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Abstract: We present a new class of estimators of Shannon entropy for severely undersampled
discrete distributions. It is based on a generalization of an estimator proposed by T. Schürmann,
which itself is a generalization of an estimator proposed by myself.For a special set of parameters,
they are completely free of bias and have a finite variance, something which is widely believed
to be impossible. We present also detailed numerical tests, where we compare them with other
recent estimators and with exact results, and point out a clash with Bayesian estimators for mutual
information.

Keywords: entropy estimates; mutual information estimates; undersampling; Bayesian; bias; variance

1. Introduction

It is well known that estimating (Shannon) entropies from finite samples is not trivial.
If one naively replaces the probability pi to be in “box” i by the observed frequency,
pi ≈ ni/N, statistical fluctuations tend to make the distribution look less uniform, which
leads to an underestimation of the entropy. There have been numerous proposals on how to
estimate and eliminate this bias [1–22]. Some make quite strong assumptions [5,7]; others
use Bayesian methods [6,11,12,19,21,22]. As pointed out in [4,13,14,17], one can devise
estimators with arbitrarily small bias (for sufficiently large N and fixed pi), but these will
then have very large statistical errors. As conjectured in [4,13–15,17], the variance of any
estimator whose bias vanishes will have a diverging variance.

Another widespread belief is that Bayesian entropy estimators cannot be outperformed
by non-Bayesian ones for severely undersampled cases. The problem with Bayesian
estimators is of course that they depend on a good choice of prior distributions, which is
not always easy, and they tend to be slow. One positive feature of a non-Bayesian estimator
proposed in [14] is that it is extremely fast since it works precisely like the ‘naive’ (or
maximum-likelihood) estimator, except that the logarithms used there are replaced by a
function Gn defined on integers, which can be precomputed by means of a simple recursion.
While the estimator of [14] seems in general to be a reasonable compromise between bias
and variance, it was shown in [15] that it can be improved—as far as bias is concerned,
at the cost of increased variance—by generalizing Gn to a one-parameter family of functions
Gn(a).

In the present paper, we show that the Grassberger–Schürmann approach [14,15] can
be further improved by using different functions Gn(ai) for each different realization i of
the random variable. Indeed, the ai can be chosen such that the estimator is completely
free of bias and yet has a finite variance—although, to be honest, the optimal parameters
ai can be found only if the exact distribution is known (in which case also the entropy
can be computed exactly). We show that—even if the exact, optimal ai is not known—the
new estimator can reduce the bias very much, without inducing unduly large variances,
provided the distribution is sufficiently much undersampled.

We test the proposed estimator numerically with simple examples, where we produce
bias-free entropy estimates, e.g., from pairs of ternary variables, something which, to my
knowledge, is not possible with any Bayesian method. We also use it for estimating mutual

Entropy 2022, 24, 680. https://doi.org/10.3390/e24050680 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24050680
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4966-9998
https://doi.org/10.3390/e24050680
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24050680?type=check_update&version=2


Entropy 2022, 24, 680 2 of 9

information (MI) in cases where one of the two variables is binary, and the other one can
take very many values. In the limit of severe undersampling and of no obvious regularity
in the true probabilities, MI cannot be estimated unambiguously. In that limit, the present
algorithm seems to choose systematically a different outcome from Bayesian methods
for reasons that are not yet clear.

2. Basic Formalism

In the following, we use the notation of [14]. As in this reference, we consider M > 1
“boxes” (states, possible experimental outcomes, etc.) and N > 1 points (samples, events,
and particles) distributed randomly and independently into the boxes. We assume that
each box has weight pi (i = 1, . . . M) with ∑i pi = 1. Thus each box i will contain a random
number ni of points, with E[ni] = pi N. Their joint distribution is multinomial,

P(n1, n2, . . . nM; N) = N!
M

∏
i=1

pni
i

ni!
, (1)

while the marginal distribution in box i is binomial,

P(ni; pi, N) =

(
N
ni

)
pni

i (1− pi)
N−ni . (2)

Our aim is to estimate the entropy,

H = −
M

∑
i=1

pi ln pi = ln N − 1
N

M

∑
i=1

zi ln zi, (3)

with zi ≡ E[ni] = pi N, from an observation of the numbers {ni} (in the following, all
entropies are measured in “natural units”, not in bits). The estimator Ĥ(n1, . . . nM) will of
course have both statistical errors and a bias, i.e., if we repeat this experiment, the average
of Ĥ will, in general, not be equal to H,

∆[Ĥ] ≡ E[Ĥ]− H 6= 0, (4)

as will also be its variance Var[Ĥ]. Notice that for computing E[Ĥ], we need only
Equation (2), not the full multinomial distribution of Equation (1). However, if we want to
compute this variance, we additionally need the joint marginal distribution in two boxes,

P(ni, nj; pi, pj, N) =
N!

ni!nj!(N − ni − nj)!
× (5)

pni
i p

nj
j (1− pi − pj)

N−ni−nj ,

in order to compute the covariances between different boxes. Notice that these covariances
were not taken into account in [13,17], whence the variance estimations in these papers are,
at best, approximate.

In the following, we are mostly interested in the case where we are close to the limit
N → ∞, M → ∞, with M/N (the average number of points per box) being finite and
small. In this limit, the variance will go to zero (because essentially one averages over
many boxes), but the bias will remain finite. The binomial distribution, Equation (2), can
be replaced then by a Poisson distribution

PPoisson(ni; zi) =
zni

i
ni!

e−zi . (6)

However, as we shall see, it is in general not good advice to jump right to this limit, even
if we are close to it. More generally, we shall therefore also be interested in the case of large



Entropy 2022, 24, 680 3 of 9

but finite N, where also the variance is positive, and we will discuss the balance between
demanding minimal bias versus minimal variance.

Indeed it is well known that the naive (or ‘maximum-likelihood’) estimator, obtained
by assuming zi = ni without fluctuations,

Ĥnaive = ln N − 1
N

M

∑
i=1

ni ln ni, (7)

is negatively biased, ∆Ĥnaive < 0.
In order to estimate H, we have to estimate pi ln pi or equivalently zi ln zi for each i.

Since the distribution of ni depends, according to Equation (2), on zi only, we can make the
rather general ansatz [4,14] for the estimator

ẑi ln zi = niφ(ni) (8)

with a yet unknown function φ(n). Notice that Ĥ becomes with this ansatz a sum over
strictly positive values of ni. Effectively this means that we have assumed that observing
an outcome ni = 0 does not give any information: if ni = 0, we do not know whether this
is because of statistical fluctuations or because pi = 0 for that particular i.

The resulting entropy estimator is then [14]

Ĥφ = ln N − M
N

nφ(n) (9)

with the overbar indicating an average over all boxes,

nφ(n) =
1
M

M

∑
i=1

niφ(ni). (10)

Its bias is
∆Hφ =

M
N
(z ln z− EN,z[nφ(n)]). (11)

with

EN,z[ fn] =
∞

∑
n=1

fnPbinom(n; p = z/N, N). (12)

being the expectation value for a typical box (in the following we shall suppress the box
index i to simplify notation, wherever this makes sense).

In the following, ψ(x) = d ln Γ(x)/dx is the digamma function, and

E1(x) = Γ(0, x) =
∫ ∞

1

e−xt

t
dt (13)

is an exponential integral (Ref. [23], paragraph 5.1.4). It was shown in [14] that

EN,z[nψ(n)] = z ln z + z[ψ(N)− ln N] + z
∫ 1−z/N

0

xN−1dx
1− x

, (14)

which simplifies in the Poisson limit (N → ∞, z fixed) to

EN,z[nψ(n)]→ z ln z + zE1(z) . (15)

Equations (14) and (15) are the starting points of all further analysis. In [14], it was
proposed to re-write Equation (15) as

EN,z[nGn]→ z ln z + zE1(2z) , (16)
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where

Gn = ψ(n) + (−1)n
∫ 1

0

xn−1

x + 1
dx. (17)

The advantages are that Gn can be evaluated very easily by recursion (here γ = 0.57721 . . .
is the Euler–Mascheroni constant), G1 = G2 = −γ− ln 2, G2n+1 = G2n, and G2n+2 =
G2n + 2

2n+1 , and neglecting the second term, zE1(2z) gives an excellent approximation
unless z is exceedingly small, i.e., unless the numbers of points per box are very small such
that the distribution is very severely undersampled. Thus the entropy estimator proposed
in [14] was simply

ĤG = ln N − 1
N

M

∑
i=1

niGni . (Poisson) (18)

Furthermore, since zE1(2z) is strictly positive, neglecting it gives a negative bias in ĤG,
and one can show rigorously that this bias is smaller than that of [1,3].

3. Schürmann and Generalized Schürmann Estimators

The easiest way to understand the Schürmann class of estimators [15] is to define,
instead of Gn, a one-parameter family of functions

Gn(a) = ψ(n) + (−1)n
∫ a

0

xn−1

x + 1
dx. (19)

Notice that Gn(1) = Gn and Gn(0) = ψ(n).
Let us first discuss the somewhat easier Poissonian limit, where

EN,z [n(Gn(a)− ψ(n))] =

=
∞

∑
n=1

(−1)nnPPoisson(n, z)
∫ a

0

xn−1

x + 1
dx

= −ze−z
∫ a

0

dx
x + 1

e−xz

= −z(E1(z)− E1((1 + a)z)), (20)

which gives
EN,z[nGn(a)] = z ln z + zE1((1 + a)z). (21)

Using—to achieve greater flexibility—different parameters ai for different boxes, and ne-
glecting the second term in the last line of Equation (20), we obtain finally by using
Equation (3)

ĤSchuermann = ln N − 1
N

M

∑
i=1

niGni (ai) (Poisson). (22)

Indeed, the last term in Equation (20) can always be neglected for sufficiently large a
because 0 < E1((1 + a)z) < exp(−(1 + a)z)/(1 + a)z for any real a > −1.

Equation (22) might suggest that using larger ai would always give an improvement
because bias is reduced, but this would not take into account that larger ai might lead
to larger variances. However, the optimal choices of the parameters ai are not obvious.
Indeed, in spite of the ease of derivations in the Poissonian limit, it is much better to avoid
it and to use the exact binomial expression.
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For the general binomial case, the algebra is a bit more involved. By somewhat tedious
but straightforward algebra, one finds that

EN,z [n(Gn(a)− ψ(n))] =

=
∞

∑
n=1

(−1)nn
(

N
n

)
pn(1− p)N−n

∫ a

0

xn−1

x + 1
dx

= −pN
∫ a

0

dx
x + 1

∞

∑
n=1

(
N − 1
n− 1

)
(−px)n−1(1− p)N−n

= −pN
∫ a

0

dx
x + 1

(1− p− px)N−1

= −z
∫ a

0

dx
x + 1

[1− (1 + x)z
N

]N−1. (23)

One immediately checks that this reduces, in the limit (N → ∞, z fixed), to Equation (20).
On the other hand, by substituting

x → t = 1− (1 + x)z
N

(24)

in the integral, we obtain

EN,z[nGn(a)− ψ(n))] = −z
∫ 1−z/N

1−(1+a)z/N

tN−1dt
1− t

. (25)

Finally, by combining with Equation (14), we find [15]

EN,z[n(Gn(a)] = z ln z + z[ψ(N)− ln N] +

+ z
∫ 1−(1+a)z/N

0

xN−1dx
1− x

(26)

and, using again Equation (3),

Ĥopt = ψ(N)− 1
N

M

∑
i=1

niGni (ai), (binomial) (27)

with a correction term which is 1/N times a sum over the integrals in Equation (26). This
correction term vanishes, if all integration ranges vanish. This happens when 1− (1 +
ai)zi/N = 0 for all i, or

ai = a∗i ≡
1− pi

pi
∀i. (28)

This is a remarkable result, as it shows that in principle, there exists always an estimator
which has zero bias and yet finite variance. In [15], one single parameter a was used, which
is why we call our method a generalized Schürmann estimator.

When all box weights are small, pi � 1 for all i, then these bias-optimal values a∗i are
very large. However, for two boxes with p1 = p2 = 1/2, e.g., the bias vanishes already for
a1 = a2 = 1, i.e., for the estimator of Grassberger [14]!

In order to test the latter, we drew 108 triplets of random bits (i.e., N = 3, p0 = p1 =
1/2), and estimated Ĥnaive and ĤG for each triplet. From these, we computed averages and
variances, with the results Ĥnaive = 0.68867(4) bits and ĤG = 0.99995(4) bits. We should
stress that the latter requires the precise form of Equation (27) to be used, with ψ(N) neither
replaced by ln N nor by GN .

Since there is no free lunch, there must of course be some problems in the limit
when parameters ai are chosen to be nearly bias-optimal. One problem is that one cannot,
in general, choose ai according to Equation (28), because the pi is unknown. In addition, it
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is in this limit (and more generally when ai >> 1) that variances blow up. In order to see
this, we have to discuss in more detail the properties of the functions Gn(a).

According to Equation (19), Gn(a) is a sum of two terms, both of which can be com-
puted, for all positive integer n, by recursion. The digamma function ψ(n) satisfies

ψ(1) = −γ, ψ(n + 1) = ψ(n) + 1/n. (29)

Let us denote the second term in Equation (19) as gn(a). It satisfies the recursion

g1(a) = − ln(1 + a), gn+1(a) = gn(a)− (−a)n/n. (30)

Thus, while ψ(n) is monotonic and slowly increasing, gn(a) has alternating sign and
increases, for a > 1, exponentially with n. As a consequence, also Gn(a) is non-monotonic
and diverges exponentially with n, whenever a > 1. Therefore an estimator such as Ĥopt
gets, unless all ni are very small, increasingly large contributions of alternating signs. As a
result, the variances will blow up, unless one is very careful to keep a balance between bias
and variance.

To illustrate this, we drew tuples of independent and identically distributed binary
variables {s1, . . . sN} with p0 = 3/4 and p1 = 1/4. For a0, we chose a0 = a∗0 = 1/3
because this should minimize the bias and should not create problems with the variance.
We should expect such problems, however, if we would take a1 = a∗1 = 3, although this
would reduce the bias to zero. Indeed we found for N = 100 that the variance of the
estimator exploded for all practical purposes as soon as a1 > 1.4, while the results were
optimal for 0.5 < a1 ≤ 1 (bias and statistical error were both < 10−5 for 108 tuples). On the
other hand, for pairs (N = 2), we had to use much larger values of a1 for optimality,
and a1 = 3 gave indeed the best results (see Figure 1). A similar plot for ternary variables
is shown in Figure 2, where we see again that a-values near the bias-optimal ones gave
estimates with zero almost zero bias and acceptable variance for the most undersampled
case N = 2. Again, using the the exact bias-optimal values would have given unacceptably
large variances for large N.

The message to be learned from this is that we should always keep all ai sufficiently
small such that ani

i is not much larger than 1 for any of the observed values of ni.

 0.807

 0.808

 0.809

 0.81

 0.811

 0.812

 0.5  1  1.5  2  2.5  3

H
op

t

a1

N = 2
N = 5

N = 10
Hexact

Figure 1. Estimated entropies (in bits) of N-tuples of independent and identically distributed random
binary variables with p0 = 3/4 and p1 = 1/4, using the optimized estimator Ĥopt defined in
Equation (27). The parameter a0 was kept fixed at its optimal value a0 = 1/3, while a1 is varied in
view of possible problems with the variances, and is plotted on the horizontal axis. For each N and
each value of a1, 108 tuples were drawn. The exact entropy for p0 = 3/4 and p1 = 1/4 is 0.811278 . . .
bits, and is indicated by the horizontal straight line.
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Figure 2. Estimated entropies (in bits) of N-tuples of independent and identically distributed random
ternary variables with p0 = 0.625, p1 = 0.25, and p2 = 0.125, using the optimized estimator Ĥopt

defined in Equation (27). The parameter a0 was kept fixed at its optimal value a∗0 = 0.6, while a1 and
a2 varied in view of possible problems with the variances. More precisely, we used a2 = 1+ 4(a1− 1),
so that the plot ends at the bias-free value a∗2 = 7.0 and at a value of a1 slightly smaller than a∗1 = 2.5.
For each N and each value of a1, 108 tuples were drawn. The exact entropy is 1.29879 . . . bits, and is
indicated by the horizontal straight line.

4. Estimating Mutual and Conditional Information

Finally, we apply our estimator to two problems of mutual information (MI) estimation
discussed in [22] (actually, the problems were originally proposed by previous authors,
but we shall compare our results mainly to those in [22]). In each of these problems, there
are two discrete random variables: X has many (several thousand) possible values, while Y
is binary. Moreover, the marginal distribution of Y is uniform, p(y = 0) = p(y = 1) = 1/2,
while the X distributions are highly non-uniform. Finally—and that is crucial—the joint
distributions show no obvious regularities.

The MI is estimated as I(X : Y) = H(Y)− H(Y|X). Since H(Y) = 1 bit, the problem
essentially burns down to estimate the conditional probabilities p(y|x). The data are given
in terms of a large number of independent and identically distributed sampled pairs (x, y)
(250,000 pairs for problem I, called ‘PYM’ in the following, and 50,000 pairs for problem
II, called ‘spherical’ in the following). The task is to draw random subsamples of size N,
to estimate the MI from each subsample, and to calculate averages and statistical widths
from these estimates.

Results are shown in Figure 3. For large N, our data agree perfectly with those in [22]
and in the previous papers cited in [22]. However, while the MI estimates in these previous
papers all increase with decreasing N, and those in [22] stay essential constant (as we would
expect, since a good entropy estimator should not depend on N, and conditional entropies
should decrease with N for not so good estimators), our estimated MI decreases to zero for
small N.
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Figure 3. Estimated mutual information (in bits) of N-tuples of independent and identically dis-
tributed random subsamples from two distributions given in [22]. The data for “PYM”, originally
due to [24], consist of 250,000 pairs (x, y) with binary y with p(y = 0) = p(y = 1) = 1/2, and x being
uniformly distributed over 4096 values. Thus each x−value is realized ≈60 times, and we classify
them into 5 classes depending on the associated y−values: (i) very heavily biased toward y = 1,
(ii) moderately biased toward y = 1, (iii) y−neutral, (iv) moderately biased toward y = 0, and (v)
heavily biased toward y = 0. When we estimated conditional entropies H(Y|X) for randomly drawn
subsamples, we kept this classification and choose ay accordingly: For class (iii) we used a0 = a1 = 1,
for class (ii) we used a1 = 1, a0 = 4, for class (i) we used a1 = 1, a0 = 7, for class (iv) we used
a1 = 4, a0 = 1, and finally for class (v) we used a1 = 7, a0 = 1. The data for “spherical”, originally
due to [21], consist of 50,000 (x, y) pairs. Here, Y is again binary with p(y = 0) = p(y = 1) = 1/2,
but X is highly non-uniformly distributed over ≈4000 values. Again we classified these values as
y−neutral or heavily/moderately biased toward or against y = 0 and used this classification to
choose values of ay accordingly.

This looks at first sight like a failure of our method, but it is not. As we said, the joint
distributions show no regularities. For small N most values of X will show up at most
once, and if we write the sequence of y−values in a typical tuple, it will look like a perfectly
random binary string. The modeler knows that it actually is not random, because there
are correlations between X and Y. However, no algorithm can know this, and any good
algorithm should conclude that H(Y|X) = H(Y) = 1 bit. Why, then, was this not found in
the previous analyses? In all these, Bayesian estimators were used. If the priors used in
these estimators were chosen in view of the special structures in the data (which are, as we
should stress again, not visible from the data, as long as these are severely undersampled),
then the algorithms can, of course, make use of these structures and avoid the conclusion
that H(Y|X) = 1 bit.

5. Conclusions

In conclusion, we gave an entropy estimator with zero bias and finite variance. It
builds on an estimator by Schürmann [15], which itself is a generalization of [14]. It involves
a real-valued parameter for each possible realization of the random variable, and bias is
reduced to zero by choosing these parameters properly. However, this choice would require
that we know already the distribution, which is of course not the case. Nevertheless we
can reduce the bias very much for severely undersampled cases. In cases with moderate
undersampling, choosing these zero-bias parameters would give very large variances
and would thus be useless. Nevertheless, by judicious parameter choices, we can obtain
extremely good entropy estimates. Finding good parameters is non-trivial, but is made less
difficult by the fact that the method is very fast.
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Finally, we pointed out that Bayesian methods, which have been very popular in this
field, have the danger of choosing “too good” priors, i.e., choosing priors which are not
justified by the data themselves and are thus misleading, although both the bias and the
observed variances seem to be small.

I thank Thomas Schürmann for the numerous discussions, and Damián Hernández
for both discussions and for sending me the data for Figure 3.
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