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Abstract

Expression quantitative trait loci (eQTL) mapping is a widely used technique to uncover regulatory relationships between
genes. A range of methodologies have been developed to map links between expression traits and genotypes. The DREAM
(Dialogue on Reverse Engineering Assessments and Methods) initiative is a community project to objectively assess the
relative performance of different computational approaches for solving specific systems biology problems. The goal of one
of the DREAM5 challenges was to reverse-engineer genetic interaction networks from synthetic genetic variation and gene
expression data, which simulates the problem of eQTL mapping. In this framework, we proposed an approach whose
originality resides in the use of a combination of existing machine learning algorithms (committee). Although it was not the
best performer, this method was by far the most precise on average. After the competition, we continued in this direction
by evaluating other committees using the DREAM5 data and developed a method that relies on Random Forests and
LASSO. It achieved a much higher average precision than the DREAM best performer at the cost of slightly lower average
sensitivity.
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Introduction

The analysis of ‘genetical genomics’ data is an important step

towards a systems-level understanding of molecular genetics data.

It seeks to describe how natural genetic variability influences gene

expression on a genome-wide level. Loci that are linked to the

expression variation of a gene are called expression quantitative

trait loci (eQTL). The advantage of this kind of analysis is its

ability to elucidate causal regulatory relationships between genes

without the need to actively perturb the system using e.g. gene

knock-outs or knock-downs [1–4]. It is therefore applicable in

situations where in vivo perturbations are not easily achieved. More

importantly, it provides a much more realistic scenario than

engineering non-physiological over- or under-expression of

individual genes using genetic manipulations.

Much effort has been invested in the development of

approaches for (e)QTL analysis [5–7]. Methods for eQTL

mapping can be divided into univariate and multivariate (or

single-marker versus multi-marker) mapping methods. The former

infer the relationship between each single marker and a gene’s

expression separately ignoring the effect of other markers, whereas

the latter investigate the joint effects of genetic variations on the

expression trait [5,8,9]. Multi-marker methods regard eQTL

mapping as a feature selection problem: the expression of genes is

predicted (explained) using a set of genetic markers [9]. Each

marker is scored with respect to how informative it is for the

prediction task. These methods often rely on penalized regression

algorithms such as LARS [10] or machine learning techniques,

e.g. Random Forests [11], which is based on an ensemble of

regression trees. We have previously shown through investigation

of both simulated and experimental data that multi-marker

mapping methods clearly outperform single-marker methods [8].

The field of ensemble learning comprises all approaches in which

a collection of possibly weak prediction models, so-called base

learners, are combined to a robust and powerful model. The concept

rests on the observation that combining disparate prediction

algorithms has the potential to markedly improve prediction results

[12]. Variants of ensemble methods include model averaging

techniques and committee methods. For example, in Bayesian

model averaging each prediction model contributes to the final

model with a weight being proportional to its posterior distribution.

On the other hand, bagging and Random Forests, both of which fall

in the category of committee methods, obtain their final prediction

as the majority vote (in classification) or average prediction (in

regression applications) of all single learners. Boosting is considered

as committee method as well, although the base learners evolve over

time and each cast a weighted vote [13].

There is a need for systematically comparing the performance

of eQTL mapping methods under different scenarios to reveal

which approach works best in which context. However, due to the

lack of trusted gold-standard gene-regulatory networks, it is not
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straightforward to evaluate the methods using real data [8]. The

‘‘DREAM5 SYSGEN A – In-silico network challenge’’ was set up

to provide synthetic data that mimic the structure of real gene-

regulatory networks, facilitating the assessment of the accuracy

and sensitivity of eQTL mapping approaches that are currently

used by the community.

We have decided to address this challenge using ensemble

approaches. In particular, we developed filtered and unfiltered

committees by combining the predictions of several machine

learning methods. As part of the DREAM5 PLoS One collection,

we present an overview of the results obtained with several machine

learning approaches and show that any combination of the methods

outperforms the individual methods. We also show that our

proposed approaches lead to a much higher average precision than

the other DREAM challenge contributions, at the cost of slightly

lower average sensitivity. Finally, we discuss the importance of

precision compared to sensitivity in eQTL mapping.

Methods

Multivariate mapping approaches such as Random Forests [11],

the LASSO [14] or the Elastic Net [15] either choose a small subset

of predictors or shrink some of their coefficients so that they drop out

of the model. These approaches are based on different criteria,

implying different underlying biological assumptions. For example,

the Elastic Net includes groups of correlated variables into a linear

model, while the LASSO will only include one predictor out of this

group, namely the one which shows the highest correlation with the

response. Additionally, both the Elastic Net and the LASSO assume

that the measured trait is a linear combination of the genotypes, and

do not implicitly allow for epistatic interactions. In contrast, tree-

based methods such as Random Forests allow for epistatic

interactions between the genotypes selected in the model. This

distinction is not as relevant to the data in this paper, since it was

simulated without the inclusion of these kinds of genetic interactions.

However, when applying the method to real data, such consider-

ations are important in order to accurately capture the underlying

biological processes.

Since the true model is unknown, and will be different for

different genes, we decided to combine several multivariate eQTL

mapping methods into committees in order to capture different

regulatory mechanisms and average out false positive findings due

to noise in the data. We tested different committees of the

following methods: Random Forests with two different variable

importance measures: permutation importance and selection

frequency; the LASSO and the Elastic Net.

Random Forests Selection Frequency (RF.sf) and Random
Forests Permutation Importance (RF.pi)

Random Forests [11] are ensembles of decision trees. Each tree in

the forest is fit to a bootstrap sample of the complete dataset, and

each split in the trees is performed by selecting the best split from a

randomly selected subset of predictor variables. In the case of eQTL

mapping, these predictors are genotype markers. In this work, we

used two importance measures that are indicative of eQTL. The

first, selection frequency (RF.sf), is simply the frequency at which a

marker was selected as the best splitting variable throughout the

forest. The second is the permutation importance (RF.pi), which

reflects the average decrease in predictive accuracy observed when a

marker is permuted randomly.

We used the reference implementation of Random Forests in R

[16] for the Random Forests mapping [17]. We grew forests with

5,000 trees, the mtry parameter (number of variables randomly

sampled as candidates at each split) was set to the default (one

third of the total number of predictors) and the minimum node

size was also set to the default of 5. We then extracted unscaled

permutation importance measures (RF.pi) and selection frequen-

cies (RF.sf) from the forests for use as the scores for each predictor.

LASSO Coefficient
Tibshirani developed the least absolute shrinkage and selection

operator (LASSO) to improve variable selection for linear

regression with regard to prediction accuracy and interpretation

[14]. The standard approach for estimating the coefficients of a

linear regression is ordinary least squares (OLS). However, when

the number of predictors exceeds the number of observations, as is

the case in eQTL mapping, OLS fails to select the subsets of

predictors that are the most predictive. LASSO overcomes this

problem by imposing a constraint on the coefficients which is

based on the L1 norm. LASSO thus tends to set many regression

coefficients to 0 in order to retain the most important predictors

and to produce an accurate and interpretable model [14].

We used the LASSO implementation from the elasticnet

package [15] for R [16] by setting the quadratic penalty l to

0.001. For each gene, we took the absolute value of the LASSO

coefficients for a fit performed with s (fraction of the L1 norm)

determined by 10-fold cross-validation, with an imposed minimum

of 0.25. These coefficients were used as the importance score for

each predictor.

If there is a group of correlated predictors that all predict the

expression trait equally well, LASSO will give a high importance

score to only one of them (the predictor most highly correlated

with the response). All other predictors in the group will drop out

of the model.

Elastic Net coefficient (ElNet)
Elastic Net is a combination of LASSO and Ridge regression,

which uses an L2 regression penalty. It has been shown that

compared to the LASSO, the Elastic Net is more suited for

situations in which the number of predictors greatly exceeds the

number of observations [15]. In contrast to LASSO, Elastic Net

will always select an entire group of predictors explaining the trait

equally well and thus would give large regression coefficients to a

whole set of correlated genotype markers. This results in

substantial differences with respect to how these two methods

deal with markers in linkage disequilibrium (LD): markers that are

physically close on the genome will always be correlated. Whereas

LASSO will only give one predictor in such a group a nonzero

coefficient, Elastic Net will distribute nonzero coefficients among

predictors in the group.

Again, we used the absolute coefficients of the best model (found

by ten-fold cross validation with the elasticnet package) as

importance scores for the predictors, this time setting l to 1.

Unfiltered Committees of Predictions
Each method assigns some kind of importance score to each

predictor – gene pair. We combined these in committees by

averaging the scaled and centered scores. We tested different

combinations of methods leading to slightly different performance

on the DREAM data. Of particular interest is using all importance

scores:

CommitteefRF:sfzRF:pizElNetzLASSOg~

RF:sfzRF:pizElNetzLASSOð Þ=4

Ensemble Methods for eQTL Mapping
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and using only RF.sf and LASSO:

CommitteefRF:sfzLASSOg~ RF:sfzLASSOð Þ=2

Filtered Committee
We also investigated a modified version of our committee

approach, which seeks for a very sparse solution, i.e. only a very

limited number of regulators per gene. In this case, the scores from

all methods except the LASSO were scaled and an average score

was calculated for each regulator – target gene pair. Subsequently,

each average score was set to zero if the corresponding LASSO

score was equal to zero. In other words, only variables that were

chosen by the very sparse LASSO algorithm got a nonzero final

score.

Committee RF:sfzRF:pizElNetf gjLASSO~

I LASSOw0ð Þ � RF:sfzRF:pizElNetð Þ=3

This filtering leads to a very different treatment of markers in

linkage disequilibrium. Whereas the unfiltered scoring above will

give all markers in a linked region relatively high scores, the

filtering results in the selection of only one marker from this

region.

Evaluation of the Performance
In the dream challenge, the area under the Receiver Operator

Characteristic (ROC) curve (AUROC) and the area under the

precision-recall curve (AUPR) were used to evaluate the perfor-

mance of the prediction methods [18,19]. The ROC curve shows

how the proportion of correctly classified positive instances (True

Positive Rate, TPR, also named sensitivity or recall) varies with the

proportion of incorrectly classified negative instances (False Positive

Rate, FPR) [20,21]. The AUROC therefore represents i) the

average specificity across all sensitivities, ii) the average sensitivity

across all specificities, and iii) the probability of an existing edge to

have a higher score than a non-existing one [22,23]. The precision-

recall curve compares the fraction of retrieved positive instances

(correctly predicted interactions among all predictions) to the

fraction of true positives (correctly predicted interactions among all

interactions). The AUPR therefore reflects the average precision of

predictions across all recall thresholds [24].

Results

The Systems Genetics Challenge Problem
The DREAM5 systems genetics in silico network challenge A

consisted of reconstructing a gene-regulatory network from

synthetic genetic variation and gene expression data. The data

were generated after the following scheme (see http://wiki.c2b2.

columbia.edu/dream/index.php/D5c3 and [25] for details):

fifteen different directed gene-regulatory networks consisting of

1,000 genes each were simulated following a scale-free out-degree

and an exponential in-degree distribution. The networks varied

both in the number of samples (100, 300 and 999; corresponding

to the 3 different sub-challenges A100, A300 and A999,

respectively) as well as the total number of edges. Network 1 in

each sub-challenge comprised about 2,000 edges; the number of

edges increased to ,5,000 for network 5 in each sub-challenge.

The simulated genotypes of 1,000 markers, each corresponding

to a mutation in exactly one of the 1,000 genes, imitate the

architecture of recombinant inbred lines (RIL). RILs are lines

derived from a cross between two genetically distinct inbred

parental lines, and are homozygous at every locus as a result of

inbreeding for multiple generations. Each of these RILs is

homozygous for the allele of one of the parents (i.e. each RIL

genotype vector can be coded in a 0/1 scheme), and each RIL has

inherited different combinations of parental alleles. The RILs

constitute a genetically randomized population, meaning that the

gene expression pattern of each RIL is the result of a different

multifactorial genetic perturbation (quoted from the DREAM

web-site: http://wiki.c2b2.columbia.edu/dream/index.php/

D5c3) [26]. Each mutation occurred either in the promoter or

the coding region of the corresponding gene, with probabilities of

0.25 and 0.75, respectively, which corresponds to mimicking cis-

and trans-effects. The former will affect the expression level of the

gene itself, while the latter modify the effect of the gene on the

transcription levels of its down-stream targets. The genotypes of

the 1,000 markers were evenly distributed on 20 chromosomes

and local linkage between adjacent positions on the chromosomes

was taken into account during the simulation process. Finally, gene

expression levels of each gene were simulated at a steady state of a

dynamical model built from a set of ordinary differential equations

(ODEs). The parameters of these ODEs define the level of the

activation and repression effects of the genes on their targets as

well as the influence of genetic variants and the noise levels. Details

of the ODE setup can be found in [26].

As in an eQTL study, the aim of the DREAM5 SYSGEN A

challenge was to retrieve the regulatory relationships of each

network using i) the simulated gene expression levels of the 1,000

genes in each RIL, and ii) the simulated genotype data of the

RILs. Results had to be presented as an ordered list of edges

between pairs of genes, where the edge scores were only used for

ranking and did not necessarily represent any kind of statistical

significance of the inferred edges.

Assessment of Individual Mapping Methods
Following the conclusion of the DREAM5 challenge, the

reference networks were released. We used these data to evaluate

the performance of the four multivariate eQTL mapping methods

comprising our committee approach, individually and in combi-

nation. Figure 1 shows the ROC and precision-recall curves for all

four individual methods (RF.sf, RF.pi, LASSO and ElNet), the

combination of all methods (RF.sf+RF.pi+ElNet+LASSO), the

filtered committee ({RF.sf+RF.pi+ElNet}|LASSO) and the best

performing of all combinations (RF.sf+LASSO). Notably, all

individual methods are outperformed by at least one combination

of approaches both in terms of ROC and precision-recall curve

(Figure 1). However, there are striking differences between the

individual approaches. RF.sf outperforms the other methods by far

regarding the precision-recall curves. Its performance is very close

to most of the combinations of approaches. Still, combining RF.sf

with LASSO or other methods can improve the precision at a

given level of recall (Figure 1B). RF.pi, ElNet and LASSO do not

reach precisions above 0.6 even when considering only the first

few top ranking edges. This suggests that these methods lead to a

relatively large fraction of false positive findings among the top-

scoring edges. Moreover, both LASSO and ElNet are methods

that aim to limit the number of features used in the model. This

restrictiveness in terms of the number of predicted edges is

reflected by the kinks in the ROC curves obtained when using

these methods (Figure 1A).

The organizers of the DREAM challenge used both the area

under the precision recall curve (AUPR) and the area under the

receiver operating characteristic curve (AUROC) to assess how

Ensemble Methods for eQTL Mapping
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well the predicted networks approximate the gold standard

networks [18,19]. RF.sf almost always achieved better rankings

in both AUPR and AUROC than the other three individual

methods (Figures 2 and 3). Interestingly, the superiority of the

performance of the RF.sf compared to the other individual

methods increases with decreasing number of RILs (Figure S1); in

other words, the RF.sf outperforms other mapping methods in

particular when the number of samples is relatively small, a

scenario that closely reflects the real-world constraints of eQTL

Figure 1. ROC and precision-recall curves for individual multivariate methods and combinations thereof. ROC curves and precision-
recall curves obtained for the prediction of one representative network with an intermediate number of edges and 300 RILs (network 3 of sub-
challenge A300). We compare the performance of all four individual methods (RF.sf, RF.pi, LASSO and ElNet), the combination of Random Forests
selection frequency and LASSO (RF.sf+LASSO), the combination of all four approaches (RF.sf+RF.pi+ElNet+LASSO) as well as the filtered committee we
submitted to the challenge ({RF.sf+RF.pi+ElNet}|LASSO). Left: ROC curves. Right: precision-recall curves. The differences in performance between the
methods are more apparent in the precision-recall curves.
doi:10.1371/journal.pone.0040916.g001

Figure 2. AUROC and AUPR for all tested methods. For each of the 15 networks of the DREAM5 SYSGEN A challenge, we evaluated the
performance of the different methods using the AUROC and AUPR as metrics. To better compare AUROC and AUPR values, they were scaled to the
maximum value obtained across methods for each network. Results were then summarized over all 15 networks. The bars show the mean AUROC
(left-oriented bars) and AUPR (right-oriented bars) per method, error bars indicate one standard deviation. RF.sf+LASSO outperforms the DREAM best
performer and all our tested approaches in terms of AUPR. Differences between the methods on AUROC values are less pronounced.
doi:10.1371/journal.pone.0040916.g002

Ensemble Methods for eQTL Mapping
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studies [8]. RF.sf also achieved a better average precision (based

on AUPR) than the best DREAM participant.

Prediction Using the Filtered Committee:
{RF.sf+RF.pi+ElNet}|LASSO

The method we proposed for the challenge was a filtered

committee of the four tested multivariate eQTL mapping methods

({RF.sf+RF.pi+ElNet}|LASSO). This approach was designed to

identify a small number of regulators per gene with high accuracy.

It consists in a combination of 3 variable importance measures

(two from Random Forests and one from the Elastic Net) filtered

based on the presence of a nonzero LASSO coefficient. The

AUPR obtained by our filtered committee approach was the

highest among all the methods competing in the challenge, and for

all networks (Figures 3B and S1). Moreover, the AUPR across the

15 networks was on average 46.1% (sd 20.8%) higher than the

DREAM best performer, whereas the AUROC was on average

9.53% (sd 3.9%) lower. This shows that, compared to the best

performer of the DREAM challenge, on average the relative gain

in precision of the {RF.sf+RF.pi+ElNnet}|LASSO method at any

given recall rate is much greater than the average relative loss of

sensitivity. The main weakness of this approach was its drop in the

slope of the ROC curves (Figure 1A). One of the reasons the

filtered committee method performed worse than the other

methods may have been the sparseness of its predictions. The

{RF.sf+RF.pi+ElNet}|LASSO method predicted indeed at most

23,361 edges in the studied networks (Figure S2). However, the top

100,000 predictions were used to evaluate the performance, and

therefore, random edges were added to the predictions produced

by the {RF.sf+RF.pi+ElNnet}|LASSO method to reach 100,000.

To reduce sparseness of the prediction, we tested an unfiltered

integration of the four different approaches, which led to better

results in terms of AUROC and AUPR (Figures 2, 3 and S1).

Figure 3. Rankings of all methods based on AUROC and AUPR. For each of the 15 networks of the DREAM5 SYSGEN A challenge (5 for each
sample size), the performance of the different methods was ranked using both the AUROC (A) and the AUPR (B). For each method, ranks are plotted
horizontally across all networks. Sample sizes (number of RILs) and network complexity (number of edges) used for simulating the network are shown
between the panels. While the DREAM best performer always ranks best based on the AUROC (Panel A), RF.sf+LASSO ranked first in all but one
network based on AUPR (Panel B).
doi:10.1371/journal.pone.0040916.g003

Ensemble Methods for eQTL Mapping
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Combination of Two Methods Outperforms All Other
Alternatives

We have investigated the predictions of the committees

consisting of all the possible unfiltered combinations of the four

methods. Most of our committees outperform the best DREAM

performer in terms of AUPR at the cost of a slightly worse

AUROC (Figures 2, 3 and S1, only the best unfiltered

combinations are shown). Overall, we also observed that the

committees outperform their constituent methods. The committee

composed of the Random Forests selection frequency and the

LASSO (RF.sf+LASSO) performed better than all other evaluated

methods (Figures 1, 2, 3, Figure S1). Interestingly, RF.sf and

LASSO were also the two individual methods that performed best

among the four that we have evaluated. RF.sf+LASSO outper-

forms the DREAM best performer and all our tested approaches

in terms of AUPR. The relative gain in AUPR increases with

increasing sample size and network complexity (Figure S1).

Compared to the best performer of the DREAM challenge, the

combination of these two methods showed slightly lower average

sensitivity (average AUROC decrease of 4.68%, sd 1.74%) but

much higher average precision (average AUPR increase of 63.5%,

sd 25.4%). This shows that the combination of a small number of

machine learning methods has the potential to considerably

improve prediction results, especially in terms of average precision.

Discussion

In this article, we have tested several methods to reverse-

engineer eQTL networks from synthetic expression and genotype

data [5–7]. The merit of our approach resides in combining

existing machine learning algorithms in committees. Since the

predictions of the other challenge participants are not public, we

cannot directly compare the precision-recall curves of our

approaches to their results. However, the filtered committee we

submitted to the DREAM5 competition achieved higher AUPR

than any other competing method in the challenge. After the

release of the DREAM5 gold standard networks, we continued

working in this direction by testing other committees using the

DREAM5 framework and identified methods that achieve much

higher AUPR than the DREAM best performer at the cost of only

slightly lower AUROC values.

When the amount of training data is limited (as is the case in

eQTL mapping), many models can explain the data equally well.

In machine learning this is well known as the ‘‘small n, large p

problem’’: the number of samples is small compared to the

number of parameters and thus, the system is underdetermined

[27]. A model using all available parameters is likely to overfit the

data, leading to a large variance in the predictions sensitive to

small variations of the training data. On the other hand, using too

few parameters will lead to high bias. Ensemble methods are

widely used in machine learning, because they enable the

simultaneous reduction of variance and bias, even when the size

of the training data is small [27,28]. In fact, the Random Forests

method is itself a committee. Random Forests learns an ensemble

of decision trees by varying the learning data, yielding stable

models (low variance) with a minimized bias [11]. Consistent with

the known superior performance of ensemble methods, we have

previously shown that RF outperforms other eQTL mapping

methods [8]. Here, we combined RF and other modeling

techniques into committees, a type of ensemble [13]. We observed

that these committee methods almost always performed better

than their constituent methods (Figure 4).

When groups developing algorithms are also the ones validating

them, the benchmark data and the assessment metrics can be

biased (knowingly or not) in favor of the proposed algorithm [29].

A key aspect of the DREAM challenges is that the ‘ground truth’

data is obscured from the participants [29], resulting in a more

objective assessment than most computational methods papers can

provide. This makes the DREAM challenges a valuable tool for

the computational biology community. Our approach had already

proven its value within the context of the DREAM challenge itself

(before the evaluation data was released). Here, we extended the

analysis of committee methods and tested additional combinations

of the learners in order to better understand the factors that

explain the performance of our approach. This analysis revealed

that Random Forests alone – which in itself is a committee method

– performed almost as well as the combined approach that we

chose for the challenge. Combining just two out of the four

methods that we included in our initial committee (RF.sf+LASSO)

yielded top performance. The role of LASSO may be to

ameliorate the problem of linkage disequilibrium, i.e. given a

linked region, LASSO identifies the marker within the region that

is most likely associated with the expression of the target gene.

LASSO could therefore be used for ‘fine mapping’ the causal

locus.

The evaluation of the performance of the methods competing in

the DREAM5 challenge relies on the AUROC and AUPR. The

Receiver Operator Characteristic (ROC) curve shows how the

fraction of correctly classified positive instances (True Positive Rate,

TPR) varies with the fraction of incorrectly classified negative

instances (False Positive Rate, FPR) [20,21]. It has been argued that

ROC curves are not reliable when there is a large skew in the class

distribution; under this condition they strongly over-estimate an

algorithm’s performance [30,31]. In the case of gene-regulatory

network reconstruction or eQTL mapping, the number of negative

instances greatly exceeds the number of positive instances; i.e. the

number of true interactions is only a small portion of the potential

interaction space. This implies that large differences in the number

of false positives (i.e. the number of incorrectly predicted interac-

tions) may only slightly affect the FPR and therefore lead to small

changes in the AUROC. In contrast to this, precision, which drives

the AUPR, compares the number of false positives (incorrectly

predicted interactions) to the number of true positives (correctly

predicted interactions) and is thus more sensitive against small

changes of the number of false positives when the number of true

negatives (non-interacting pairs of genes) is large. Precision-recall

curves are therefore considered as an alternative to ROC curves

when the class distribution is skewed [21].

We showed that our approaches yield a much higher AUPR at

the cost of a slightly lower AUROC than the other competing

methods of the DREAM challenge. We argue here that in the case

of eQTL mapping, the AUPR may better assess the performance

of the competing methods, in the way that it penalizes the

detection of false positive edges among the top scoring edges more

heavily than the AUROC score. Indeed, in practice the prediction

of a regulatory relationship is only the first step of the analysis. The

predicted relationships can be used as a basis to study a biological

process, or be validated in a follow-up experiment, or (more

commonly) be integrated with other data to make biological

inferences. Depending on the down-stream analysis, erroneous

prediction of an interaction may be much more expensive than

missing an interaction.

Data simulations are a well-established means to test new

approaches for data analysis and compare them to state of the art

methods in the field. However, the more complex the data to be

analyzed, the more difficult it is to mimic these data with

simulations. While the DREAM5 SYSGEN A data were designed

to simulate the complex regulatory relationships between genetic

Ensemble Methods for eQTL Mapping
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loci and gene expression, there are several considerations missing

from the data-generating model. Epistatic interactions between

loci (non-additive effects) greatly complicate the structure of eQTL

networks [32,33]. The model underlying the DREAM5 SYSGEN

A data includes multiplicative effects of the regulators on gene

expression. However, true epistatic effects may also include other

types of interactions, for example an XOR relationship between

two loci. Additionally, in practice, methods have to be able to cope

with missing data (in the genotyping as well as in the phenotyping

of the RILs). Further, the ratio of strains being tested versus the

number of markers is often lower than in the DREAM5 challenge,

thus creating additional statistical complications [34–37]. Finally,

by equating eQTL and gene loci (i.e. there are no intergenic

regions in the simulated data), the DREAM challenge avoids the

problem of finding the true causal polymorphism and relating it to

the genomic feature driving the eQTL. This is arguably the most

difficult part of any eQTL study and is vital for any biomedically

beneficial result of the analysis. We believe that while the

DREAM5 challenge is a good first step in developing methods

to discover gene-regulatory networks from systems genetics data,

there are some clear steps that could be taken to make the

simulated data more closely mirror the characteristics of real-

world data. It would be of interest to assess the performance of the

kinds of methods we have described here on future community

shared benchmarks that better reflect the complexity of eQTL

mapping and also to integrate real data into the evaluation

procedure [8].

Supporting Information

Figure S1 Area under the ROC (AUROC) curve and area under

the precision-recall (AUPR) curve for each of the 15 networks of the

DREAM 5 SYSGEN A challenge. The bars show the AUROC

(left-oriented bars) and AUPR (right-oriented bars) for each method

and each netwrok. Top panel, 100 RILs. Middle panel, 300 RILs.

Bottom panel, 999 RILs. Complexity of the networks (number of

edges) increases from left to right in each panel.

(PDF)

Figure S2 Number of interactions predicted by the filtered

committee ({RF.sf+RF.pi+ElNet}|LASSO) for each of the 15

networks of the DREAM5 SYSGEN A challenge. The challenge

was divided into three sub-challenges with varying sample sizes

(100, 300 and 999 RILs, respectively), and each sub-challenge

consisted of 5 different networks with growing numbers of edges.

The number of predicted interactions positively correlates with

sample size and network complexity. For the evaluation of the

Figure 4. Gain in AUROC and AUPR for committees made of method pairs. We evaluated the committees composed of all possible pairs of
the four single variable selection methods (RF.sf, RF.pi, ElNet and LASSO). In order to assess if committees were beneficial, we compared their
performance to the performance of their constituent methods. For each combination of method pairs, we calculated the ratio of the AUPR and
AUROC of the constituent methods over the AUPR and AUROC of the committee. We used this ratio to compute the gain of AUROC (A) and AUPR (B)
obtained by the committees over the constituent methods and averaged this over the 15 networks of the DREAM challenge. Error bars represent the
standard deviation. This figure shows that the committees are almost always more predictive than the constituent methods.
doi:10.1371/journal.pone.0040916.g004
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challenge, the top 100,000 scoring interactions were considered.

The {RF.sf+RF.pi+ElNet}|LASSO method was very restrictive in

the number of predicted network edges. Since the {RF.sf+RF.pi+El-

Net}|LASSO did not predict that many interactions for any

network, the evaluators added random interactions.

(PDF)
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