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A B S T R A C T

Pathogens and cancers are pervasive health risks in the human population. I argue that if we are to

better understand disease and its treatment, then we need to take an ecological perspective of disease

itself. I generalize and extend an emerging framework that views disease as an ecosystem and many of

its components as interacting in a community. I develop the framework for biological etiological agents

(BEAs) that multiply within humans—focusing on bacterial pathogens and cancers—but the framework

could be extended to include other host and parasite species. I begin by describing why we need an

ecosystem framework to understand disease, and the main components and interactions in bacterial

and cancer disease ecosystems. Focus is then given to the BEA and how it may proceed through

characteristic states, including emergence, growth, spread and regression. The framework is then

applied to therapeutic interventions. Central to success is preventing BEA evasion, the best known

being antibiotic resistance and chemotherapeutic resistance in cancers. With risks of evasion in mind, I

propose six measures that either introduce new components into the disease ecosystem or manipulate

existing ones. An ecosystem framework promises to enhance our understanding of disease, BEA and

host (co)evolution, and how we can improve therapeutic outcomes.
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INTRODUCTION

Despite the pervasiveness of parasites and cancers

across animal species and in humans in particular,

our knowledge of the ecology and evolution of dis-

ease itself is surprisingly limited. When disease is

studied in detail, it is often through descriptions of

signs and symptoms, or the characterization of the

biological etiological agent (BEA) and of diseased

tissue ultrastructure. Other study—focusing on

population-level interactions—usually abstracts dis-

ease into a single variable such as aggressiveness or

pathogenicity. Although both approaches pro-

duce insights into BEA–host interactions, they over-

simplify disease by omitting what may be its single

most important driving force—ecology.

review

270

� The Author(s) 2018. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-6774-5213
http://�creativecommons.�org/�licenses/�by/�4.�0/�


I advocate the perspective that when examined through an eco-

logical lens, disease has a characteristic structure. Investigating

this structure and variations on it is important not only for under-

standing ecology and evolution in a fundamental type of habitat—

the organism—but also to develop approaches that lessen the

burden of BEAs in animal husbandry, wildlife, on endangered

and domesticated species, and in the human population—the

latter being the focus of this review. The usual approach is to treat

BEAs with drugs, but these can fail due to selection for resistance.

The two most familiar types in humans are antibiotic resistance

and chemotherapeutic resistance in cancers.

Early in the 20th century, Paul Ehrlich encouraged the search for

the ‘Magic Bullet’—a single drug that targets and cures a disease

with minimal residual toxicity for the patient. Ehrlich [1] also

argued for the accepted approach of the day frapper fort et frapper

vite (hit hard and without delay), based on the construct that drug

dose must be commensurate with the severity of the disease and

delaying drug delivery allows BEAs to multiply and cause irrepar-

able damage and possibly death. Ehrlich and his contemporaries

knew that some parasites could resist chemotherapy but were

unaware of the underlying mechanisms. Despite clear arguments

for why attempting to eradicate BEAs risks selecting for resistance

[2, 3], frapper vite et frapper fort is still widely regarded as the surest

way to cure disease.

The above two challenges—understanding disease and im-

proving therapeutic outcomes—are interrelated because

achieving the former will help address the latter, and because both

natural, evolved processes that remediate disease and thera-

peutic interventions have ecology at their foundation. Here, I de-

velop a framework for addressing these challenges. Focus is on

humans because of the rich knowledge of some of their diseases

and the growing importance of finding solutions to drug resist-

ance and the improvement of therapeutic outcomes. In particular,

I describe how disease can be understood as an ecosystem, the

components and processes of which can be either manipulated

separately or in combination toward a therapeutic objective. The

disease ecosystem employs analogies from terrestrial, aquatic and

agricultural ecosystems (hereafter ‘classic’ ecosystems),

including predators, prey, competitors, detrivores, resources

and the environmental surroundings. Thus, like classic ecosys-

tems, disease ecosystems are intrinsically ecological: they are

influenced by the environment and composed of feeding relation-

ships (food webs) among ‘species’ in an interactive community.

I begin by justifying the need for an ecosystem framework of

disease. I argue that in both healthy and diseased tissues there is a

largely undiscovered world of ecosystem-like processes including

resource fluxes, inter- and intraspecific competition, predation by

immune systems and waste removal. I develop this concept as the

central feature of the framework and then focus on how the state

of the BEA population and associated disease provide reliable

information about disease progression or remediation. Before

applying the framework to therapies, I discuss what failures due

to resistance typically resemble and present several other routes

to therapeutic evasion that have received little attention. Key to

applying the framework is how decisions are made about whether

a treatment should attempt to eradicate or contain the BEA, or

rather simply limit disease, and how strategies and tactics can be

either used singly or in combination. Finally, I present some limi-

tations to the framework and concluding thoughts.

The framework is centered on BEAs that replicate in the disease

ecosystem such as microparasites and cancers, and not asymp-

tomatic infections or diseases stemming from non-BEAs.

The current framework should therefore be viewed as part of a

larger picture. I also do not address the important question of how

to measure ecological and evolutionary features of disease (see

reviews in e.g. [4, 5]). Finally, I do not attempt a systematic over-

view of the huge diversity of human BEAs. Rather, I refer where

appropriate to specific examples in several well-studied BEA

groups, principally bacteria and cancers. Comparing and contrast-

ing the basic features of these groups is the first step towards an

understanding of disease ecosystems and how they can be used to

devise successful therapies.

THE NEED FOR A GENERAL FRAMEWORK

Disease is a complex system of multiple species interacting at

multiple biological and spatial scales. Whether and how a disease

progresses, what are the implications for the BEA and the host,

and how to design therapies can only be answered if we

characterize the underlying components, their functions and

interrelationships.

The limited accessibility and microscopic nature of disease

makes it particularly challenging to study and to measure. As a

consequence, in vivo work typically takes physiological and epi-

demiological approaches, describing signs and symptoms,

changes in tissue ultrastructure, and consequences for morbidity

and mortality. In contrast, in vitro study usually focuses on the BEA

itself and abstracts-out the complexity characteristic of in vivo

environments. This is problematic, for example, because in vitro

observations can be misleading about in vivo behaviors [6].

The combined situation—the general ignorance of ecological

and evolutionary mechanism in vivo, the oversimplification of real

environments in vitro —limits our knowledge of how disease-

generating processes actually work.

Beyond the importance of how both ecology and evolution in-

fluence disease, a general framework needs to have the flexibility

to accommodate the effects of therapeutic interventions. Therapy

can be viewed as an ecological perturbation intended to reset a

disrupted system to its healthy state. As indicated above, the pre-

vailing approach is frapper fort et frapper vite to eliminate BEAs and

minimize the chances that (contagious) BEAs are transmitted to

other hosts. However, a large body of work indicates that targeted

antimicrobial and anticancer chemotherapies select for resistance

[3, 7], and there is increasing awareness that drug therapies can
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have enduring disruptive effects on the microbiome [8] (but see

[9]) and the host itself (e.g. contributing to other diseases, such as

secondary cancers).

Despite the large body of evidence that treat-to-cure chemo-

therapy can lead to resistance and treatment failure, this ap-

proach has stood the test of time, largely due to its simplicity

and common sense, but also because it often works [10].

Aggressive chemotherapy also continues largely unchallenged

because scientific study is still in early days of evaluating alterna-

tives, most of which are centered on preventing or limiting the

evolution of resistance. Until relatively recently much of what was

known about resistance and its management derived from pesti-

cide use (Box 1). Although the lessons learned are foundational,

they often abstract-out ecology, and are sometimes difficult to

apply to disease due to differences in biology and ecology, habitat

structure and habitat resilience to treatment.

We therefore need a general framework that is firmly rooted in

ecology and evolution both as a basis for fundamental under-

standing and to guide therapies [11]. There are a number of

developments and frameworks that integrate ecology and evo-

lution (parasites and pathogens: [12–15]; cancers: [5, 16–20]),

but none extend to both infectious and non-infectious BEAs. My

aims are to generalize the disease ecosystem concept and to use

its insights to suggest several novel therapeutic interventions.

AN ECOSYSTEM FRAMEWORK OF DISEASE

The framework for understanding and treating disease (Figs 1

and 2) focuses on how the components and processes in the

disease ecosystem interact directly and indirectly with the BEA.

The system can be in one of four main states that reflect BEA

emergence, population growth, spread and pathogenicity, and

regression. Understanding the state of the BEA and associated

disease will be the basis for applying the framework to therapeutic

interventions, as described below.

The organism ecosystem

The ecosystem concept is a general way of representing species

interaction networks, non-living organic and inorganic matter

pools, and the physical habitat. Key to the concept is the fluxes,

balances and stocks in these different compartments, and how

events (e.g. environmental disturbance, species invasions) can

have consequences for individual compartments or the ecosys-

tem as a whole.

Similar to classic ecosystems, the healthy organism ecosystem

is composed of supportive and regulatory structures (Fig. 1A

and B). Supportive structures include habitats (tissues), resource

replenishment (circulatory system) and waste removal (phagocyt-

osis, circulatory system). Regulatory structures include coopera-

tive interactions (cell–cell signaling, hormonal control), predation

(immune systems), and commensalism, competition and para-

sitism (microbiota). These structures will vary between tissue

types [14], suggesting that ecosystem dynamics may contrast as

well.

Although it is tempting to perfectly equate different

components in organism ecosystems with analogs in classic eco-

systems, they do have at least one important difference: whereas

Darwinian selection acts on many component species in the lat-

ter, it is centered on a single species in the former (but see [21]).

Thus, we would expect the core of the organism ecosystem (i.e.

host cells) to evolve traits that promote habitat maintenance and

remediation, meaning more coordination and less autonomy

than species interactions in classic ecosystems. We would never-

theless also expect that similar processes are at work between the

two system types, including selection acting on traits ultimately

affecting the ecosystem, and co-evolution with mutualists,

Box 1: The lessons of pesticide use

Much of our knowledge about therapeutic resistance and how to manage it can be traced to lessons from the use of pesticides

in agriculture [181, 182]. Pesticide treatments attempt to reduce damage below an economic threshold while not exceeding

acceptable levels of residual toxicity for consumers and the environment (e.g. non-target species). By the very nature of pest

status (i.e. large, dispersive populations with high potential growth rates) and high but nevertheless limited doses of chemicals

(meaning that sufficiently resistant strains are likely to survive a given dose), the repeated, blanket application of the same

‘magic bullet’ over a population will eventually select for resistance. The usual course of action is to search for new compounds

to replace the failing ones. But our ability to create new active substances is declining and the number of resistant pests is

increasing [183]. Ecologically- and evolutionarily informed approaches have become promising alternatives. Primary among

them is the prediction that resistance can only be contained by ‘conserving’ sensitive strains of the pest. For example, the

evolution of resistance can be slowed if the competitive balance is shifted in some places and times in favor of sensitive strains

[184]. There is evidence that this and other tactics increase the likelihood of managing resistance in pest control programs

[185].
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commensals and parasites. More research is needed to explore

these observations and expectations.

The disease ecosystem

The disease ecosystem results when a healthy ecosystem is dis-

rupted by a BEA and the host organism attempts remediation.

This is in some ways analogous to environmental disturbances in

classic ecosystems and more specifically to those stemming from

invasive species (Box 2). Below I describe some of the main fea-

tures of the disease ecosystem (Fig. 1C), and briefly review the

most understood type—the ‘tumor microenvironment’—in

Box 3.

When the BEA enters or emerges from within a healthy host

ecosystem it is likely to be confronted by one or more of physical

structures [22, 23], oxidative stress, chemical defenses [24] and

innate immune responses [25]. Immune systems in particular are

central to somatic maintenance, including the host’s ability to

either limit the growth and spread of (or eradicate) a BEA [26],

and to repair tissue damage [27]. However, some BEAs may evade

the immune response, grow, spread and generate disease. BEA

and host genotypes, the environment and tissue type are among

the many factors influencing these processes and the associated

severity and extent of disease [25, 28–31].

Many disease ecosystem interactions involve vying for re-

sources. As the BEA grows it competes for space and/or nutrients

and this may result in stressful local conditions (e.g. hypoxia,

[32, 33]), and in certain cancers, favor disease progression [34].

Competition for space or nutrients can occur with the same or

other BEA types [35–37], host cells [38] or commensal microbiota

A

B

C

Figure 1. Healthy and disease ecosystems. (A) Organ- and tissue-level scale of the main compartments in host ecosystems. The boundaries of the ecosystem are

determined by the interactions and events of importance and interest to the observer. Organ type, tissue architecture and local environmental conditions will play

roles in the structure and dynamics of the ecosystem. In particular, interactions among cells (depicted as a network) and immune system flows into and out of the

reference ecosystem will mediate homeostasis and/or dysbiosis in association with the BEA. (B) Basic structure of a healthy tissue ecosystem. This consists of the

local vascular system, epithelial cells, extracellular matrix (ECM), microbiota (e.g. bacteriophages and bacteria) and elements of the immune response, including

phagocytes, lymphocytes and antimicrobial peptides. Nutrients delivered through the vascular system feed nearby living cells. Foreign cells may be engulfed by

phagocytes, and waste removed by both phagocytes and the vascular system (diffusible wastes, e.g. CO2). Finally, fibroblasts as part of the innate immune system

contribute to maintaining tissue structure (ECM and vascular system) and initiating the immune response to injury or BEA invasion. See caption C for key to

symbols. (C) Basic structure of the disease ecosystem. BEAs, microbiota, their natural enemies (e.g. viruses) and immune cells interact in a community. Healthy

host cells are also part of the community since they compete locally with BEAs. All living cells in this disease ecosystem consume nutrients and produce waste and

by-products, some of the latter two of which is recycled. Like the healthy tissue ecosystem, the habitat is supported by fibroblasts, ECM and the vascular system,

but, notably in the case of tumor microenvironments, the structure of these are disrupted by the damage caused by the BEA and chronic inflammation (not shown).

Arrows indicate a subset of the possible directions of influence. See main text for details
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[39]. For example, Balmer and Tanner [37] argued that multi-strain

infections could have far reaching consequences for the ecological

and evolutionary dynamics of disease, including mutualistic inter-

actions and direct and indirect competitive interactions (e.g. ap-

parent competition). Nutrient levels have also been shown to

influence BEAs indirectly via the immune system [40]. Despite

the multitude of potential indirect interactions suggested by

Fig. 1C—particularly with the microbiota—little study to date

has investigated these in detail (e.g. [41]).

Although many of the events in disease ecosystems have ana-

logs in classic ecosystems, the detailed functions often contrast.

Thus, for example, whereas immune systems and predators ul-

timately kill their ‘prey’, unlike predators, immune cells do not

appear to gain significant energy in the process. Rather, the latter

derive energy from nutrients in situ, including in the disease eco-

system (for the tumor microenvironment, see [42]). Moreover,

unlike predators, different immune cells cooperate in killing dis-

eased/damaged cells and pathogens. (A notable exception to this

in classic communities is cooperative hunting.) Thus, lympho-

cytes function as precursors for phagocyte activity, either marking

or killing target cells, whereas phagocytes engulf and remove tar-

get cells and waste. Despite detailed knowledge about immune

systems, we know very little about their functional and numerical

responses (but see [43]) and how these may contrast with classic

species communities.

States of BEA and associated disease

The BEA is at the center of the disease ecosystem framework.

The BEA population is dynamic, yet proceeds through one or

more of a characteristic series of states. These states can convey

considerable information about the current and future growth of

the BEA and disease. Torres et al. [44] proposed a ‘disease map’

that tracks pathogen load and patient health through the course

of a disease. Below, I reinterpret this concept emphasizing the

growth and evolvability of the BEA population and associated

disease (Fig. 2).

State 1. Establishment: small numbers, low evolutionary
potential, negligible disease
As described above, during establishment, BEAs confront novel

and possibly hostile environments [45, 46]. Establishment will

depend on the BEA’s ability to evade immune responses and ei-

ther already possess or plastically express virulence factors

permitting resource acquisition and growth [47]. Should the im-

mune response be sufficient, the BEA enters directly into State 4

(see below) and declines. Even should a small BEA population

continue to grow, its total mass and the extent of associated

Box 2: BEAs and invasive species

BEAs have commonalities with invasive species [186]. They colonize a spatially heterogeneous and potentially hostile environ-

ment, and may adapt to or transform the prevailing host ecosystem into one where they can grow, evade predation (or grow

despite it), gain access to resources, and multiply and disperse. In so doing BEAs interact with the microbiome, host cells and

tissues, and produce waste. Moreover, like invasive species, BEAs can be spatially structured. For example, Lloyd et al. [187]

examined spatial models of tumor growth and found that cells toward the center of the tumor aggressively competed for

resources and attained high densities, whereas cells toward the periphery grew faster and competed less. Similar to invasive

species [188], BEAs may be associated with specific microbial communities (e.g. [14, 140, 189, 190]), but any causation between

the two can be difficult to determine (see [191]). Also, BEA activity may lead to the damage of host cells, tissues and organ

systems, and the impairment of waste removal, and there are parallels with invasive species in classic ecosystems [192].

Figure 2. Four states in BEA and associated disease. This classification is

based on growth in a novel and hostile environment (State 1), BEA population

size (cumulative number of births) and therefore evolutionary potential (State

2), and spread and colonization of local and distant within-host habitats with

correspondingly greater impact of disease on the host (State 3). Therapeutic

objectives (eradication, containment, satisficing) change with progression

through the three first states (it is assumed that natural remission (State 4)

will not be subject to therapeutic intervention). In particular, although optimal

protocols are feasible in States 1 and 2, treatment options may be limited to

‘satisficing’ in (late) State 3, for example due to reduced tolerance to drug

toxicity. Should the immune response and any corresponding inflammatory

response be sufficient, then the BEA and associated disease would regress to

the healthy tissue state and homeostasis (State 4). This is shown for remedi-

ation from State 3, but it could also occur at States 2 or 1. See main text for

further discussion
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disease is likely to be minute. State 1 continues until (i) cumula-

tive cell turnover is on the order of the reciprocal of the beneficial

mutation rate (entry into State 2), and/or (ii) the intensification of

disease due to some combination of direct damage by the BEA

and possible chronic inflammation (entry into State 3).

Detailed study of the initial phases of BEA population growth is

uncommon. For example, Margolis and Levin [48] considered how

commensal Haemophilus influenzae could become invasive from

the nasal passage to the blood and then evolve. They showed that

invasive infections have a significant stochastic component, are

typically initiated by a single bacterial cell and found evidence for

infrequent within-host evolution. Leggett et al. [49] looking across

43 different human pathogens found that lower inoculum num-

bers were required for infections generating pathogenesis at local

as opposed to distant sites. The former tended to be more virulent

than the latter. In contrast to parasitic BEAs, tumorigenesis re-

quires key initiating mutations that compromise cooperative cel-

lular functions [50], and together with subsequent tumor

progression and metastasis (States 2 and 3), this can take years

or even decades to achieve (e.g. [51]).

State 2. Growth: mutation, adaptation and resistance
The transition from a relatively slow growing, evolutionarily

limited BEA in State 1 to an exponentially growing, evolving BEA

in State 2 is associated with both population turnover (total births

per unit time) and mutation rate [52, 53]. Population growth will

be influenced by the host immune system and nutrient levels [40,

54]. The per-birth mutation rate can be highly variable between

different BEA strains and types, with more rapid passage from

State 1 to State 2 expected for hypermutating bacteria, RNA

viruses such as HIV-1, and genomically unstable tumor cells.

For example, Sottoriva et al. [55] studied the spatio-temporal dy-

namics of beneficial mutations in colorectal cancers. They found

that the first dominant mutations emerged in tumors containing

as few as �<10 000 cells, which can be explained in part by mu-

tation rates as high as �10�5 (see also [56]).

BEA population growth and evolutionary potential have two

notable consequences. First, growing BEA populations result in

alteration of host cell behaviors and for some BEA types, greater

tissue damage. Second, higher mutation rate favors anti-immune

defenses [57], adaptations in nutrient use [58, 59] and resistance

to therapeutic interventions [60, 61].

State 3. Spread: growth and dispersal magnify disease
Continued BEA growth eventually results in metabolic competition

and—particularly in the tumor microenvironment—waste accumu-

lation. One or both of these factors can promote local colonization

and migratory behaviors [62, 63], which lead to increased pathogen-

icity. Although disease can be significant at low BEA densities

(States 1 and 2), all else being equal, it usually worsens with time

and as BEA numbers grow (see contrasting scenarios in [64]).

Cancers are arguably the best examples of how growth, local tissue

invasion and distant tissue colonization—together with chronic

inflammation—compromise host condition and increase mortal-

ity. Local tissue invasion and metastatic spread are indicative of

escape from immune control [65]. Similar patterns are observed in

certain microparasites, where disease progression is associated

with local tissue invasion and cell entry [23].

Box 3: The tumor microenvironment

The most understood type of disease ecosystem is the ‘tumor microenvironment’. One principal difference between tumor cells

and other BEAs is that the former are - themselves - diseased. Tumor cells divide, move, compete and may cooperate in a 3D

semi-structured mass [193–196]. However, only those tumors successfully evading the immune response will progress to cause

significant disease [65, 85]. Similar to healthy host cells or growing parasites, tumor cells sequester resources from the host.

But in contrast to the first two, tumor cells dramatically increase their glucose uptake through aerobic glycolysis and produce

waste in the form of lactate (i.e. the Warburg Effect [197]).

Spatial structure plays an important role in the disease ecosystem of solid tumors. Because of the disruption of otherwise healthy

tissue, diffusible wastes increase and nutrients decrease with distance to the nearest capillaries. This is particularly important in

cancer growth, where cells toward the interior of a tumor tend to be deprived of resources (glucose and oxygen) and exposed to

high concentrations of various wastes (especially lactate). These conditions can lead to altered cellular behavior or cell death [198],

and can even extend beyond stressed areas of a tumor: hypoxic cells may diffuse molecular signals that stimulate (i) angiogenesis

thereby fostering cell survival and tumor expansion, and (ii) cell motility, which promotes metastasis [199].

Another characteristic of the cancer disease ecosystem is that massive tumor cell division and genomic instability of tumor

cells generate considerable phenotypic variability (State 2, Fig. 2), some of which will increase adaptation to changing micro-

environmental conditions. Adaptive traits include changes in cellular growth (r or K) strategies, escape from immune responses,

movement away from inhospitable microsites and dispersal to other tissue ecosystems in the body [34, 194, 200–202]. Although

the details differ, many of the above elements are analogous to interactions in classic ecosystems and in food webs [203].
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State 4: Regression: immune responses abate BEA and
disease
Should the combined effects of the innate and adaptive immune

systems prevail resulting in BEA population decline, then disease

too will eventually regress [44]. Depending on immune and BEA

dynamics, State 4 may obtain at any point during States 1 to 3 for

infectious BEAs, whereas for cancers State 4 is most likely to

obtain during State 1, before the tumor evolves to evade the

immune response. BEAs in State 3 that do not enter State 4 either

lead to chronic disease or result in host death.

The above classification gives a clear message for therapy.

A disease is much more treatable in State 1, but either impossible

or difficult to diagnose compared to State 2 and particularly State

3. In States 2 and 3, resistance is a concern, and special measures

may be needed to treat the BEA. Finally, drug toxicity becomes an

issue as the BEA population grows, disease spreads, and the per-

son’s health is at risk or life is engaged, as would be observed (late)

in State 3. Observation that the BEA and associated disease are in

State 4 would often preclude a therapeutic intervention.

APPLYING THE FRAMEWORK

The population ecology of BEAs makes them particularly difficult

to eradicate. Once disease is detected, BEAs typically will have

attained large population sizes and generated mutant strains that

result in opportunities for evolutionary responses. There are use-

ful parallels between seeking to cure a disease and attempting to

eradicate an invasive species. Perhaps, the most compelling is

that eradication becomes more achievable as the population is

smaller and more spatially circumscribed (States 1 and 2, Fig. 2).

Thus, for example, invasive species are more difficult to eradicate

on mainland (or interconnected habitats) than on islands (or

isolated habitats) [66]. Both ecological dynamics (e.g. larger popu-

lation sizes, refugia) and evolutionary dynamics (e.g. greater addi-

tive genetic variation) contribute to explaining this observation.

The same basic principle applies to treating a BEA, where diver-

sification (State 2) and spread (State 3) make eradication less

probable, as is amply demonstrated by relapse due to

chemotherapeutic resistance in metastatic cancers.

Below, I first review different ways in which therapies fail. I then

present six eco-evolutionary-sensible measures that can be used

singly or in combination to achieve therapeutic objectives.

Why do therapies fail?

Excepting technical issues of inappropriate drugs, the main

probable cause for treatment failure is BEA resistance [10, 67].

Drug resistance due to high-dose therapy is a textbook example

of ‘evolutionary rescue’ [68, 69], where the drug (if it were to be

maintained) drives the sensitive population to extinction, but re-

sistant variants already present or emerging during the treatment

grow and repopulate the disease ecosystem. The actual sequence

of mutational events leading to rescue has rarely been studied

[70], and we are only beginning to learn about the underlying eco-

logical processes (see [69] for contrasts between medicine, agri-

culture and conservation biology). For instance, although the

evolution of resistance is often associated with high-dose

chemotherapies, lower dosing (e.g. to regulate toxicity, especially

in cancer chemotherapies) can also select for resistance [71, 72].

The most discussed mechanism leading to evolutionary rescue

is ‘competitive release’, whereby reductions in the population of

the sensitive strain open the niche for growth of otherwise com-

petitively suppressed resistant strains [73, 74]. Qualifying all in-

stances of evolutionary rescue as stemming from competitive

release is an oversimplification, because there are notable con-

trasts in the mechanism depending on the absolute and relative

fitnesses of sensitive and resistant strains, both in the presence

and absence of a drug [74]. Nevertheless, there is some support

for the general phenomenon of competitive release [75–77].

Much of what is known about treatment failure comes from

studies of the evolution of drug resistance. But barring data actually

demonstrating resistance, other less studied, non-mutually exclu-

sive mechanisms may be involved in BEA resurgence or relapse.

Competitive release—although sometimes used for inter-strain

competitive effects (see above)—is originally an ecological con-

cept [78]. In ecological competitive release, the elimination of the

target BEA results in the emergence of one or more otherwise

competitively suppressed BEAs [79].

Therapeutic tolerance is the ability of BEAs to withstand the tran-

sient effects of a treatment. Examples include reduced receptor

sensitivity or density-limited drug impact in cell sub-populations

of certain cancers [80], and quiescent or dormant states in cancer

stem cells [81] and bacterial persister cells [82]. Other forms of

tolerance involve protective structures, such as bacterial biofilms

against antibiotics [83], biofilms limiting host immune responses

[84], and immune tolerance in the tumor microenvironment [85].

Escape mutants do not have specific resistance or tolerance mechan-

isms, but rather simply outgrowthe suppressiveeffects of the therapy.

This may occur, for example, due to insufficient drug dosing [86, 87].

Spatial and temporal refuges are similar to escape mutants, except

that BEA survival is due to heterogeneity in therapeutic exposure.

Examples include limited drug diffusion [88–90] and ‘drug holi-

days’ or patient non-compliance [86].

High mutation rates may favor escape by increasing the chances of

resistance emerging in bacteria [91], HIV [92] and certain cancers

[93]. Hypoxic stress in leading to higher mutation rates in tumors

could explain certain origins of therapeutic resistance [33].

Therapeutic measures

Applying the framework involves first acquiring information about

the BEA and disease ecosystem (Figs 1 and 2). A therapeutic
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objective is chosen based on this information and on actionable

strategies and associated tactics. The choice considers failure

risks due to BEA resistance or evasion. Typically, a single strategy

and tactic will be deployed to achieve an objective, but as will be

explained below, under some circumstances different strategies/

tactics may complement one another and become a combination

strategy. Below, I refer to strategies and tactics as ‘measures’. A

treatment is deemed a success if it achieves its objective (see

Supplementary Material for a simple criterion).

Importantly, a chosen measure need not do all the ‘work’ to

achieve a therapeutic objective. Rather, it can be employed as an

adjuvant either to other measures as part of a combination strategy

or to processes already active in the disease ecosystem. For example,

amoxicillin is a common antibiotic used for treating type A strep

throat associated with Streptococcal pharyngitis. The antibiotic inter-

feres with BEA cell wall synthesis and thus targets bacterial replica-

tion. Amoxicillin may not be 100% effective on its own (due to limited

pharmacokinetics) and different components of the immune system

ensure the final stages of the complete clearing of the infection [94].

Below, I present a series of six measures for treating disease

(Fig. 3), starting with the most employed—drug-based targeted

therapy (Measure 1). Measure 1 has three main variants depend-

ing on the objective: eradicate, contain or satisfice. A second ap-

proach is to focus on reducing damage, rather than target the BEA

per se (Measure 2). A third approach is to target other components

of the disease ecosystem (Measures 3–6). Finally, I describe the

strategy of combining measures into more effective therapies.

Measure 1: Drugs
Alexander Fleming expressed a nuanced version of frapper fort et

frapper vite [95]. His recommendation ‘if you use penicillin, use

enough’ was based on the idea that sensitive strains were the

origin of de novo resistant mutants, and the former needed to

be eliminated quickly and decisively. Resistant mutants may how-

ever be present even before a therapy commences, either in the

pathogen inoculum (or the first cells of an invasive carcinoma) or

due to mutations in a growing BEA population (i.e. State 2, Fig. 2).

The observation that the Ehrlich–Fleming approach applied to a

large enough BEA population risks selecting for resistance has

fueled theoretical research aimed at determining the drug doses

and scheduling that will either contain or eradicate a BEA (e.g.

[96–101]). These studies and others have contributed the follow-

ing basic insights.

Eradicate. If the turnover of the BEA population and/or its genetic

diversity are low (State 1), then resistance mutants are unlikely to

be present [53] or may fail to emerge even under treatment (see

also [102]). Eradication becomes an option. Depending on the

information available about possible resistance mutants, the min-

imal dosing strategy is (in order of decreasing dose) either to

apply the maximum tolerated dose (no information), attain the

mutant prevention concentration [103] (information about

resistance) or apply the dose necessary to clear sensitive strains

(no resistance detected).

Contain. When the turnover of the BEA population and/or gen-

etic diversity are high (States 2 and 3), then high-dose, targeted

therapy is likely to be useless or even counterproductive.

Examples where this may occur include clonal expansions [16],

and genetically diverse infections [104]. Often the course of action

taken when resistance is suspected or identified is to employ par-

ticularly aggressive drugs or—for some multi-drug-resistant

pathogens—last resort drugs [105]. These treatment strategies,

and indeed intermediate dose treatment strategies, are likely to

fail [101, 106, 107]. Experimental and theoretical study indicates

that the most sensible approach is to aim to contain the BEA

through low but sufficient dose chemotherapies (e.g. [101, 108],

and references therein). Containment requires that sensitive BEA

strains be held in check by the therapy, but maintained at levels so

as to competitively limit the populations of any drug-resistant

strains when therapy is released. This is most readily achieved

through managing the total BEA burden, whereby resistant types

express a fitness cost relative to sensitives during periods of

relaxed therapeutic selection (recent reviews in e.g. [98, 109]).

More nuanced ‘adaptive’ approaches monitor therapeutic per-

formance and eventually adjust drug dose or drug type so as to

manage disease burden [110]. Recent experimental demonstra-

tions of tumor containment show some promise (in vitro [111]; in

vivo [77]), and the same approach should be applicable to certain

microbial pathogens [112]. There are nevertheless situations

where containment strategies are unlikely to succeed, such as

when fitness-compensatory mutations have emerged in resistant

Figure 3. Six measures for treating disease. Measures have one or more of

three proximate effects: kill (cytotoxic), disable (cytostatic) or starve the BEA.

Killing the BEA is the most likely of the three to select for resistance.

Combination therapies (two or more measures) are most likely to succeed if

they do not interfere with one another in mode of action and do not select for

resistance in the same or in linked genes. See main text for further discussion
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strains during evolutionary rescue or have been transferred hori-

zontally (e.g. [113–115]).

Satisfice. Simple dosing rules can be misleading when toxicity is

an issue (late State 3 and no indication of entering State 4), as is

often encountered in metastatic cancers. This is because the

doses needed to optimally treat the (advanced) BEA are too toxic

for the weakened patient. This situation becomes particularly

acute when the patient’s life is engaged and rapid decisions need

to be made [116]. In such scenarios aiming for ‘optimality’ is bet-

ter replaced by ‘satisficing’, where success is equated with an ac-

ceptable improvement in signs and/or symptoms [117]. Much of

what is known about containing a BEA while managing toxicity

through scheduled dosing comes from theoretical study. For ex-

ample, Foo et al. [118] examined pharmacokinetic models of the

emergence of drug resistance in patients with epidermal growth

factor receptor lung cancers. They found that the pulsed dosing

(to control toxicity) could limit tumor growth, but long intervals

risked the emergence of new drug-resistant clones.

Drug therapies are not ‘stand-alone’—particularly when target-

ing a microparasitic infection. Unless a patient is immunosup-

pressed, the immune system will act in conjunction with the

treatment. This means that optimal dosing may depend on host

condition (drug tolerance, ability to mount an immune response)

and the disease ecosystem (the BEA population state). For ex-

ample, Ankomah and Levin [119] studied a model of how the in-

nate and adaptive immune systems could complement the effects

of a drug to clear a bacterial infection. They showed that high drug

doses led to the most successful outcomes (but see contrasting

findings in [101]).

Despite empirical work showing that drug dose can influence

treatment outcomes (for literature survey, see [101]), the neces-

sary information required to make strategic decisions is often

lacking. This could in part explain why eco-evolutionary reasoning

is not being used to its full potential in deciding whether and how

to employ aggressive treatment or containment strategies

[98, 104, 107].

Measure 2: Virulence factors
The severity of disease will be influenced by the expression of

‘virulence factors’ that enable the BEA to construct its niche.

Virulence factors may promote resource extraction, protect from

host defenses, or attach to cell or tissue surfaces. They are most

documented for microparasitic BEAs and include adhesive struc-

tures, motility enhancers such as Type IV pili, and toxins

[120, 121]). Virulence may also have a social component, for ex-

ample via quorum sensing in certain bacteria [122, 123].

Anti-virulence drugs have gained attention as possibly being

‘evolution proof’, because the traits actually targeted have little

influence on fitness [120, 124]. Examples of drug targets include

rendering bacteria more susceptible to immune clearance and

increasing antibiotic efficacy [125], and cytostatic drugs that stall

cancer cell division rather than targeting cell survival [126]. Other

approaches seek to change BEA behaviors, such as increasing pH

in cancer microenvironments that reduces tumor growth and me-

tastasis [127]. Although in vitro studies of anti-virulence strategies

appear promising (e.g. [128]), resistance is a concern, and there

may be limitations in their efficacy in vivo [117, 120, 121].

Measure 3: Immune system
The immune system is the single most important mechanism

responsible for preventing disease and limiting its spread.

Immune systems can be remarkably complex, and their detailed

description is beyond the scope of this review. Broadly speaking,

immune responses may involve specialized molecules and/or cell

types. Introducing molecules from the innate immune re-

sponse—notably antimicrobial peptides—shows great thera-

peutic potential by both their stunning diversity and the lower

likelihood of resistance evolution compared to antibiotics [129].

Immunotherapies that stimulate the production of specific im-

mune cell motifs show promise in treating certain cancers [130]

and bacterial diseases [131], but their use is still controversial due

to risks of immunotoxicity and autoimmune disorders [132].

Related to this, Smyth et al. [133] recently argued for using infor-

mation about components of the tumor microenvironment in de-

cisions about immunotherapies, particularly as adjuvants to other

therapies.

Measure 4: Resources—competition
BEAs need resources to grow and multiply. Resources include

hospitable space and nutrients such as glucose, oxygen, carbon,

nitrogen and phosphorus. Glucose use in particular differs fun-

damentally between healthy cells and tumor cells (with the latter

consuming up to 18 times the former; [134]), as does phosphorus

[135], and leveraging these may contribute to a strategy for tumor

control. Resource deprivation by curtailing angiogenesis has

proved successful in certain cancer treatments, but can come at

a cost of limiting drug diffusion through the tumor [136]. In

Plasmodium, Wale et al. [137] recently showed how resource limi-

tation could differentially impact sensitive and resistant strains.

Other tactics either limiting or excluding BEAs include boosting

the competitiveness of healthy cells [138], or of commensals in the

microbiome [139].

Measure 5: Microbiome
The microbiome is increasingly recognized as foundational to

organism biology and condition. Some analogies are likely to

apply between the functions of microbes in classic ecosystems

and in healthy and diseased ecosystems [15]. For example,

dysbiosis may be associated with certain BEA infections [121]

and cancers [140], and there is accumulating evidence that the

gut microbiota modulates the effectiveness of cancer therapies

and associated toxic effects [141].
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That microbiome disruption can influence disease suggests

that re-normalizing it could prevent or ameliorate certain dis-

eases. For example, lifestyle changes (e.g. avoiding high caloric

intake and excessive hygiene) may indirectly prevent disease via

their impacts on the microbiome, and more active interventions

such as microbiome transplants could either be used preventively

or therapeutically [140, 141].

Measure 6: Aliens
‘Living drugs’ such as bacteriophages (or ‘phages’) are akin to

introducing a predator to control an agricultural pest. Phages self-

amplify and adapt to their bacterial hosts, meaning that they can

continually counter bacterial resistance [142]. In addition to their

use as self-propagating, evolving antimicrobials, bacteriophage

can be applied prophylactically to prevent bacterial pathogens

from emerging [143], or engineered and introduced to disrupt

antibiotic resistance [144]. Although less studied, replicating

oncolytic viruses have clinical potential similar to baculoviruses

[145], but with the added twist that under some circumstances

they can induce anti-tumor immunity [146].

Similar to drug therapies, when submitted to phage predation,

sufficiently large and diverse bacterial populations evolve resist-

ance. Although a phage population will typically respond by

evolving countermeasures, a more proactive, promising strategy

is to evolutionarily ‘train’ phage before they are actually employed

[147, 148]. Training involves selecting phage in vitro for traits that

impact current bacteria at the infection site and prevent the future

emergence of resistant strains. In vitro study indicates that

passaging phage achieves the former objective, whereas

coevolving them with the bacterium achieves the latter [148–

150]. Training oncolytic viruses on tumor cells in vitro remains

unexplored.

Combining measures

An important principle from integrated pest management is that

attaining a control objective is more likely as multiple, comple-

mentary practices are put into place. This same idea—combining

two or more variations of the same measure or two or more meas-

ures—is therapeutically sensible both ecologically and evolution-

arily [151]. Combination therapies are most likely to succeed when

each measure (i) reduces BEA numbers or turnover, thereby

removing existing resistance mutations and lowering the prob-

ability of such mutations emerging de novo to other measures (e.g.

therapy A kills single mutants with resistance to therapy B, and

vice versa) and (ii) acts through a different, non-antagonistic

mechanism in targeting the BEA. Both of these effects imply that

different genes are involved in resisting different measures.

Crucially, because in sufficiently small populations it is unlikely

that multiple resistance factors will occur in the same BEA indi-

vidual, combinations are less likely than single measures to select

for resistance [86, 152, 153] (see [60, 154] for possible exceptions

in tumors).

Combination therapies have become a mainstay for treating

HIV, malaria and tuberculosis and are particularly relevant to can-

cers [133, 145, 155]. They are also effective against bacterial patho-

gens, for example, the use of phage cocktails [156, 157], multiple

antibiotics [158, 159], certain aminoglycosides and metabolites

against persister bacteria [160], antimicrobial peptide cocktails

[161], phage–antibiotic combinations [157], and phage to select

for increased sensitivity to antibiotics [162]. Like phage–antibiotic

combinations, antibiotic combinations that target different crit-

ical bacterial functions may not only increase the chances of thera-

peutic success but also limit the evolution and spread of antibiotic

resistance [163]. Due in part to their great diversity, combinations

involving natural host-derived antimicrobial peptides are particu-

larly promising in this regard [164].

Depending on the nature of their interactions, measures can be

combined either simultaneously or sequentially. For instance,

Roemhild et al. [165] demonstrated how the order of sub-lethal

doses of antibiotics could have substantial effects on bacterial

population sizes and resistance (see also [96]). Torres-Barceló

et al. [166] showed how intermediate delays between phage and

antibiotic application not only minimized numbers of

Pseudomonas aeruginosa but also minimized resistance to both

antibiotics and phage. Sequential applications have also shown

promise in combinations of chemotherapy and immunotherapy

[167], and polyADP ribose polymerase inhibitors capitalizing on

synthetic lethality in certain breast and ovarian cancers [168].

Other more information-based combination strategies such as

evolutionary steering [169] and resistance reversal [170] have

shown proof of concept.

Combination therapies nevertheless have several notable draw-

backs. First, they can fail if not carefully devised. Hegreness et al.

[171] showed how synergistic antibiotic combinations could ac-

celerate the evolution of resistance compared to (a priori, less

preferred) antagonistic combinations (see also [96]). Second

and similarly, the use of multiple tactics could mean that lower

intensities of each are employed to limit toxicity; these lower

doses are more likely to fall within the ‘mutant selection window’

should such resistant strains be present, and result in resistance

evolution [101, 172]. Third, it is logistically more challenging to

administer combinations than monotherapies. This extends both

to the willingness of medical practitioners to employ unfamiliar

novel therapies and for patients to follow protocols.

POTENTIAL LIMITATIONS

The disease ecosystem framework focuses on a well-studied host

(humans) and a small number of their well-studied BEAs (most

examples from bacteria and cancer). The remarkable diversity of
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host species and BEAs and their intra-population variation—but

also the fact that many BEAs are associated with multiple disease

ecosystems within the same host individual, or exploit multiple host

species, or have complex life cycles with intermediate hosts—mean

that the framework presented here is only an initial step towards a

more refined general framework and more taxon-specific versions.

This situation is no different from the challenges of understanding

classic ecosystems, and much of the progress in identifying process

and pattern in the latter should be useful in instructing approaches

to understanding disease ecosystems.

Second and similarly, many BEA taxa do not replicate in all

hosts (particularly for complex life-cycle parasites, such as hel-

minth worms), meaning that in situ mutation is not a factor.

These species are confronted with some of the same basic con-

straints as are parasites that can replicate and evolve within their

host (resource levels, competition, immune responses), and con-

sequently have evolved mechanisms to plastically adapt to the

host ecosystem and in particular, regulate host immunity [173].

The present framework could be extended to accommodate these

BEAs.

Third, the ecosystem framework notably ignores host-to-host

transmission of BEAs and the spread of resistance between hosts.

This concern is evidently not relevant to cancers but is an

important factor for infectious diseases, where there is a potential

conflict between the immediate interests of individual patients

and future interests of the greater population (e.g. [7, 108, 163,

174, 175]).

A fourth limitation is the need for sufficiently rich information to

employ certain therapeutic measures, particularly those aiming to

contain the BEA. Some BEAs can be quantified either directly or

through correlations with measurable signs of disease (e.g. bio-

markers, scans). Quantifying ecosystem components such as the

immune system (e.g. [176]) could show promise as performance

indicators of natural or therapeutically influenced BEA control.

CONCLUDING REMARKS

The immense body of knowledge on classic ecosystems can con-

tribute to our understanding of disease ecosystems. We will how-

ever need more than these analogies to achieve a predictive theory

of disease ecosystem dynamics. The principal reason is their

underlying complexity. Healthy organism ecosystems and their

responses to disease have evolved to maintain homeostasis/per-

formance and remediation to homeostasis, respectively. Although

the former should be fairly predictable, the latter will be dynamic,

context dependent and more challenging to forecast. The disease

ecosystem framework represents an initial step toward under-

standing disease, predicting its course and designing eco-evolu-

tionarily sensible therapies.

Disease ecosystems are complex and dynamic and have no a

priori spatial limits. The ecosystem framework focuses on prox-

imal interactions at the host cellular and tissue levels. These

interactions will interlock with other tissue and organ systems

in the host individual, and ultimately influence and be influenced

by population and external environmental-scale systems.

Maintaining generality even at the cellular and tissue scales ne-

cessarily means omitting considerable realistic detail (see e.g.

Table 2 in [177]). Moreover, at aggregate levels, ecological and

evolutionary dynamics are likely to be complex given the feedback

structures of homeostatic regulation [27], interaction networks

[14], and stochasticity in the mutation process and the host’s im-

mune response [178, 179]. Despite this complexity, it is

encouraging that across two pervasive BEA types in humans (bac-

teria and cancer) there is broad similarity in the basic interactions

of the disease ecosystem (this study), and with regard to

therapies, correspondences in drug resistance evolution [115].

This suggests generality in the framework presented here.

The ecosystem framework is a scaffolding. To be fully operative,

it needs to be supplemented with quantitative descriptions of

each component process. Although the framework on its own

can advise specific types of therapeutic decisions (either ones

where resistance is not an issue or satisficing is the only op-

tion—i.e. State 1 and late State 3), it will be limited without

parameterized models to guide finer containment approaches

such as adaptive therapies (States 2 and 3; see e.g. [111]). Such

a model would link the most important components of the eco-

system to the variables of interest, typically BEA population size,

frequency of resistance, virulence factors or aggressiveness, and

disease signs. The model would then be used to evaluate how

different candidate therapeutic interventions affect the likelihood

that an objective will be achieved. Usually but not always, prevent-

ing or limiting BEA evasion (e.g. resistance) will be an integral part

of which measure(s) is (are) finally employed.

We are only beginning to scratch the surface of how the disease

ecosystem functions and its relevance as part of a larger network,

including other ecosystems in the individual, the population and as

part of wider (classic) ecosystems [180]. Understanding these

processes, their interactions, and importance in creating pattern at

different scales will be considerable challenges (Box 4), but promise to

lead to novel insights about the ecology and evolution of symbioses,

and new breakthroughs in conceptualizing and treating disease.

GLOSSARY

(1) Disease. Changes to the structure and function of
host cells, tissues or organ systems associated
with interactions between the BEA and the host.

(2) Signs. Objective observations of disease, typically
of macroscopic features, such as swollen tonsils
consistent with strep throat.

(3) Symptoms. Subjective assessments of disease,
such as pain or discomfort.

(4) Pathogenicity. The propensity for disease to result
in tissue damage, morbidity and mortality. Like
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disease, pathogenicity is a property of the inter-
action between the BEA and host.

(5) Resistance. A BEA phenotype that protects from
specific antagonisms such as immune responses
or therapies.

(6) Cure. Disease remediation to no detectable signs
and symptoms.

(7) Chemotherapy. The use of chemicals to treat dis-
ease, usually focused at killing the etiological
agent, either microparasites or tumor cells.

(8) Eradication. The complete elimination of the BEA.
(9) Containment. Maintaining disease below an ac-

ceptable maximum threshold.
(10) Microparasites. Microbial parasites that replicate

within their host, including viruses, bacteria, fungi
and protozoa.

(11) Virulence factors. BEA traits that increase BEA
fitness (growth, survival and reproduction) and
intensification of disease (i.e. pathogenicity).

(12) Inflammation. Alteration of the disease ecosystem
that promotes the intensification of the immune
response and remediation of disease damage.
Chronic inflammation can result in tissue damage.

(13) Satisficing. An acceptable improvement in disease
signs and symptoms.
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