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Obesity is a prevalent predisposing factor to non-alcoholic fatty liver disease (NAFLD), the

most common chronic liver disease in the developed world. NAFLD spectrum of disease

involves progression from steatosis (NAFL), to steatohepatitis (NASH), cirrhosis and

hepatocellular carcinoma (HCC). Despite clinical and public health significance, current

FDA approved therapies for NAFLD are lacking in part due to insufficient understanding

of pathogenic mechanisms driving disease progression. The etiology of NAFLD is

multifactorial. The induction of both systemic and tissue inflammation consequential

of skewed immune cell metabolic state, polarization, tissue recruitment, and activation

are central to NAFLD progression. Here, we review the current understanding of the

above stated cellular and molecular processes that govern macrophage contribution to

NAFLD pathogenesis and how adipose tissue and liver crosstalk modulates macrophage

function. Notably, the manipulation of such events may lead to the development of new

therapies for NAFLD.
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INTRODUCTION

The unabated obesity pandemic is directly linked with the incidence of non-alcoholic fatty
liver disease (NAFLD). NAFLD afflicts ∼35% of obese individuals worldwide (1, 2). Current
epidemiological estimates suggest that NAFLD will soon surpass chronic hepatitis C infection as
the leading cause of liver transplantation. Given the lack of effective therapies for NAFLD, costs of
care and management of associated symptoms come with a considerable economic burden (3).

NAFLD spectrum of disease progresses from non-alcoholic fatty liver (NAFL) or hepatic
steatosis, to non-alcoholic steatohepatitis (NASH), to cirrhosis and hepatocellular carcinoma
(HCC). Steatosis is characterized by increased macrovesicular and microvesicular lipid droplet
accumulation that occurs in more than 5% of hepatocytes (1, 2, 4). Approximately 25% of
individuals afflicted with NAFL progress to NASH (1). NASH is characterized by hepatocellular
ballooning, in part due to increased immune cell infiltration, activation, and proinflammatory
cytokine production (4–6). These mechanisms coupled with others such as adipokine production
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and activation of endoplasmic reticulum stress and reactive
oxygen species (ROS) promote hepatic fibrosis and progression
to cirrhosis and HCC (7, 8).

The contribution of various immune cells in hepatic
inflammation and the mechanisms that govern their migration to
the liver, polarization, and inflammatory capabilities, in NAFLD
progression represent an intense area of investigation. Here,
we specifically focus on the contribution of macrophages to
NAFLD pathogenesis. We review the landscape of underlying
mechanisms that regulate macrophage effector functions and
macrophage interplay with other immune cells/tissues/organs
which collectively contribute to NAFLD progression.

CURRENT KNOWLEDGE AND
DISCUSSION

Immune Responses in NAFLD
Dysregulated immune responsiveness is central to the
development and progression of NAFLD (9, 10). In obesity,
both liver resident (e.g., Kupffer cells, [KC], hepatic stellate
cells, [HSC], hepatocytes) and infiltrating immune cells (e.g.,
neutrophils, dendritic cells [DC], natural killer [NK] cells,
NKT cells, blood monocytes, T cells, B cells, and macrophages)
contribute to NAFLD development and progression via
systemic and tissue inflammatory mediator production (e.g.,
interleukin [IL]-17A, IL-6, tumor necrosis factor [TNF],
IL-1β) (5, 11). Obesity-associated intestinal permeability
and augmented circulating levels of inflammatory ligands
(e.g., lipopolysaccharide [LPS]) (12) via activation of pattern
recognition receptors (PRRs) on hematopoietic and non-
hematopoietic cells activate multiple proinflammatory cascades
that in unison promote liver injury (13). The contribution
of PRRs to NAFLD progression has been reviewed in detail
elsewhere (14, 15). PRR signaling in macrophages, also
contributes to activation of adaptive immune responses, with
macrophage-T cell interplay having a particularly important
role in NAFLD progression (16). In this setting, activated,
liver infiltrating T cells produce proinflammatory cytokines
and amplify macrophage polarization and activation to in turn
propagate overall hepatic inflammation, hepatocellular damage
and hepatocyte release of damage associated molecular patterns
(DAMPs). Cumulatively these processes fuel and support a
chronic inflammatory state in the liver that is a hallmark of
NAFLD progression. Due to the extent of various immune
processes in NAFLD, here we selectively focus on the role of
macrophage-mediated inflammation and their contribution to
NAFLD pathology. The contribution of other immune cells (e.g.,
T cells, neutrophils, DC, NK cells, and NKT cells) and cytokines
in NAFLD has been discussed elsewhere (14, 17, 18).

Macrophage Recruitment to the Liver
Liver infiltration by inflammatory monocytes/macrophages is
associated with NAFLD progression (19). Increased release
of free fatty acid (FFA) by white adipose tissue (WAT)
augments triglyceride synthesis and storage in hepatocytes
and induces hepatocyte release of inflammatory mediators
including proinflammatory cytokines andmacrophage recruiting

chemokines (e.g., CCL2, CXCL10) (20, 21). In addition to
hepatocytes, HSCs, myofibroblast and macrophages themselves
can also produce various chemokines (e.g., CCL2, CCL3, CCL4,
CCL5, CCL8, and CXCL10) to fuel increased macrophage
recruitment (22).

The contribution of hepatic macrophage recruitment to
NAFLD pathogenesis is supported in part by increased systemic
and hepatic chemokine levels in NAFLD progression in humans
(23). One of the most widely explored pathways of recruiting
inflammatory and fibrogenic monocytes to the injured liver is
the CCR2/CCL2 axis (24). Pharmacological inhibition of CCR2
and genetic deletion of CCL2 reduced liver steatosis in obese
mice (25–27). Additionally, use of CCR1-, CCR2-, CCR5-, and
CCR8-deficient mice or pharmacological inhibition of these
axes reduced hepatic macrophage infiltration, hepatic fibrosis,
and hepatocellular damage in experimental models of chronic
liver injury (28–32). Recent evidence also suggests that CXCR3-
deficient mice are protected from macrophage infiltration and
hepatocellular damage in obesity (33, 34). Further, CXCL10-
deficient mice exhibit reduced NAFL (34). Despite its promising
effects in animal models, targeting of the CCR2 axis in human
NALFD using Cenicriviroc (CVC) did not impact hepatic lobular
inflammation and only mildly improved fibrosis and decreased
circulating levels of sCD14 (a marker of monocyte activation)
(35). Characterization of the intrahepatic immune cells will
be required to elucidate the effects of CVC on immune cells,
monocyte and macrophage recruitment and fibrogenesis. The
results of such could give insight to observed difference of
effects of CVC on NAFLD progression between murine models
and humans.

Like chemokines, inflammatory cytokines can also alter
macrophage activation and tissue recruitment in NAFLD. For
example, the IL-17A axis impacts macrophage recruitment in the
liver (36), while IL-17RA depletion on macrophages ameliorates
NAFLD severity (37). However, as IL-17A can also activate liver
parenchymal cells to modulate macrophage recruitment. Thus,
detailed studies focused on the role of IL-17 family members,
their cognate receptors and cell specific expression in NAFLD
pathogenesis are needed. The overall role of the IL-17 axis in
NAFLD pathogenesis has been reviewed in detail elsewhere (18).

Macrophage Subsets
KCs reside in the anatomical areas that receive venous blood from
the gut including hepatic sinusoids, hepatic lymph nodes and
portal tract (38). Approximately 80% of the liver blood supply
comes from the gut via the portal vein (39). As such, KCs act
as key sentinels of the gut-liver interface. Under homeostatic
conditions, PRR signaling instructs KCs to govern liver
immunity by maintaining tolerance to harmless immunogens
and cellular debris while in parallel enabling them to mount a
response against pathogenic invaders via phagocytosis, cytokine
production and antigen presentation. Collectively, the adaptation
to latter events is central to preventing dissemination of microbes
into peripheral circulation (5, 39, 40). In obesity, increased
intestinal permeability, trafficking of bacteria into the gut lumen
and LPS sensing (2, 40, 41) fuel KC activation and alter their
function (42). In this context, activated KCs favor inflammatory
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responses that contribute to NAFLD pathogenesis (13). In vitro
treatment of KCs with FFAs (e.g., palmitate) promotes activation
and secretion of inflammatory cytokines (e.g., IL-6, TNF, IL-1β)
(43) while KC depletion in vivo protects from obesity-driven
hepatic steatosis (13).

Common bone marrow myeloid progenitors give rise to
granulocyte-macrophage progenitors (GMP) from which
monocytes are derived. Upon egression from the bone
marrow, and following hepatic inflammatory insult, circulating
monocytes traffic to the liver. Once in the liver, in response
to cytokines and various pathogen associated molecular
patterns (PAMPs)/DAMPs, monocytes activate unique
transcriptional profiles and differentiate into macrophages.
In response to IFNγ or PRR signaling, recruited monocytes
differentiate into “classically” activated macrophages that
produce proinflammatory cytokines (e.g., IL-6, TNF, IL-1β,
IL-12), drive liver recruitment of various immune cells and
enhance the overall hepatic inflammation (5, 13, 44). Conversely,
in response to either IL-4 or IL-13, tissue recruited monocytes
differentiate into “alternatively” activated macrophages that
produce anti-inflammatory and wound healing mediators
(e.g., IL-8, MCP-1, IL-10) (38, 45, 46). The overall balance of
“classically” and “alternatively” activated macrophages in the
liver regulates hepatic inflammation, liver scarring and fibrosis.
Targeting of inflammatory signaling pathways in macrophages
via deletion of JNK, IKKβ, or Toll-like receptor (TLR) 4 is
sufficient to reduce hepatic steatosis and inflammation (47–49).
A brief summary of the above discussed processes is depicted in
Figure 1.

Macrophages and Proinflammatory
Cytokine Production
Macrophage produced cytokines (e.g., IL-6, TNF, IL-1β)
can directly target hepatocytes and promote steatosis,
inflammation and hepatocellular damage (5). Systemic increase
of these proinflammatory cytokines positively correlates with
hepatocellular damage in humans and is recapitulated in NAFLD
experimental mouse models (50, 51).

IL-6 is a multifunctional cytokine that regulates immune
responses, acute phase reactions, hematopoiesis, and plays key
roles in inflammation, host defense and tissue injury (52, 53).
IL-6 stimulates hepatic lipogenesis (54), and is associated with
obesity (55), impaired insulin signaling (56, 57), and altered
insulin sensitivity by activating key steps in the insulin signaling
pathway (58). IL-6 is also a biomarker of insulin resistance
and cardiovascular diseases risk (50, 59, 60). In humans with
NASH, there is a positive correlation between IL-6 expression in
hepatocytes and the severity of NAFLD (61). IL-6-deficient mice
display a milder NAFLD severity and antibody mediated IL-6
receptor (IL-6R) neutralization improved liver damage in mice
fed methionine choline deficient (MCD) diet, despite enhanced
steatosis (51, 62).

TNF stimulates hepatic fatty acid synthesis (FAS), increases
serum triglyceride (TG) levels (63), stimulates very low density
lipoprotein (VLDL) production from liver and contributes
to impaired insulin signaling (64, 65). TNF also activates

harmful proatherogenic pathways via the reduction of high-
density lipoprotein (HDL)-cholesterol, elevated expression
of cholesterogenic genes, accompanied by an increase in
potentially harmful precholesterol metabolites, and suppression
of cholesterol elimination (66). Thus, it is not surprising that
TNF sensing by hepatocytes promotes hepatocyte cell death and
hepatocyte proliferation (67), and as such directly contributes
to NAFLD pathogenesis (68). Further, deletion of TNF in
experimental mouse models of NAFLD correlates with decreased
steatosis, fibrosis and improved glucose tolerance (69).

IL-1β promotes liver steatosis, inflammation and fibrosis via
activation of the IL-1 receptor (IL-1R) signaling (70). IL-1β
stimulates TG and cholesterol accumulation in hepatocytes and
as such contributes to the development of hepatic steatosis
(71). Mechanistically, IL-1β also promotes liver inflammation by
inducing IL-6 production, upregulating ICAM-1 and neutrophil
infiltration and accrual in the liver (72). IL-1R-deficient mice are
protected from liver fibrosis (73). Hepatocyte-specific deletion of
IL-1R attenuates liver injury in a model of acute liver disease
(74). Whether similar effects are observed in animal models
of NAFLD have not been examined. Further, IL-1R activates
Myd88 signaling similar to TLRs (75). Thus, the role of IL-1R
signaling in NAFLD warrants further investigation. In addition,
blockade of IL-1 signaling with anakinra improved glycemic
control in patients with T2D (76), suggesting the importance of
inflammatory mediators in liver disease pathogenesis.

Macrophages and ROS Production
Reactive oxygen species (ROS) production, a central
antimicrobial effector function of macrophages, can be induced
in part via macrophage sensing of proinflammatory cytokines.
Macrophages generate ROS via numerous mechanisms including
ER stress, mitochondrial damage and activation of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidases (NOXs).
NOX2, also known as the phagocytic nicotinamide adenine
dinucleotide phosphate NADPH oxidase, is constitutively
associated with p22phox at the plasma membrane. PRR signaling
in KCs and infiltrating macrophages causes complexing of
NOX2 with other proteins (p67, P40, Rac GTPases) to generate
superoxide, drive proinflammatory cytokine production (e.g.,
IL-6, TNF, IL-1β, transforming growth factor-β [TGFβ])
and promote hepatic steatosis, hepatocellular damage and
fibrosis (43, 77, 78). NOX2-deficient mice display reduced
macrophage-associated proinflammatory cytokine production,
hepatic steatosis and fibrosis, and overall NAFLD severity in
obesity (43, 79, 80). However, the underlying mechanisms
regulating macrophage ROS production in NAFLD are not
fully understood. Thus, in depth interrogation of the interplay
between inflammatory cytokines and NADPH components
on macrophage ROS production in NAFLD progression
is needed.

Macrophage Cellular Metabolism
Metabolic pathways regulate immune cell function and
inflammation (81, 82). Obesity alters cellular metabolism
(83). In fact, both obesity-associated and inflammation-driven
derangements in cellular metabolism are implicated in NAFLD
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FIGURE 1 | Macrophage subsets in health and disease. Circulating monocytes originating from the bone marrow are recruited to specific tissues and differentiate into

tissue resident macrophages. In the context of systemic inflammation, circulating monocytes as well as tissue resident macrophages are activated by sensing of

proinflammatory mediators (i.e., IL-6, TNF, IL-1β), chemokines and ROS or anti-inflammatory mediators (i.e., IL-10) leading to “classically” or “alternatively” activated

tissue macrophages, respectively which then contribute to tissue pathology.

progression (84–86). The full discovery of specific metabolic
pathways and genes detrimental to NAFLD pathogenesis
however remains an intense area of investigation. Macrophage-
driven inflammation and resolution of inflammation are
intricately linked to various metabolic pathways and several
clinical phenotypes (i.e., insulin resistance, hyperlipidemia, etc.)
(86, 87). Here we review metabolic pathways that contribute to
macrophage-intrinsic inflammation and resolution in NAFLD.
A brief summary of these processes is depicted in Figure 2 and
Table 1.

Glycolysis
Macrophage reliance on glycolysis to meet energetic demands
has been demonstrated in several murine models of “classical”
macrophage activation (88). Upon stimulation with cytokines
or activation of PRR signaling, macrophages acquire a
proinflammatory phenotype that correlates with robust
upregulation of glycolytic pathways including hypoxia inducing
factor alpha (HIF1α) (88). Activation of HIF1α induces
transcription of hypoxic genes (e.g., glucose transporters,
glycolytic genes) and IL-1β production by macrophages.
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FIGURE 2 | Metabolic processes within inflammatory macrophages. Macrophages are highly metabolically active cells. Their metabolic identity is impacted by

inflammatory mediators. In contrast, specific metabolic pathways (Fatty acid synthesis [FAS], Glycolysis, Amino acid [AA] metabolism) regulate the type of mediators

produced by these cells. During a proinflammatory state, inflammatory mediators (e.g., sugars, lipoproteins, saturated fatty acids [SFAs], cytokines [IL6, TNF]) trigger

“classical” activation of circulating and tissue resident macrophages (e.g., Kupfer cells and adipose tissue macrophages [ATMs]). Circulating sugars are taken up and

processed via glycolysis/TCA cycle. In addition, several intermediate metabolites, as well as amino acids L-arginine, L-tryptophan and glutamine, can impact

macrophage effector functions. Sensing/uptake of excessive lipoproteins and SFAs activates the mitochondrial fatty acid oxidation (FAO) and peroxisomal fatty acid

beta-oxidation (PBO) pathways to breakdown long chain and very long chain fatty acids, respectively. Excessive activation of these pathways triggers ER stress and

signaling via JNK and NF-kB, resulting in amplified production of proinflammatory mediators. “Classical” macrophage activation shifts the cells toward preferential

utilization of glycolytic pathways with altered enzyme activity within the tricarboxylic acid cycle (TCA) cycle generating more lactate and fast energy production in the

form of ATP to generate inflammatory mediators (e.g., IL-6, TNF, IL1). Metabolism of tryptophan (L-TRP) and arginine (L-ARG) by macrophages regulates key

immunologic processes. Cumulatively, these inflammatory mechanisms fuel the overall systemic and tissue inflammation, hepatocyte death, and fibrosis in turn

amplifying NAFLD pathogenesis.

TABLE 1 | Metabolic function in macrophage subsets.

Pathway “Classically” activated macrophage “Alternatively” activated macrophage

Reactive oxygen species Increased ROS production through mitochondrial ROS and

NADPH oxidase

Mitochondrial ROS and NADPH oxidase activity minimal

Glycolysis High aerobic glycolysis resulting in lactate production Low glycolytic rate resulting in acetyl-coA production

Pentose phosphate pathway Increased pentose phosphate pathway Decreased pentose phosphate pathway

Tricarboxylic Acid Cycle Fractured TCA cycle, broken at Idh and Sdh Functional TCA cycle fed by acetyl-coA from beta-oxidation and

glycolysis

Electron transport chain Dysfunctional electron transport chain, resulting in mitochondrial

ROS production

Functional electron transport chain resulting in ATP production

Fatty acid Fatty acid synthesis from fractured TCA Fatty acid beta-oxidation from lipoproteins

L-Tryptophan catabolism L-Tryptophan catabolism by IDO results in suppression of

aberrant inflammation

L-Tryptophan catabolism not induced

L-Arginine metabolism* L-Arginine metabolism by iNOS resulting in nitric oxide

production

L-Arginine metabolism by arginase resulting in L-ornithine and

downstream metabolites

ATP, adenosine triphosphate; Idh, isocitrate dehydrogenase; IDO, indoleamine-2,3-dioxygenase; iNOS, inducible nitric oxide synthase; NADPH, nicotinamide adenine dinucleotide

phosphate; ROS, reactive oxygen species; Sdh, succinate dehydrogenase; TCA, tricarboxylic acid. Unless noted, references are in main text. *Arginase 1 (Arg1) expression occurs

along with iNOS in macrophages during intracellular infection, and is not sufficient on its own to define alternative activation.

Frontiers in Immunology | www.frontiersin.org 5 December 2019 | Volume 10 | Article 2893

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Oates et al. Macrophage and NAFLD

Preferential skewing toward glycolysis favors proinflammatory
macrophage effector functions as administration of the
glucose analog, 2-deoxyglucose (2-DG), decreases macrophage
inflammatory polarization, cytokine production and
phagocytosis (88). Mice fed MCD diet and patients with NASH
display increased hepatic macrophage HIF1α expression and
exacerbated hepatic steatosis and inflammation (89). However,
given the functional relevance of HIF1α tomacrophage-mediated
inflammation, additional studies are warranted to determine
the impact of macrophage-intrinsic HIF1α in inflammation and
NAFLD progression.

Pentose Phosphate Pathway
Pentose phosphate pathway (PPP) branches off glycolysis at
glucose-6-phosphate, the second step in glycolysis. Through a
series of dehydration and decarboxylation reactions, glucose-6-
phosphate is converted to ribulose-5-phosphate. Macrophages
upregulate the PPP in response to LPS, which yields two
NADPH (used as cofactors for NOXs) and in turn promote
inflammation and cellular damage (90–92). Additionally, the
PPP is necessary for limiting the dissemination of various
pathogens (93). In contrast, macrophages also use the PPP to
resolve inflammation and ROS, as PPP results in glutathione
reduction and subsequently maintains proper redox balance,
limiting the consequences of extraneous ROS activity (94, 95).
During hypercholesterolemia, cholesterol inhibits LPS-mediated
PPP activity in inflammatory macrophages, leading to a foamy
macrophage phenotype (96). Further, adipocytes are known
to use NADPH metabolism to regulate lipid metabolism, and
dysregulation of enzymes involved in the production of NADPH
contributes to obesity and obesity-related pathology (97, 98).
Despite the role of PPP in modulating inflammation, the
contribution of this metabolic pathway to macrophage-intrinsic
inflammation in the context of NAFLD is underdefined and
requires in-depth examination.

Tricarboxylic Acid Cycle
Acetyl CoA, generated following glycolysis or beta-oxidation,
enters the tricarboxylic acid (TCA) cycle, resulting in H2O, CO2,
NADH and FADH2 generation. The latter two are utilized in
the electron transport chain (ETC) to produce ATP. Despite
the high energy yield of the TCA cycle, the process is time
consuming and requires oxygen. In the context of a rapid
inflammatory response, the TCA is downregulated and fractured
in macrophages. Specifically, inflammatory macrophages reduce
isocitrate dehydrogenase (Idh) and succinate dehydrogenase
(Sdh) activity (90, 91). This results in decreased α-ketoglutarate
formation but increased production of itaconate – a key anti-
microbial metabolite. Accumulation of succinate in macrophages
can inhibit the HIF1α-suppressing molecules prolyl hydroxylases
(PHDs), allowing HIF1α to drive IL-1β and other inflammatory
processes (90). Sdh is complex II of the ETC, which donates
two electrons from FADH2 to produce the electron gradient that
drives ATP synthesis. During LPS stimulation, the breakdown of
Sdh feeds electrons through complex I, known as reverse electron
transport, resulting in mitochondrial ROS production (99). The
contribution of Idh and Sdh to NAFLD has not been investigated.

However, it can be hypothesized that the hepatic inflammatory
environment in NAFLD would drive the breakdown of the TCA
cycle, as seen in LPS stimulated macrophages. Hence, additional
studies are needed to formally address these postulates.

Fatty Acid Synthesis (FAS)
Excessive hepatocellular uptake of glucose is diverted to FAS
pathways where glucose is converted into TGs and secreted
to adipose tissue (AT) as VLDL (100). Under pathological
conditions, de novo FAS by the liver is a primary cause
of excessive hepatic steatosis (100). In contrast to glucose,
insulin reduces AT lipolysis via suppression of hormone-
sensitive lipase (HSL), thus regulating the circulation of FFAs
in the periphery (100, 101). However, obesity-and NAFLD-
associated insulin resistance limits HSL suppression, leading to
increased AT lipolysis and FFA deposition in the liver (102).
FAS is essential for immune cell proliferation in response
to inflammatory insult. Macrophages upregulate FAS when
undergoing “classical” activation. Monocyte treatment with
macrophage colony stimulating factor promotes “classical”
activation and expression of sterol regulatory element binding
transcription protein 1c (SREBP1c), FAS target genes and
increases lipid synthesis (103). Inhibition of SREBP1c reduces
macrophage inflammatory capacity (104). Increased FAS
drives KC inflammasome activation via nucleotide-binding
oligomerization (NOD)-like receptor 3 (NLR3) signaling
(103, 105). In fact, increased inflammasome activation has been
observed in both murine experimental models and human
NAFLD (105–107). Inflammasomes, reviewed elsewhere (105),
are multiprotein complexes containing nucleotide-binding
oligomerization domains NLRs. KCs are a key source of IL-
1β and caspase 1, a critical NLR3 component that regulates
downstream proinflammatory signaling (e.g., pro-IL-1β, pro-
IL-18, ASC), and are elevated in livers from NASH patients
(105, 108, 109). However, given the complexity of inflammasome
signaling the underlying mechanism unique to macrophage
inflammasome-driven inflammation in NAFLD, these processes
warrant further examination. Additional studies are also
needed to determine if targeted inhibition of FAS pathways in
macrophages is sufficient to reverse inflammasome activation
and subsequently improve NAFLD pathology.

Beta-Oxidation
Beta-oxidation of fatty acids (FA) is central for ensuring cellular
and tissue energetic demands by breakdown and conversion of
lipids into ATP. Under homeostatic conditions, fat storage and
lipolysis are regulated in part by beta-oxidation. Members of
the nuclear hormone receptor superfamily known as peroxisome
proliferator activated receptors (PPARα, PPARβ, and PPARγ)
are transcriptional modulators of beta-oxidation. PPARα, which
is primarily expressed in the liver, has several endogenous
ligands (e.g., FA, eicosanoids and other complex lipids) and
acts as a master regulator for FA beta-oxidation (110, 111).
Given the importance of hepatic steatosis in NAFLD and the
relevance of beta-oxidation in immune responses, below we
discuss the contribution of both mitochondrial and peroxisomal
beta-oxidation to macrophage inflammation.

Frontiers in Immunology | www.frontiersin.org 6 December 2019 | Volume 10 | Article 2893

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Oates et al. Macrophage and NAFLD

Mitochondrial beta-oxidation
Mitochondrial-beta oxidation breaks down short (<C8), medium
(C8-C14) and long chain FA (C14-C20) (85). Long chain
FA, which are a major component of the standard diet,
are shuttled into the mitochondria via carnitine shuttles
(carnitine palmitoyltransferase I) by linking with coenzyme
A (acyl-CoA) (85, 112). Once acylcarnitine exchanges the
carnitine molecule with CoA via exchange with carnitine
palmitoyltransferase II the acyl-CoA proceeds into the beta-
oxidation cycle. At the inner membrane the enzymatic
activity of very long chain acyl-CoA dehydrogenase (VCLAD),
shortens long chain acyl-CoAs. Shortened fatty acyl-CoAs are
further oxidized by a trifunctional protein complex consisting
of: Enoyl-CoA hydratase, 3-hydroxyacyl CoA dehydrogenase,
and 3 ketoacyl CoA thiolase. Impaired beta-oxidation in
macrophages prevents the degradation of lipids leading to
the FA overload and rupture and release of toxic lipid
species (85). Although, the traditional view is that FA beta-
oxidation is essential for polarization of “alternatively” activated
macrophages, recent evidence suggest that inhibition of this
pathway may in fact promote a “classical” macrophage
phenotype. Etomoxir driven inhibition of beta-oxidation or
knockdown of CPT-1 results in reduced fatty acid oxidation
(FAO) but increased proinflammatory signaling, cytokine
production, ER stress and ROS levels (113–115). Thus,
additional studies are needed to formally determine how
mitochondrial FAO impacts macrophage inflammation and
NAFLD progression.

Peroxisomal beta oxidation
Oxidation of very long chain fatty acids (VLCFAs) (C>21)
is exclusive to the peroxisome due to the selective presence
of very long chain acyl-CoA synthetase (85). Aside from
VLCFAs, long chain dicarboxylic acid, eicosanoids, and bile acid
precursors are also oxidized within the peroxisomes. Compared
to mitochondria, 3 enzymes Acyl-CoA oxidase 1 (Acox1),
enoyl CoA hydratase/L-3-hydroxyacyl CoA dehydrogenase
bifunctional protein and 3-ketoacyl CoA thiolase regulate
peroxisomal beta-oxidation (85). Whole body Acox1 null
mice and Acox1Lampe1 mice, which features a point mutation
rendering the Acox1 gene inactive, spontaneously develop
steatosis and steatohepatitis (85, 116). Acox1Lampe1 mice also
exhibit increased systemic inflammation both at baseline
and after LPS challenge in vivo, increased hepatic expression
of macrophage recruiting chemokines and macrophage
infiltration into the liver following short term high fat diet
(HFD) feeding. HFD feeding combined with secondary
LPS insult in vivo further exacerbates liver pathologies in
Acox1Lampe1 mice (86). Together, these data suggest that
peroxisomal beta-oxidation regulates macrophage-intrinsic
inflammation and NAFLD pathogenesis. However, the
underlying processes by which peroxisomal beta-oxidation
regulates macrophage function and inflammation remain
understudied. Similarly, the contribution of peroxisomal
beta-oxidation to inflammatory potential of other immune
cells and their contribution to NAFLD progression remains
poorly understood.

Amino Acid Metabolism
Amino acids (AA) are critical precursors for several metabolic
pathways. For example, glutamine and aspartate are necessary
for purine and pyrimidine synthesis as well as feeding the
TCA cycle via α-ketoglutarate production. Valine and leucine
fuel the synthesis of branched chain FA. Direct metabolism
of tryptophan (L-TRP) and arginine (L-ARG) by macrophages
and other myeloid cells regulate key immunologic processes.
For this reason, below we focus on how metabolism of
tryptophan and arginine within macrophages modulates their
inflammatory potential.

Tryptophan
In macrophages, L-TRP metabolism is tightly regulated by two
isoforms of the enzyme indoleamine 2,3-dioxygenase (IDO1
and IDO2). IDO is the rate limiting enzyme that converts
L-TRP into N-formylkynurenine (117). Early reports focused
on L-TRP depletion as the central mechanism of immune
modulation, yet more recent literature deemphasizes L-TRP
depletion and reports kynurenine production as the key regulator
of immune responses (117, 118). The downstream products of
kynureninemodulate immune responses to infection, cancer, and
autoimmune diseases (117, 119, 120). IDO activity is induced
in macrophages following IFNγ, LPS, or TNF stimulation and
can be further enhanced with IL-1β co-stimulation (121–125).
Several studies have begun to address the contribution of IDO-
mediated L-TRP metabolism during NAFLD. Kynurenine is
increased in the serum of obese subjects, and IDO1 is upregulated
in the liver and WAT in obesity (126). IDO-deficient mice
displayed elevated liver fibrosis, increased hepatic macrophage
infiltration, and higher concentrations of IL-1β, IL-6, and IFNγ

in obesity. However, these mice are protected from HFD-
driven weight gain, hepatic steatosis, and oxidative stress (127).
Interestingly, mice lacking IDO1 expression in macrophages and
neutrophils exhibited normal weight gain and insulin sensitivity
in obesity (128). Mice with an intact bone-marrow derived
immune system, but lacking IDO1 in all other tissues, displayed
a similar protection from HFD-induced metabolic disease as
the mice with global IDO1 deletion. In sum, these data suggest
that IDO contributes to multiple aspects of NAFLD progression
and that non-hematopoietic IDO activity may play a key role in
regulating NAFLD pathogenesis. Follow-up studies are needed
however to dissect the contribution of IDO activity during the full
spectrum of NAFLD pathogenesis and to evaluate IDO activity
within radiation-resistant tissue macrophages.

L-TRP supplementation has been explored inmultiple studies.
Mice fed a high fructose diet exhibit reduced liver weight
and hepatic lipid accumulation when supplemented with L-
TRP (129). Clinical studies examining patients with hepatic
steatosis or NASH found supplementation, twice daily, with
L-TRP for 14 months result in decreased plasma LDL, TG,
and gamma gluthamylo transpeptidase levels with a correlative
decrease in plasma IL-1β, IL-6, and TNF (130, 131). Key studies,
however, are needed to identify where supplemental L-TRP and
its downstream metabolites accumulate, and whether L-TRP is
available for IDO activity within the diseased liver. Considering
the availability of conditional IDO1 knockout mice (128), it is
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now feasible to separate the contribution of IDO activity by
macrophages as well as other immune and non-immune cell
types during the initiation and progression of NAFLD. These,
studies would help determine how IDO modulates immune
responses and NAFLD pathogenesis.

Arginine
Historically, macrophage polarization was characterized in
part by the ability to metabolize L-ARG. “Classically” activated
macrophages upregulate inducible nitric oxide synthase (iNOS)
which converts L-ARG to L-citrulline and anti-microbial
nitric oxide (NO). In contrast, “alternatively” activated
macrophages upregulate arginase 1 (Arg1) to metabolize L-
ARG into ornithine and urea (132, 133). It is now appreciated
that Arg1 and iNOS expression can occur within similarly
stimulated macrophages, adding to the complexity of defining
“classical” and “alternative” macrophage activation profiles
(134–136). Regardless, macrophage L-ARG metabolism has
been documented to restrict intrinsic and extrinsic immune
cell function. Blocking arginase activity or eliminating Arg1
within macrophages allows for increased L-arginine availability
for NO production and anti-microbial activity but can also be
associated with unrestricted lymphocyte activity and increased
tissue pathology (132, 136–141). Thus, understanding how
L-ARGmetabolism is regulated during altered inflammatory and
metabolic states, including NAFLD, is of considerable interest.

Limited studies have focused on the contribution of
enzymes involved in the breakdown of L-ARG in NAFLD.
Mammals possess two arginase isoforms (Arg1, Arg2) that
are differentially expressed within tissues. The importance of
macrophage Arg1 in NAFLD has not been addressed. The
role of Arg2 in NAFLD, despite published studies, remains
undefined. Opposing findings employing Arg2-deficient mice
have shown that Arg2-deficiency results in development of
spontaneous hepatic steatosis and increased liver injury (142) or
promotes decreased NAFLD severity in obesity (143). Although
NO contributes to NAFLD, additional studies are needed to
determine the critical source of NO as NO inhibitors have
various specificities and differ in their ability to regulate
disease severity (144). L-ARG supplementation has also been
shown to reduce NAFLD severity (145). As such, studies
determining the contribution not only of L-ARG utilization,
but also of L-ARG synthesis during NAFLD are warranted.
The necessity of L-ARG synthesis within macrophages has
recently been described during infection, suggesting extracellular
L-ARG is not available in sufficient concentrations to drive
effective macrophage function (135, 146, 147). Accounting
for the considerable influx of inflammatory macrophages in
NAFLD, future studies aimed at addressing macrophage-specific
modulation of L-ARG metabolism with existing molecular tools
(e.g.,Arg1flox,Aslflox, Nos2-deficient) (148–150) will be necessary
to dissect how various macrophage populations manipulate the
liver microenvironment and NAFLD progression.

Macrophages and Trace Metals
Trace metals including iron, zinc and copper are essential for
many cellular functions and for optimal adaptive and innate

immune responses (151). Among these three metals, iron and
copper exert an important influence on the genesis of NAFLD
(152–155). Adults, but not children, with NAFLD manifest
increased circulating concentrations of ferritin; however, both
age groups exhibit increased transferrin saturation (153, 154).
Excess iron accrual in the liver, specifically KCs (156) is associated
with elevated amounts of hepcidin, which blocks iron egress
mediated by ferroportin. Hepcidin binds to ferroportin and
enhances its degradation. The accumulation of iron promotes
“classically” activated macrophage polarization and production
of proinflammatory cytokines that enhance the inflammatory
response (157, 158). Excessive iron accumulation in both KCs
and hepatocytes is associated with NAFLD (152). Inflammatory
mediators, induced by lipid overload, drive increased hepcidin
and decreased iron export from KCs and hepatocytes, in turn
exacerbating NAFLD severity. Although copper is connected to
iron homeostasis, the former metal is diminished in patients
with NAFLD. Copper deficiency is associated with a decrease
in ceruloplasmin ferroxidase which promotes iron release (152,
159). Aside from the effects of copper on iron regulation,
the paucity of copper would reduce generation of copper/zinc
superoxide dismutases that scavenge ROS and subsequently
impairing the cellular defenses to ROS-mediated damage. Despite
the knowledge of low zinc concentrations in chronic liver
disease and damage (160) the role of zinc in NAFLD has not
been investigated. How zinc deficiency augments liver damage
is not well defined. Experiments determining the necessity of
superoxide dismutases to combat excess ROS would provide
valuable insight but have yet to be performed.

Adipose Tissue/Adipocytes and NAFLD
The traditional perspective of AT was that of a simplistic
fat storing/releasing organ playing a role in energy
homeostasis (161). It is now well-appreciated that AT is
a highly metabolic, active and plastic organ comprised of
various types of cells (e.g., adipocytes, progenitor stem
cells within the stromal vascular fraction, endothelial cells,
fibroblasts, and immune cells) (162, 163). The AT regulates
the accommodation of excess energy through storage
of circulating dietary lipids and de novo lipogenesis. In
the case of nutrient shortage, lipolysis controls/regulates
the release of hydrolyzed TGs as glycerol and FFAs to
provide energy to surrounding tissues (164–166). Obesity-
associated changes in AT robustly modify AT function
including production of hormones, cytokines and adipokines.
Which cells within AT tissue contribute to such changes
and how the low-grade systemic and AT inflammatory
state in obesity/metabolic disease impacts AT function is
poorly understood.

Adipose tissue macrophages (ATMs) are believed to play
a major role in regulating AT inflammation. In general,
healthy AT, is believed to contain a balance between
“alternatively” and “classically” activated ATMs. In contrast,
the unhealthy/inflammatory AT, houses an increased number
of “classically” activated ATMs. “Classically” activated ATMs
produce an array of proinflammatory mediators (e.g., IL-6, TNF,
IL-1β, IFNγ) that further amplify AT inflammation and promote
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additional macrophage and other immune cell recruitment and
activation. Cumulatively, such events, in obesity, fuel a chronic
low-grade inflammation within the AT (167, 168). In addition
to the enhanced release of soluble mediators, AT inflammation
drives expression of integrin α4 on macrophages and vascular
cell adhesion molecule 1 (VCAM-1) on adipocytes allowing
for AT macrophage accrual (43). The inhibition of integrin
α4 reduces ATM retention and AT inflammation. Notably,
individuals with NAFLD exhibit high expression of VCAM-1
in AT underlining the importance of this cell-cell interaction
pathways (169).

Adipocytes play a pivotal role in metabolic disease by
promoting chronic inflammation via release of FFAs in response
to increased circulating levels of TNF. These FFAs translocate
to the liver and skeletal muscle propagating inflammation and
insulin resistance (170, 171). Mechanistically, TNF inhibits
PPARγ (172) andCCAAT/enhancer binding protein (C/EBPα) in
adipocytes that is needed for the expression of adipocyte-specific
GLUT4 and insulin receptor (IR) to maintain insulin sensitivity

(173, 174). This suggests that like ATMs, adipocytes themselves
play an important role in maintaining AT metabolic processes.
Recent studies demonstrate that adipocytes, like immune cells,
exhibit immune-like potential (175, 176). Specifically, adipocytes
express various innate immune receptors including RIG-I-
like receptors (RLR), NLRs, and nucleotide oligomerization
domains (NODs) (177, 178). NOD-1 signaling suppresses
adipocyte differentiation and contributes to induction of the
NF-kB (177, 179). Adipocyte sensing of various PAMPs
leads to production of multiple inflammatory mediators (e.g.,
cytokines, chemokines, adipokines) (180). In obesity, the
main mechanisms associated with unlocking adipocyte-intrinsic
inflammation are: (a) obesity-associated endotoxemia and (b)
AT hypoxic micro-environment which leads to ER stress,
inflammatory cytokine production, cell death, release of lipid
content and debris and induction of the inflammatory mediators
(181). Adipocyte production of inflammatory mediators is
potentially sensed by ATMs and leads to their activation
(161, 168, 180, 182). Adiponectin, an adipokine, exerts either

FIGURE 3 | Crosstalk between tissue-specific inflammation and macrophage function in NAFLD. Schematic overview of the crosstalk between various organs, their

specific immune cells and inflammatory mediators during NAFLD. Obesity-associated low-grade, chronic inflammation and altered gut microbiome impacts immune

cell crosstalk between the gut, circulating monocytes/macrophages, and the liver. In addition, obesity-associated adipocyte expansion promotes hypoxia leading to

adipose tissue (AT) inflammation, activation of adipose tissue macropahes (ATMs) and fuels infiltration of various immune cells and inflammatory mediator production

(e.g., FFAs, ROS, cytokines, chemokines) to be sensed by circulating macrophages and hepatocytes. Collectively these processes alter hepatocellular lipid

metabolism, contributing to steatosis and proinflammatory cytokine (IL-17, TNF, IFNγ , IL-6) and chemokine production (CCL2, CXCL9, CXCL10). Moreover, this

inflammatory state activates hepatic stellate cells (HSCs) and Kupffer cells (KCs) in turn contributing to extracellular matrix deposition (collagen fibers) and progression

to fibrosis.
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anti- or pro-inflammatory effects on macrophages. It inhibits
macrophage functions (e.g., phagocytosis, cytokine production)
and induces proliferation of “alternatively” activatedmacrophage
in AT (183–185). Conversely, adiponectin also induces pro-
inflammatory signaling cascades through NF-kB activation and
upregulation of pro-inflammatory cytokines (e.g., TNF-α, IL-
6, and IL-8) (186, 187). However, detailed analysis of specific
adipocyte mediators and adipokines relevant to altered ATMs
polarization and activation is needed. Similarly, whether obesity-
activated adipocytes or ATMs directly play a role in NAFLD
pathogenesis is not fully understood and should be further
investigated. A brief summary of the above discussed processes
is depicted in Figure 3.

Therapies
Ultimately, the improvement of experimental models to more
closely recapitulate human NAFLD would be ideal for the
discovery and development of therapies targeting various
metabolic pathways in macrophages. Diet and lifestyle changes
help in reversing NAFLD progression. Thus, it is not surprising
that several pharmacological drugs that target metabolic and
inflammatory and molecular mechanisms important in NAFLD
progression are currently being examined (188). Hepatic lipid
accumulation is an initial driver of NAFLD pathogenesis (9,
84). Intuitively, use of therapeutic drugs that target lipid
metabolism is actively pursued. Glitazones, which are a class
of insulin-sensitizing drugs, are effective in regulating lipid
metabolism. They increase FAS and FA uptake by adipocytes,
thus increasing lipid loading in AT instead of ectopic organs
(e.g., liver and muscle) (189, 190). However, due to their
association with increased risks of heart failure the use of
glitazones as a treatment option has not been pursued in the clinic
(191, 192). Sodium glucose co-transporter 2 (SGLT2) inhibitors
have also proven efficacious in regulating NAFLD-associated
dyslipidemia by inhibiting hepatic expression of lipogenic genes
(e.g., sterol regulatory-element binding protein 1-c, fatty acid
synthase, acetyl-CoA carboxylase 1, and sterol CoA desaturase),
hepatic macrophage infiltration and expression of inflammatory
cytokine production (190, 193, 194). However, underlying
mechanisms that govern this process remains an area of
investigation. Upregulation of oxidative stress, inflammation and
apoptosis pathways are associated with NAFLD pathogenesis.
NASH patients display increased hepatic activation of apoptosis
signal-regulating kinase 1 (Ask1). Activation of Ask1 by
TNF causes oxidative and ER stress, and induction of p38
and JNK signaling (188, 190, 195). Ask1 inhibition reduced
hepatic steatosis, inflammation and fibrosis (196, 197). However,
given that phenotypical outcomes of Ask1 inhibition in
mice are not often recapitulated in humans, more effective
“humanized” mouse models are needed (198, 199). Further,
the effects of Ask1 inhibition on macrophage inflammation
in NAFLD pathogenesis remains underdefined. Limiting the
detrimental effects of obesity-associated microbiome alteration
and subsequent systemic endotoxemia which contribute to
NAFLD pathogenesis is another active area of investigation for
drug development. Excessive PRR activation and inflammation

resulting in liver injury is characteristic of NAFLD. JKB-121,
a TLR4 antagonist, prevents LPS induced inflammatory liver
injury in MCD diet models of NAFLD. However, given that
obesity modulates the expression of multiple TLRs, more studies
are needed to determine the impact of ablation of other TLRs
in NAFLD pathogenesis. In addition, there are several other
therapeutic approaches regarding use of ACC inhibitors, fructose
inhibitors and obetocholic acid inhibitors (188, 190) for the
treatment of NAFLD. In sum, several potential avenues for
NAFLD therapies are being pursued. Specifically, there is a
need for studies to allow for HFD-driven induction of hepatic
fibrosis (41), eliminate gender bias by employing a more
“human”-like disease state (e.g., thermoneutrality) (200), CCL4
experimental models of fibrosis (201) use of various murine
strains/genotypes to mimic genetic diversity as well as expansion
of such findings into non-human primate models of NAFLD
(198). Use of such wide ranging experimental models would
be beneficial in the development of therapeutic targets that
may prove more effective in the clinic. Thus, in sum, given
the interplay between metabolism and inflammation, additional
therapies targeting macrophage polarization, chemo-attracting,
inflammatory and metabolic pathways are needed—something
that may be achieved by improving experimental modeling
of disease.

CONCLUSION

Overall, this review highlights the inflammatory processes
associated with macrophage polarization, tissue recruitment
and inflammation and the role of such processes in NAFLD.
We also extensively discuss how cellular metabolic pathways
may contribute to macrophage-driven inflammation. Given the
metabolic changes in obesity and inflammation the potential
benefits to be gained from understanding the interplay between
various metabolic and inflammatory pathways in macrophages
are immense. Further elucidation of the crosstalk between
macrophages and other tissues/immune cells similarly remains
an exciting area of exploration. However, subsequent to the
detailed interrogation of the afore discussed cellular and
molecular processes in NAFLD, validation of such processes in
multiple experimental models of NAFLD will be required.
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