12. This allows coastal planners to target intervention measures and evaluate their efficiency in 
protecting backshore assets from current and projected increase of erosion hazard13–15.

Nowadays, beach topographic data is obtainable using a variety of ground-based (graded rods16, surveyor-
grade global positioning systems or total stations17, terrestrial LiDAR18) or aerial-based (airborne LiDAR19, tradi-
tional photogrammetry20,21, unmanned aerial vehicles22,23) approaches. While ground-based surveying methods 
are labour intensive and of limited spatial coverage, airborne LiDAR or traditional photogrammetric approaches 
are cost-prohibitive for monitoring purposes, especially in developing countries.

In the last decade unmanned aerial vehicles combined with structure-from-motion multi-view stereo algo-
rithms (UAV-SfM hereinafter) have emerged in environmental research24–26 as the best compromise in terms 
of costs, precision, reproducibility and simplicity, particularly for repetitive beach topographic surveys27–29. In 
coastal areas, multi-rotor UAVs are frequently used30 and their flight time is typically between 20 and 40 min per 
battery, which corresponds to a flight coverage of 5–30 × 103 m2, depending on flight altitude24. As a consequence, 
time and budget constraints have so far restricted UAV-SfM surveys to professional researchers or commercial 
operators at a few representative sites, with limited revisit times27,31–35.
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However, recent technological advances in low-cost UAVs and automated flight and positioning solutions, 
coupled with regulatory changes, provide new opportunities for implementing citizen science to expand the scale 
of monitoring programs36,37. Citizen science is the process of creating knowledge by engaging non-professional 
volunteers in scientific research36. Citizen scientists have allowed large-scale scientific experiments to make 
substantial contributions to science for hundreds of years38. Yet, errors and bias in large and longitudinal citizens 
science datasets are often poorly understood39. This uncertainty, being difficult to quantify, can compromise data 
quality or limit the integration of multiple datasets into a single coherent analysis. As a result scepticism exists 
among professional scientists about the quality of citizen scientists’ data40,41.

In this study, we propose a novel and cost-effective approach to monitor sandy beaches sediment dynam-
ics at a spatiotemporal resolution previously unachievable, through citizen science with low-cost multi-rotors 
UAVs. We test our method on the high-energy temperate coast of Victoria, Australia, where more than 100 
citizen scientists collected 83 aerial datasets in ten previously identified erosional hotspots over a 1.3 year period, 
approximately every 6 weeks. With this unique dataset, we first evaluate citizen scientists’ data quality and bias, 
then we quantify and compare short-term volumetric and profile dynamics on both open-ocean and embayed 
beaches. We propose a novel set of indices that capture multi-scale landform dynamics, using topography time-
series alone. This allows us to evaluate beach nourishment efficiency in protecting backshore infrastructure. 
Lastly, we discuss the potential and limitations that our approach has not only for coastal management but also 
in other scientific disciplines.

Results
Citizen scientist’s data accuracy and bias.  Accuracy and bias are objective task-independent metrics of 
data quality42. For an independent and realistic vertical accuracy assessment of the digital surface models (DSM), 
the error metrics should be calculated with independent checkpoints that haven’t been used during the digital 
photogrammetric procedure (Supplementary Method “Citizen Scientists, UAV surveys and photogrammetric 
details”) and are distributed across the landscape, along representative transects or landform elements27,43. Two 
benchmark surveys were performed in Warrnambool to evaluate the DSM vertical accuracy resulting from the 
citizen science protocol under operational (2018-11-29) and worst-case (2019-12-11) scenarios (Supplementary 
Method “Independent checkpoint surveys”). The checkpoints in both surveys show a very good linear match of 
modelled elevation (both R2 above 0.99) with slightly larger deviations observed at higher elevations (Fig. 1a).

The Q–Q plots and statistical tests indicate non-normal distribution of absolute errors (Δh, Fig. 1b), which 
confirms that the normalised median absolute deviation (nmad) is the most appropriate robust estimator for 
vertical accuracy assessment of photogrammetric datasets44. The nmad values are 0.048 and 0.054 m AHD 
(Australian height datum) for the operational and worst scenarios respectively. The mean errors indicate that 
the 2018 checkpoints survey slightly underestimated the height values (− 0.044 m AHD), the 2019 checkpoints 
survey overestimated (0.128 m AHD) it, which is observable from the two error distributions (Fig. 1c). Both 
surveys show good precisions (standard deviation) of 0.077 m AHD and 0.063 m AHD respectively. Supplemen-
tary Table S3 also reports root mean squared error (rmse) and mean absolute error for comparison purposes. 
Casella et al. 45 recently demonstrated that approximately 0.05 m rmse is consistently found under different 
surveying set-ups (varying cameras and flight altitudes), which corroborates a median rmse of 0.059 m found 
in the relevant literature (Supplementary Table S2). The authors state this systematic error could be due to the 
vertical sinking of the surveying pole on various sand types, therefore, 0.05 m rmse is a typical error in sandy 
beaches UAV-SfM studies.

As our operational scenario rmse (0.089 m AHD) is about 0.03 m higher than the literature median, we 
further explored systematic errors by mapping the spatial variability of checkpoints errors and smart ground 
control points (GCPs) (Supplementary Figs. S2, S3), finding that errors were generally higher with elevation, 
especially within foredune vegetation. We mitigated this systematic error by removing vegetation and apply-
ing specific limits of detection thresholds, which is a form of split data test46 used to obtain the expected DSMs 
vertical errors by computing the elevation difference between pre- and post- survey pairs over known stable 
areas (i.e. calibration areas22).

Bias in citizen science projects can be introduced by allowing individuals flexibility in how, when and where 
to collect data47. We reduced the risk of bias prior UAV operations by (1) assigning groups to fixed locations, 
(2) targeting low-tide for survey, (3) providing standardised protocols and training on simple to use highly 
automated equipment and (4) assisting citizen scientists at each sites for the first three flights. The principle 
issue is the location of the portable GCPs which can be affected by citizen scientists’ spatial effort bias31, lead-
ing to positional errors due to GPS signal blockage from foredunes, tall trees or buildings. As GCPs positional 
errors directly impact the point cloud georeferencing process (hence, the resultant DSM), we assessed whether 
significant (p = 0.05) differences exist in GCPs spatial dispersion (i.e. their two-dimensional spread across the 
surveyed area), their positional X, Y and Z variances and the images georeferencing accuracies (X, Y and Z rmse) 
reported by the photogrammetric software Pix4Dmapper (V4.3.31), between locations (Fig. 2).

The Kruskal–Wallis H test49 indicated that there are statistically significant differences (p = 0.05) in all posi-
tional GCPs variances (Fig. 2a) and in image georeferencing errors (Fig. 2b), between the different locations. 
This can be observed in the pairwise comparison heatmaps (Fig. 2c–e), where in the great majority of cases, 
statistically significant differences in X,Y and Z variances are found between any one location and at least four 
others. This is likely to be the cause of all locations having statistically significant differences in rms georefer-
encing errors compared to each other (Fig. 2f). Importantly, GCPs elevation precisions were outside acceptable 
variance (20 mm) 7% of the time (61 out 886), with only 9 cases (1%) exceeding 64 mm (outliers). Therefore, 
positional precision differences between locations are largely attributed to random errors during the GCPs 
position recording process and no citizen scientist’s bias can be ascertained. The same applies to the images 
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georeferencing errors. Their location-specific medians range from a minimum of 2 mm (Seaspray and Cowes) 
to a maximum of 15 mm (Warrnambool), which are of the same order of magnitude of the GCP positional 
precisions. As such, we cannot exclude the possibility that these differences are also due to random errors in the 
geolocation recording of the GCPs.

Regarding the GCPs two-dimensional spatial spreading (Supplementary Fig. S6), the Kruskal–Wallis H test 
showed that there are no statistically significant differences between locations (H = 11.12; p = 0.28, n = 78).

Additionally, to assess whether there are statistically significant differences between the end-products of 
our protocol across locations (i.e., the expected DSM error) and considering that more independent check-
point surveys were unavailable, we analysed limits of detection thresholds as indicators of ‘overall’ data quality 

Figure 1.   Independent checkpoints (ICP) analysis (n = 464) shows that citizen scientists’ digital surface models 
(DSM) vertical accuracy is 0.048 m using smart ground control points in the operational scenario (2018-11-29, 
in red, always implemented) or 0.054 m in the worst case scenario (2019-12-11, in blue) of post-survey manual 
georeferencing, demonstrating that citizen scientists acquire surveyor grade data of the same quality as academic 
researchers. (a) Comparison between modelled elevation from the DSM and ICP elevations showing very good 
linear agreement in both surveys. (b) Q–Q plots visually rejecting normality assumption of the absolute error 
(Δh) in both surveys, with Shapiro–Wilk (S–W) and D’Agostino–Pearson (A–P) normality tests reinforcing 
the non-normality (nN) visual observation at the 0.05 significance level. (c) Density histograms showing the 
skewing due to heavy tails in both surveys and the robustness of nmad to outliers. The root mean squared error 
(rmse) is also reported for comparison purposes.
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Figure 2.   Bias analysis for ground control points (GCPs) characteristics across all surveys. (a): horizontal (X 
and Y) and vertical (Z) GCPs coordinate variances obtained while recording their position during (n) surveys 
in each location; (b) Images georeferencing errors computed with the total images (img) in all locations; 
(c–f) pairwise significant (red) and non-significant (blue) differences across locations, resulting from the 
post hoc Dunn’s test48 (p = 0.05, adjusted using a step-down method with Bonferroni adjustments). Note that 
six photogrammetric or GCPs reports were not available for this analysis. Location codes: pfa = Port Fairy; 
wbl = Warrnambool; mar = Marengo; apo = Apollo Bay; prd = Pt. Roadk.; leo = St. Leo.; por = Portarlington; 
cow = Cowes; inv = Inverloch; sea = Seaspray.
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(Supplementary Method “Limit of detection analysis”). An example of limit of detection threshold derivation 
and error normality evaluation in Apollo Bay is shown in Supplementary Fig. S8. The Kruskal–Wallis H test 
found that no significant differences (H = 16.167, p = 0.063, n = 73) exist between each location specific threshold 
distributions at the 0.05 significance level.

State‑level volumetric monitoring of open‑ocean and embayed beaches.  Overall, 100,794 ± 243 
m3 of sand has been transferred off the beachfaces (net erosion) during the monitored period (from the first June 
2018 to the 29th August 2019) across the 10 locations (Fig. 3a, see Additional Method “Area of study” for more 
information). Swell-exposed open-ocean beaches displayed mean elevation changes (MEC) of greater ampli-
tudes than embayed beaches, which are situated along fetch-limited or sheltered coastlines. All the following 
observations are relative to the whole aforementioned monitoring period.

On average, the absolute MEC for open-ocean beaches (0.11 ±  < 0.01 m) is almost three times larger than 
for embayed ones (0.04 ±  < 0.01 m). During erosional phases (negative MEC in Fig. 3b), the average MEC is 
− 0.13 ±  < 0.01 and − 0.04 ±  < 0.01 m in open-ocean and embayed beaches respectively. Similarly, during recovery 
phases (positive MEC in Fig. 3b), the average MEC is + 0.09 ±  < 0.01 and + 0.04 ±  < 0.01 m on open-ocean and 
embayed beaches respectively. Post-erosion recovery times are highly variable, ranging from a few days (War-
rnambool) to approximately one year (Portarlington), while some locations never fully return to their initial 
state (Apollo Bay, Inverloch).

To model the monitored beachface dynamics and distinguish between erosional and depositional behavioural 
regimes, we used the residual beachface cluster dynamics index (r-BCD, Method, Fig. 3a). Therefore, a location 
r-BCD index is one single signed value that characterises the dominant behaviour that the beach in that location 
exhibited during the entire monitored period.

The open-ocean beaches of Port Fairy, Warrnambool, Marengo and Seaspray exhibit highly to slightly depo-
sitional regimes. Interestingly, Port Fairy and Seaspray r-BCDs indicated that both locations had a depositional 
behavioural regime during the monitoring period despite these locations experiencing net sediment losses 
of − 10,962 ± 66 m3 and − 7,517 ± 726 m3 respectively. In other words, their intra-annual cut and fill dynamics 
(Fig. 3b) are skewed toward net sediment gains. By contrast, Inverloch, Apollo Bay and Point Roadknight display 
highly, moderately and slightly erosional behavioural regimes which are corroborated by end-of-monitoring 
sediment losses of − 66,700 ± 909 m3, − 13,871 ± 2,286 m3 and − 2,159 ± 562 m3 respectively.

The embayed beaches of St. Leonards, Portarlington and Cowes are protected from the predominantly south-
westerly swell being located within Port Phillip and Western Port Bays. Despite Portarlington never fully recover-
ing from its first erosional event in the timeseries, its depositional behavioural regime indicates that it is more 
likely to accrete rather than erode. Conversely, Cowes displays a highly erosional behavioural regime despite 
never showing a negative sediment budget respective to the beginning of the monitoring.

Sediment dynamics highlight accelerated or slowed‑by‑intervention erosion in critical loca‑
tions.  Empirical beachface cluster dynamics indices (e-BCDs, Fig.  3c) measure the importance (absolute 
score) and main magnitude trend (score sign) of beachface erosional, recovery, depositional and vulnerability 
behaviours. We use e-BCDs to detect naturally accelerating and slowed-by-intervention erosional modalities in 
Inverloch and Apollo Bay respectively. The e-BCD indices are representative of the whole monitoring period 
and are intended to depict the main trend of beachface sediment dynamics that occurred during the observation 
time.

From the 22th August 2018 to the 30th July 2019, the monitored area in Inverloch displayed an erosional score 
(+ 1.37) that is greater than its high recovery score (− 0.93), indicating that erosional hotspots mostly continued 
to erode the beachface rather than recover. The combination of positive erosional and negative recovery indices 
imply that through time, an increased amount of sediment has been eroded, while recovering areas tended to 
accumulate less sediment than was previously lost. The depositional score (− 0.60) is substantially lower than 
the vulnerability (+ 2.28), indicating that depositional areas became erosional, rather than continuing to accrete. 
These signs suggest that depositional hotspots gained less sediment through time and, once starting to erode, 
the volumes lost were typically higher than what had previously been deposited.

These dynamics indicate an accelerated beachface depletion, which is confirmed by Inverloch mean elevation 
change time series (Fig. 3b). An accelerating erosional phase started in mid-October 2018 and lasted until the 
end of the monitoring, totalling a net loss of 48 ± 0.06 m3/m, at a rate of 0.14 m3/m eroded daily, beach wide.

In Apollo Bay from the first June 2018 to the 25th July 2019, the beachface dynamics have been impacted 
by a weekly sand nourishment program that deposited 16,050 m3 of sand in the intertidal and foredune areas 
(focussing from 800 m north, zone D in Fig. 4), from the 19th June to the 4th September 2018 and from the 
22nd May to the 21st June 2019.

The e-BCDs analysis in Apollo Bay indicates that erosional hotspots tend to turn depositional by a slight 
margin (− 1.10 erosional and − 1.14 recovery scores), in which case a lower amount of sediment is deposited 
compared to what had been previously lost (negative depositional sign). On the other hand, depositional hotspots 
tend to turn erosional by a greater margin (− 1.85 vulnerability and + 0.73 depositional scores), in which case the 
sediment lost is usually less than what was previously deposited. Overall, Apollo Bay e-BCD indices indicate a 
slight erosional predisposition (driven by the vulnerability index), precariously reduced by “sediment-sparing” 
mechanisms (negative signs of erosional and vulnerability e-BCDs) that slows the beachface sediment loss. In 
fact, despite being supported by sand nourishment, Apollo Bay sediment volumes never returned to its initial 
state at the commencement of the surveys. This indicates that the management intervention in Apollo Bay is likely 
to be slowing beachface erosion during the monitoring period, hence, we observed a slowed-by-intervention 
erosional mode.
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Figure 3.   Citizen scientists allow for the quantification of beach volumetric and hotspot dynamics in Victoria, 
Australia. (a) Locations and behavioural regimes (residual beachface cluster dynamics index, r-BCDs) of citizen 
science monitoring sites. Classes obtained using Jenk’s natural breaks classification50. (b) Mean elevation change (MEC, 
in meters) across open-ocean (marked with “o”) and embayed (marked with “e”) sandy beaches. The solid line shows 
the inter-surveys MEC while the dashed line indicates its cumulative value since the beginning of monitoring. Red 
and blue areas highlight periods of negative and positive sediment budgets relative to the beginning of the monitoring, 
respectively. Beachface recovery time can be estimated as the time the cumulative MEC takes to reach zero after 
erosional events. Please note the different scale for Inverloch for display purposes. (c) Empirical beachface cluster 
dynamics (e-BCDs) indices showing site erosional, depositional, recovery and vulnerability behaviours during the 
monitoring period. Signs indicate increasing (+) and diminishing (−) magnitude trends.
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Site level case study: assessing beach nourishment efficiency in Apollo Bay.  To demonstrate the 
scalability of citizen scientists’ data, we down-scaled behavioural regime, morphological and volumetric analysis 
from the location to the single transect level, assessing the efficiency of a beach nourishment project in protect-
ing backshore economical assets.

The Great Ocean Road is a scenic coastal drive that contributes up to 6.1% of revenue to the regional 
economy51. It attracts more than 5,000,000 visitors annually, and Apollo Bay is the second most popular visitor 
destination51. The spatial distribution of transect-specific r-BCDs indicates three distinctive zones where behav-
ioural regimes are mostly mixed (M), erosional (E) or depositional (D) (Fig. 4).

Zone M represents a mixed-zone extending from immediately in the lee of the harbour to 180 m alongshore. 
Generally, erosion during the monitoring period occurred on the lower intertidal beach and occasionally on the 
incipient dune, leaving the vegetated foredune intact. Swash-generated berms (Fig. 5a) occur throughout zone 
M and are typical landforms of low tide terrace type beaches52.

Zone E is predominantly erosional, despite this area being reported to have experienced accretion since 1956 
due to the construction of the harbour and its shadowing effect from incident waves53. Here, the erosion in the 
intertidal zone is mostly uninterrupted throughout the surveys, leading to a gradual transgression of the erosional 
scarps, eventually causing up to 6 m of incipient dune recession (Fig. 5b). The most erosional transects are located 
500 m alongshore, within 40 m from the main pedestrian beach access (Fig. 4 inset map c). Further to the north, 
the magnitude of beachface lowering gradually diminishes to finally become net accretion accompanied with 
foredune recession at 800–840 m alongshore, entering zone D.

Zone D has been reported to be receding since mid-198053 and is also where the majority of nourishment has 
occurred during the monitoring. Notwithstanding, zone D comprises two “erosional enclaves” (Fig. 4 inset maps 
a,b) which signal local erosional hotspots of major concern. Moreover, despite an informal rockwall effectively 
protects the foredune between 1,100 and 1,200 m alongshore, foredune recession has been widespread between 
June and July 2018 causing sections of a footpath to collapse (1,500 m alongshore, Fig. 5c).

The different behaviours in zones M, E and D can be observed by adopting a beach-wide perspective, while 
considering the volumes of sand introduced by the nourishment program. From the first of June 2018 to the 
21th June 2018 (Supplementary Data ‘site_level_change”), particularly stormy weather eroded 9,055 ± 76 m3 
of sand from the beachface, slightly alleviated by post-storm sand renourishment of 1,320 m3. From the 21th 
June to 26th July 2018 (Fig. 6a) the beachface recovery was assisted by 4,875 m3 of renourished sand, taking 
the alongshore volumetric change in this period only slightly below zero (− 0.20 ± 0.09 m3/m). The majority of 
deposition took place in zone D where renourishment focussed, while zone E kept losing sediment, especially 
from the intertidal beach (Fig. 5b). This pattern is accentuated in the next period (from 26th July 2018 to 24th 
September 2018, Fig. 6b) when 9,165 m3 of sand was supplied to the beach by managers mostly northward from 
the 800 m mark (Fig. 4).

During these renourishment periods, zones E and D behaviours are noticeably inverse to each other, whereas 
zone M generally follows the behaviour of the adjacent zone E. When renourishment is suspended, zones E and 
D are essentially undifferentiated, whereas zone M is remarkably dissimilar to the rest of the beach, especially 
during the spring to summer transition (from the 24th September 2018 to 11th December 2018, Fig. 6c,d).

Overall, after initial recession of the foredune, the intertidal zone showed a net accretion by the end of the 
monitoring, indicating that the depositional behaviour of zone D is precariously tied to the nourishment opera-
tions. In fact, during nourishment periods, the alongshore distribution of volumetric change clearly sets zone D 
apart, being it the only accreting zone amongst overall beach erosion (Fig. 6a,b). Conversely, when nourishment 
is suspended, zones E and D erode or accrete conjointly, while zone M shows a noticeably divergent behaviour 
(Fig. 6c,d).

Therefore, in the absence of nourishment, we would expect the whole monitored area in Apollo Bay to be 
erosional, corroborating our previous argument about the slowed-by-intervention erosional mode of Apollo 
Bay. We can conclude that the current sand nourishment strategy is likely to be locally decelerating a recent 
beach wide erosive trend, but it is not sufficient to maintain or fully recover subaerial beach sediment budget 
in the long-term. Additionally, mostly depositional areas seem to be accreting the intertidal beach, while the 
foredune is still receding.

Discussion
The vertical accuracy of the citizen scientists’ protocol (rmse = 0.089 m) obtained in an operational scenario 
is 0.03 m less accurate than the median accuracy reported across the relevant UAV-SfM beach monitoring lit-
erature (median rmse = 0.059 m). However, using robust statistical estimators which put less weights on error 
outliers (focussed around foredune vegetation) led to an error estimation of 0.048 m, slightly better than what 
others obtained in similar works27,54 (Supplementary Discussion “Citizen scientists’ accuracy”). Our bias analysis 
indicates that citizen scientists’ ground control points (GCPs) spatial arrangement was consistent through time 
and space. GCPs positional precision and image georeferencing errors have significant inter-groups differences 
which cannot be attributed to citizen scientists as errors are below the reported GCPs precision. As no signifi-
cant differences of limit of detection distributions between locations have been found, we can assert that limited 
bias impacted the quality of data during the full data creation pipeline, with our protocol. Therefore, as citizen 
scientists’ data is of comparable accuracy and bias to professionally acquired UAV-SfM datasets, it is considered 
of high-quality36.
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Figure 4.   Behavioural regimes at transect level showing the success of sand nourishment. Apollo Bay transect-
specific behavioural regimes (r-BCDs) highlights a marked transition from mostly erosional behavioural 
regimes (180 to 840 m alongshore from the harbour, zone E) to mostly depositional ones (beyond 840 m 
alongshore, zone D), which corresponds to the areas where most of the nourishment sand has been deposited 
and reworked by the northward longshore drift. Dashed transects mark the distance alongshore displayed next 
to them. Please note this map displays behavioural regime classes as derived from transect-specific r-BCD index 
(displayed in parenthesis) using Jenk’s natural breaks classification50 and do not represents elevation changes. 
The insets a, b and c represent a medium erosional area due to a storm water drain in zone D, a medium 
erosional area despite nourishment in zone D and the main beach entrance and highly erosive area in zone 
E respectively. Only transects that consistently had a minimum of 10 valid points for at least 7 of the 9 time 
periods available in Apollo Bay have been retained. The minimum period threshold (7) and minimum valid 
points (10) per transect have been chosen after a sensitivity analysis (Supplementary Discussion “Apollo Bay 
behavioural regime sensitivity analysis”). Dots signal transects that changed sign (from erosional to depositional 
or vice versa) as a consequence of the step minimum threshold and are considered less reliable. Map created 
with QGIS 3.4.0 (Madeira) using WGS84 coordinate system.
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Figure 5.   Representative cross-shore profiles in zones M, E and D exemplify distinct morphological dynamics. 
(a–c) Show before (solid line) and after (dashed line) elevation profiles in zones M, E, D, respectively. The time 
period considered is displayed between the profiles and the mean elevation change (MEC) histogram plots, 
which show the transect net beachface lowering (red) or raising (blue) of each period, considering limits of 
detection. The distinction from zone M and E could be attributed to timing and magnitude of depositional 
events, as the erosional ones show relatively similar mean elevation change.
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Figure 6.   Selected periods in Apollo Bay when volumetric change best express behavioural regime zones M, E and D. Apollo 
Bay inter-surveys alongshore variation of altimetric change (top parts, in meters from Australian height datum, AHD) 
and net volumetric change (bottom parts, in cubic meters per meter of beach length, m3/m). Only sampling points in the 
beachface which have been classified as sand and are not within limit of detections are retained. Grey areas represent either 
swash, no-sand or areas beyond the landward baseline (0 m cross-shore). White areas are changes within limit of detections 
thresholds. Cross-shore distances refer to the distance of each observation from the landward baseline, which is defined 
by either 2–3 m beyond the vegetation line or by human infrastructures (e.g. footpaths). Alongshore distances refer to the 
location of each transect from Apollo Bay Harbour, while the bold M, E and D letters partition the behavioural regime zoning.
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Besides monitoring beachfaces volumetric changes, our approach temporal resolution allowed us to conceive 
the residual beachface cluster dynamics index (r-BCD) to model hotspots behavioural regimes in the absence of 
precise wave data, but based on topography alone. The fundamental assumption of r-BCDs is tied to the classic 
morphodynamic feedback loops of process and morphology55. As r-BCDs are derived from high frequency eleva-
tion changes, they incorporate the morphological variability that landforms experienced due to the locally active 
geomorphic processes. Citizen scientists allow r-BCDs to be used over multiple locations at site and transect 
scales, providing government authorities a rapid and powerful beach dynamics assessment that managers can 
use to prioritise erosion hazard mitigation expenditure. This approach becomes especially favourable in situa-
tions where high quality nearshore waves and currents data is lacking and can complement other cost-effective 
remote sensing approaches, such as satellite-based coastal monitoring.

Multispectral imagery acquired by optical satellites, such as Sentinel-2 or Landsat, allows the use of two-
dimensional shoreline landward/seaward shifts as erosion/deposition proxy for large scale erosion monitoring. 
However, shorelines derived from space are difficult to validate in-situ, consequently, only a few studies used 
ancillary beach topographic data or coincident shoreline GPS surveys to test the accuracy of the extracted 
shorelines56–59. Moreover, sandy beaches topographic features such as beachface slope60, intertidal extent61 and 
elevation62,63 at continental-scale have also started to be derived from space-based observations. These methods 
need beach topographic data at higher resolution to be validated against. Our study demonstrates that citizen 
science UAV-SfM is in an advantageous position to provide the high-quality and reliable 3D data that is essential 
for ground truthing space-based observations.

Alternatively, the closest comparable topographic monitoring methods are repetitive airborne light detection 
and ranging (LiDAR) surveys or fixed coastal imaging stations (ARGUS). Coastal LiDAR is often used for quan-
tifying wide-scale shoreline spatial variability of single-event post-storm erosion19,64,65, however, high operational 
costs have traditionally limited its temporal resolution within geoscientific research66, often missing the fine 
seasonal dynamics that our approach provides. ARGUS stations on the other hand can typically provide hourly 
shoreline images of key sites, which are then processed to obtain shoreline elevations and later used to monitor 
erosion/accretion patterns in a relatively cost effective way. However, ARGUS-derived shoreline elevations are 
computed with a variety of empirical, semi-empirical and complete numerical models, depending on the qual-
ity and amount of site-specific field data (topography, tide and offshore wave measurements) used to calibrate 
the shorelines. As a consequence, vertical accuracies (in the range of 0.1 to 0.4 m) and methodologies are often 
site-specific17, possibly limiting the integration of multi-site observations into one integrative study. With our 
approach, 10 UAVs and 100 smart ground control points were used to repeatedly survey (7 to 10 times) 10 key 
locations at a total cost of US$250,590 (including equipment, online data processing and hosting and the time 
to train and support a group of 3–4 citizen scientists per location). This equals to US$3,020 per survey (n = 83), 
which is expected to be approximately US$1,290 per survey in the next years, as groups become established 
and less training and support hours are budgeted (Supplementary Discussion “Monetary costs’’). Therefore, we 
consider our approach to be cost-effective as high-quality, high temporal and very high spatial resolution beach 
topographic monitoring is consistently achieved at 10 high-priority locations (site scale), which are representa-
tive of the Victorian coast (regional scale).

The cost-effectiveness and geographical coverage offered by our approach has important implications in 
contexts of erosion mitigation in vulnerable communities, such as those in small island developing states (SIDS). 
In SIDS, a lack of quality coastal data at relevant spatiotemporal scale has been recognised67,68 and their eco-
nomic dependence to tourism and coastal eco-services within a changing climate context put their subsistence 
at risk69. Our approach would allow SIDS communities to reliably monitor coastal erosion in sensitive areas 
cost-effectively, producing continuous survey-grade topographic data over wide and often dispersed geographic 
areas, with some limitations.

Without environmental context information (especially wave climate), our methods reliably depict seasonal 
beach change trends but cannot explain the geomorphic forcings responsible for those changes. In fact, the 
magnitude of changes could differ depending on how far in time from major storms (not investigated here) the 
surveys are. Although we demonstrated the reliability and usefulness of our approach, coastal processes data is 
needed to formulate more causative sand dynamics and geomorphological interpretations, which would allow 
more accurate sand dynamics to be evaluated. This is the next logical step and focus of future studies.

Additionally, as opposed to other coastal citizen science projects where anyone can take part as a citizen 
scientist70,71, in our approach, legislation plays a central role in defining who can be a pilot, directly challenging 
its feasibility and reproducibility around the world (Supplementary Discussion “Role of legislation”). In general, 
the key legislation requirements that need to be met in order to perform and replicate our protocol are that (1) 
UAV flight are permitted over interest areas, (2) automatic (waypoint-based) UAV flight mode is allowed and (3) 
no mandatory UAV flight license is required for research applications using sub-2 kg airframes.

In Australia, scientific operations with UAVs below 2 kg of weight are part of the “sub-2 kg excluded category”, 
which allows individuals older than 16 years of age to fly small UAVs (1) within standard operating conditions, 
(2) without the need of a remote pilot licence and (3) without a mandatory risk assessment to be approved. 
Elsewhere, various UAV laws can challenge, impede or allow UAV citizen science applications. In SIDS, UAV 
regulations range from total ban (Cuba and Barbados) to “Australia-like” approach (Papua New Guinea), with 
important variants that limit the feasibility (heavy air-traffic and multiple authorities permit systems in Maldives) 
or replicability (automatic flight procedures not allowed in the Dominican Republic) of our protocol. On the 
other hand, from the 31st December 2020 the European Union Aviation Safety Agency (EASA) UAVs regulation 
will allow UAV citizen science projects to take place in 32 European countries (25 of which are coastal), thanks 
to a regulation very similar to the one adopted in Australia. Despite the combination of a greatest number of 
coastal no-fly zones (due to controlled aerospace from the military, proximity to aerodromes or natural pro-
tected areas) with crowded beaches can discourage UAV citizen science coastal applications in EASA countries, 
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our protocol can also be applied to other environments or scientific disciplines where accurate cost-effective 
topographic monitoring is needed. In fact, multi-temporal UAV-SfM has already been used by professional 
researchers around the world for monitoring erosion in mudflats72, badlands73, agricultural watersheds74, rivers75 
and open-pit mines76. Additionally, UAV-SfM topographic data has also been used for non-erosion purposes to 
monitor both natural processes, such as landslide dynamics77, sediment retention dams filling78, crops growth 
variability79, forest trees growth80, snow depth81 and glaciers melting dynamics82, or anthropogenic processes, 
such as landfills growth rates83, environmental contamination84 or hiking trails conditions85.

In conclusion, our results not only demonstrated the value of citizen scientist’s high-quality and unbiased 
data for multi-scale sandy beaches sediment dynamics monitoring, but can also encourage further application 
of citizen science with drones into all the aforementioned scientific applications. This not only would greatly 
expand the spatiotemporal scale of scientific experiments, but also democratise scientific engagement access, 
enhance global environmental awareness and transform citizen scientists into key stakeholders within an adap-
tive environmental management system.

Methods
In this work, we used machine learning and limit of detection analysis to detect and reliably quantify subaerial 
beachface dynamics due to sand-only and above detection limits changes. Spatial autocorrelation analysis is 
also employed at the site-level to remove spatial outliers and detect statistically significant (p = 0.05) hotspot of 
changes to better characterise sediment dynamics through time. This information is then explored with novel 
indices (empirical and residual beachface cluster dynamics indices, e-BCD and r-BCD respectively) based on 
discrete Markov chain models, at the site and transect scales.

Virtual network of elevation profiles.  A virtual network of digital transects was created for every site 
and kept fixed during the analysis. Transects are uniformly distributed alongshore with a spacing of 20 m, nor-
mal to the shoreline, with an across-shore length of 80–150 m, depending on the beach width discernible from 
the earliest orthophoto available (Supplementary Fig. S1). We extracted synchronous elevation and colour infor-
mation along each transect, with a 0.1 m sampling step, in all 10 sites and surveying dates (8 to 10 surveys per 
site), resulting in a total of 6,809,610 points on 999 transects.

Swash zones were excluded from the analysis. We only retained points which were classified as sand and 
within the subaerial beachface, which is defined as the area from the upper swash to 2–3 m landward of the 
vegetation line or where anthropogenic barriers are present.

Machine learning sand classification.  We used machine learning to restrict the analyses to those 
extracted points that are sand, removing the ones representing beach wrack or coastal vegetation that would 
otherwise skew our volumetric and behavioural computations. For each survey, we performed the Silhou-
ette Analysis86 to find a sub-optimal number of clusters (k) to partition the points with KMeans clustering 
algorithm87, using spectral (red, green, and blue bands) and topographic (slope, curvature and distance from 
the transect seaward origin) features. By iteratively run KMeans (parameters: initial cluster centres selected 
with KMeans ++, 300 iterations per run, inertial tolerance of 0.001, pre-computed distances) increasing k by 1 
at every iteration (up to k = 20), we were able to compute the overall silhouette coefficient associated at every k. 
We chose as sub-optimal k the value after which a greater k would not substantially reduce the overall clustering 
performance. Once the sub-optimal k has been found for every dataset and KMeans run using it, clusters were 
displayed in QGIS (version 3.2.3) and visually labelled as sand or no-sand (Supplementary Fig. S1). No-sand 
points across each transects have been replaced by an interpolated value using a linear model. Minor manual 
editing was required to correct sand points erroneously assigned to a non-sand cluster. This mainly occurred in 
very dark shadows cast by tall trees along coastal walking paths or right below near vertical foredune.

Limit of detection thresholds.  The morphological method88 has been used in a variety of environments, 
including sandy beaches23,29,31,89. It involves the subtraction of two digital surface models (DSMs) of the same 
location at different times to obtain a DSM of Difference (DoD), which represents surface change over a shared 
elevation datum for each period. Our transects are subject to the same error estimation techniques used for 
DoD analysis. Therefore, in order to account for areas of apparent elevation change (Δh) due to inherent DSM 
uncertainties, we computed limit of detection thresholds for each DoD (n = 78). Changes within these thresholds 
are considered uncertain and their contribution is expressed as error margins when altimetric or volumetric 
change is reported.

To obtain limit of detections, we firstly identified invariant objects as close as possible to the beachface in each 
site (paths, roofs, rockwall, anthropogenic structures), which we used as calibration zones. Then, we manually 
digitised vector lines across calibration zones and created a checkpoint every 0.1 m along those lines, resulting 
in 23,660 check points. Finally, we measured the checkpoints Δh in each DoD and obtained the threshold com-
puting the normalised median absolute deviation45 as robust statistical estimator.

Volumetric computations and mean elevation change.  The exclusion of points within the swash 
extent and variations in UAV survey coverage resulted in irregularities in the number of transects and valid 
points per survey (see Additional Data). Therefore, we compared subaerial changes across sites and time using 
the mean elevation change (MEC), as follows:
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where n is the total number of valid elevation points, zpre and zpost are the elevation above Australian height datum 
(equivalent to mean sea level) values occurring at the same location in both pre and post surveys.

Additionally, when no inter-site comparisons were involved, we approximated the alongshore volumetric 
change (in m3/m) as:

where xswash and xlimit are the upper swash and landward limit respectively. Plus or minus ( ±) error intervals 
for both MEC and volumetric change estimates represent the uncertainty related to changes within the limit of 
detection thresholds.

Hotspot analysis: local Moran’s I.  In order to obtain spatially explicit and statistically significant hot-
spots of erosion or deposition at the site level, the Local Moran-I90 ( Ii ) statistics with false discovery rate correc-
tion was computed for every inter-surveys elevation difference (Δh) points. The Ii statistics is defined as:

where zi is the value of the variable at location i with µz and σ 2 the respective mean and variance, as calculated 
on the n number of observations; wij is the spatial weight between the observation at location i and j and zj is the 
value of the variable at all locations different than i90,91.

A binary row-standardised spatial weight matrix conceptualises spatial regions (neighbourhoods) within a 
35 m of radial Euclidian distance from each focal point, obtaining the weights wij for all points in relation to each 
other. The 35 m distance band has been chosen to include in the neighbourhood sand points from the two adja-
cent transects. We used 999 random permutations to compute the reference distribution and obtain a minimum 
pseudo p-value of 0.05 (95% level of confidence), which we used to discard non-significant Ii.

In this analysis, only significant High-High (areas where high values are surrounded by high values) and 
Low-Low (areas where low values are surrounded by low values) hotspots have been retained, discarding spatial 
outliers.

Significant hotspots of Δh have been classified into five magnitude classes, using the Jenks-Caspall optimised-
natural breaks method92, based on the totality of absolute Δh values (Table 1). Weights of each magnitude class 
are used to represent the severity of change during the e-BCD sign computations and are obtained deriving the 
median absolute values for each Δh magnitude class.

Empirical and residual beachface cluster dynamic indices.  The empirical and residual beachface 
cluster dynamics indices (e-BCD and r-BCD respectively) are purposefully designed metrics to leverage the very 
high spatiotemporal resolutions and three-dimensionality of our data for studying subaerial beach landform 
dynamics (morphodynamics). With elevation change (Δh) magnitude classes as transient states (Table 1), we 
used finite discrete Markov chain models to compute first-order stochastic transition matrices and steady-state 
probability vectors, used to derive e- and r-BCD respectively.

Following Lambin (1994), a discrete Markov process can be represented as:

where st is a column vector, s = (s1, . . . , sm) having as elements the valid points (within the beachface and beyond 
LoD sand-only Δh points) in one of the m states (i.e. Δh magnitude classes) at time t  . M is a m×m matrix hold-
ing the first-order (from t  to t + 1 ) transition probabilities pij , derived as:

Mean elevation change(MEC) =
1

n

n
∑

z=0

(zpost − zpre),

Along .beachface change =
xlimit

∫
xswash

(

zpost − zpre
)

dx,

LocalMoran′sIndex(Ii) =
zi − µz

σ 2

n
∑

j=1,j �=i

[

wij

(

zj − µz

)]

,

st+1 = Mst ,

Table 1.   Elevation change classes used as transient states for BCD indices computation. Undefined classes 
are so named due to being close to global LoD (0.05 m AHD), even if elevation changes within  ±0.05 m AHD 
have been removed. AHD Australian height datum, approximatly mean sea level.

Magnitude Weight

Erosional Depositional

Limits (m AHD) Label Limits (m AHD) Label

Undefined 0.10 0 to − 0.15 ue 0 to 0.15 ud

Small 0.20  − 0.15 to − 0.27 se 0.15 to 0.27 sd

Moderate 0.34  − 0.27 to − 0.44 me 0.27 to 0.44 and

High 0.54  − 0.44 to − 0.72 he 0.44 to 0.72 hd

Extreme 0.90 Below − 0.72 ee above 0.72 ed
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where nij is the number of transitions from an initial state i to state j and m is the number of states (i.e. elevation 
change classes in Table 1) in which each observation can be. The matrix M is row-standardised, so that the sum 
of transition probabilities from a given state is always equal to one.

The e-BCDs divide the first-order transition matrix M into four sub-matrices (Supplementary Fig. S7), each 
representing site-level erosional, depositional, recovery and vulnerability behaviours of the subaerial beach over 
the monitoring period. The e-BCDs indices are computed for every sub-matrices ( sub ) as follows:

where ws′ij is a transformed weight that reflects the magnitude trend of such transition, which is defined as:

where wsi and wsj are the weights (Table 1) related to the initial i  and transitioning j states respectively. The 
brackets “[ ]” indicate that the ws′ij transformation is implemented separately to determine the e-BCD sign only. 
The e-BCD absolute score computation does not implement this multiplication, capturing the process impor-
tance only. Any state to either no-hotspot or no-data transition probabilities are not included in the e-BCD 
interpretation.

The r-BCDs are computed from the steady-state probability vector.
The steady-state of a Markov chain returns a unique probability vector representing the states limiting prob-

ability distribution, which, once attained, one additional (or more) time steps will return the exact same initial 
states probabilities, signalling a situation of dynamic equilibrium has been achieved. This is represented as:

where π  is the vector containing the limiting probabilities πj for each j state in s . This vector π is derived by 
solving a system of m equations with m unknowns, each equation represented as:

given that:

The steady-state can be seen in a descriptive way as representing the states hierarchy, which is unique to the 
system being modelled93, from which we derive the stochastic tendency the system had towards depositional 
or erosional states at the end of monitoring. We interpret this tendency as the most likely behavioural regime 
the system was subjected to, given the drivers of change and boundary conditions that influenced its evolution 
during the monitoring period.

The computation of the r-BCDs is as follows:

where ss is the steady-state probability distribution of one location, πie are the limiting probabilities of the 
erosional classes (ue, se, me, he, ee) and πid the limiting probabilities of the depositional classes (ud, sd, md, 
hd and ed) (Table 1). The r-BCDs are not signed as no transitions are represented in the resultant vector. Any 
state to either no-hotspot or no-data transition probabilities are not included in the r-BCD interpretation. The 
multiplication by 100 is performed for index readability purposes.

We computed r-BCDs using erosional/depositional hotspots at the site level only (Fig. 3a), while at the 
transect level (Fig. 4), r-BCDs are computed with the full Δh cross-shore profiles. This has been done due to the 
relatively narrow beach width which resulted in a limited number of valid sand-only observations for hotspot 
analysis.

Data availability
More than 220 3D datasets are already freely accessible to anyone via a user friendly web-platform to share 
and communicate information, promote coastal awareness, build knowledge and further increase the impact 
of our efforts. Link https​://www.prope​llera​ero.com/. Credentials email: vcmp@deakin.edu.au; Password: 
propellervcmp.

pij =
nij

∑m
k=1 nik

,
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Code availability
The code used throughout this study is freely available here: Draft code: https​://githu​b.com/npuci​no/sandp​iper/
tree/maste​r. Except for digital photogrammetric procedure, all the analysis has been automated using open-
source Python 3 packages, especially PySAL 2.0.093 for LISA and Markov Chain computations, Scikit-Learn94 
for machine learning classification and Seaborn and Matplotlib95 for quantitative data visualisation. Maps and 
some minor geoprocessing tasks have been accomplished using QGIS versions 3.0.2 (Madeira) and 3.2.3 (Bonn).
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