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Purpose: Targeting cancer cells by modulating the immune system has become an 
important new therapeutic option in many different malignancies. Inhibition of CTLA4/B7 
and PD1/PDL1 signaling is now also being investigated and already successfully applied 
to various hematologic malignancies.

Methods: A literature review of PubMed and results of our own studies were compiled 
in order to give a comprehensive overview on this topic.

Results: We elucidate the pathophysiological role of immunosuppressive networks 
in lymphomas, ranging from changes in the cellular microenvironment composition to 
distinct signaling pathways such as PD1/PDL1 or CTLA4/B7/CD28. The prototypical 
example of a lymphoma manipulating and thereby silencing the immune system is 
Hodgkin lymphoma. Also other lymphomas, e.g., primary mediastinal B-cell lymphoma 
and some Epstein–Barr virus (EBV)-driven malignancies, use analogous survival strate-
gies, while diffuse large B-cell lymphoma of the activated B-cell type, follicular lymphoma 
and angioimmunoblastic T-cell lymphoma to name a few, exert further immune escape 
strategies each. These insights have already led to new treatment opportunities and 
results of the most important clinical trials based on this concept are briefly summarized. 
Immune checkpoint inhibition might also have severe side effects; the mechanisms of 
the rather un(der)recognized hematological side effects of this treatment approach are 
discussed.

Conclusion: Silencing the host’s immune system is an important feature of various 
lymphomas. Achieving a better understanding of distinct pathways of interactions 
between lymphomas and different immunological microenvironment compounds yields 
substantial potential for new treatment concepts.

Keywords: CD58, CD70, epstein–Barr virus, HLA-G, lymphoma, microenvironment, PDL1, PD1

iNTRODUCTiON

Next to surgery, chemotherapy and radiotherapy, immunotherapy has become a new effective strat-
egy to treat human cancer (1). This field spans from cytokine therapy, tumor vaccines, and infusions 
of primed T-cells to drugs specifically targeting immune checkpoint signaling such as programmed 
cell death 1 (PD1/CD279) and its ligand PDL1 and the cytotoxic T-lymphocyte-associated protein 
4 (CTLA4/CD152) and its ligand B7, both ligands being expressed on target- or antigen-presenting 
cells to inhibit T-cell activation. Though initially these treatments were designed for solid cancers, 
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this concept is now readily applied in a variety of hematolym-
phoid neoplasms. In addition, in hematolymphoid neoplasms, 
another form of “immunotherapy,” allogenic hematopoietic stem 
cell transplantation has been used for a long time already showing 
a tremendous improvement of patients’ prognosis (2).

The history of immunotherapy reaches back more than 
100 years to studies of Paul Ehrlich, and, despite obvious efficacy, 
its application regarding the type of treatment and its targets is 
still controversially discussed (3). It has been studied in various 
animal models with inconclusive results. While immune-deficient 
nude mice, which display a markedly reduced amount of T-cells, 
do not show an increased rate of tumors (4), specifically geneti-
cally modified mice with knock-outs of recombination activating 
gene 2, signal transducer and activator of transcription 1 (STAT1);  
or the gamma-interferon receptor show increased cancer rates 
even if not treated with carcinogens or crossed with animals with 
a cancer development stimulating mutation (5, 6). The reason for 
the lower tumor rates in nude mice is explained by a reduced, yet 
sustained amount of non-thymic T-cells as well as an upregulation 
of innate immunity. Looking at humans, patients with iatrogenic, 
viral or genetically caused immunodeficiency are known to have 
higher rates of both, virus-related cancers, such as lymphomas, 
squamous cell skin cancer or Kaposi sarcomas, and of non-virus-
related cancers, such as colon and lung cancer. Mechanistically, 
immunosurveillance of tumors, especially those, which have 
escaped cellular senescence (7), is mainly exerted via control of 
antigens presented by the cells via the major histocompatibility 
complex 1 (MHC1) allowing T-cells to discriminate altered, i.e., 
tumor cells from normal cells; CD4- and CD8-positive T-cells 
are the key players in controlling outgrowth of tumors (5). This 
mechanism puts tumor cells under pressure and leads to a selec-
tion of subclones, which have achieved the capability to evade the 
immune response.

In many types of tumors, cancer cells undertake considerable 
efforts to keep the host’s immune system at bay; this involves both 
the tumor cells themselves, which express immunosuppressive 
surface proteins such as PDL1, B7, or human leukocyte antigen 
(HLA) G, less MHC1 or its compound β-2 microglobulin (B2M), 
as well the microenvironment of the tumors, which is influenced 
and manipulated by the tumor cells (8). Here, upregulation of reg-
ulatory T-cell subsets and subsequent anergy of cytotoxic T-cells, 
crosstalk with tumor growth-promoting M2 macrophages and 
overexpression of the immunosuppressive enzyme indoleamine 
2,3-dioxygenase (IDO) play all an important role (9–11); since 
the role of IDO and respective therapeutic inhibition has sev-
eral times been addressed and extensively reviewed, we kindly 
refer to some excellent publications covering this topic (12, 13). 
Furthermore, both compartments secrete various factors such as 
interleukins and interferons as well as tumor necrosis factor alpha 
or transforming growth factor beta. These factors can promote 
tumor cell survival on the one hand and prime the microenvi-
ronment, particularly the immune system in a pro-tumorigenic 
manner on the other (14).

Importantly, with the broad introduction of immunotherapy it 
has become obvious that not all patients respond in the same way, 
which is both due to tumor heterogeneity (15) as well as to indi-
vidual (immuno-)genetic polymorphisms (16). In order to tackle 

this issue, specific biomarkers are needed to allow stratification 
of patients to ensure tailored treatment approaches, which might 
increase tumor response rates.

In this review, we mainly focus on the role of lymphoma 
tumor cells in the immunological crosstalk and not that of the 
microenvironment, as this topic will be covered by the review of 
Dr. Xu in this journal issue.

HODGKiN LYMPHOMA—THe CLASSiCAL 
PARADiGM FOR iMMUNOMODULATive 
CANCeR

Classical Hodgkin lymphoma (cHL) comprises about 20% of 
lymphoid malignancies. Before the development of effective 
chemo- and radiotherapy regimens, it was a fatal disease (17) with 
patients dying—apart from mechanical problems due lymphoma 
burden—mainly due to infections because of severe immunosup-
pression caused by the cHL, exemplifying the importance of the 
interaction between tumor cells and the immune system. Another 
peculiar feature of cHL is the fact that the tumor cells [Hodgkin- 
and Reed–Sternberg cells (HRS cells)] comprise less than 1% 
of the lymphoma mass, and the majority of the tumor bulk is 
constituted by reactive or inflammatory cells in varying composi-
tions, which depends on the cHL subtype. HRS cells both rely on 
their microenvironment on the one hand and need to specifically 
silence it on the other in order to prevent being attacked by it. 
This has been shown for T-cells as well as for tumor-associated 
macrophages (TAM). Regarding the latter, it has been shown that 
HRS cells induce PDL1 expression in macrophages (Figure 1A) 
in order to boost the immunosuppressive environment (18). 
Additionally, TAM and tumor-infiltrating lymphocytes express 
PD1, thus PD1/PDL1 blockade can both stop their immunosup-
pressive abilities and turn on tumor-surveilling attributes (19). 
It has been shown that the HRS cells are derived from germinal 
center B-cells as they carry clonally rearranged and somatically 
mutated immunoglobulin heavy- and light-chain genes (20, 21). 
HRS cells show a global downregulation of B-cell-related gene 
expression (22), which explains their specific immunoprofile. 
Genetic drivers of HRS cells are mutations in the nuclear factor 
kappa-light-chain enhancer of activated B cells (NF-κB) pathway, 
of compounds of the JAK–STAT signaling and genes involved in 
MHC composition and expression, and communication with 
T-cells (23). Deciphering the mutational landscape of HRS cells 
has helped to get new insights into tumorigenesis of cHL as well 
as elucidating mechanisms how this tumor interacts with and, 
thus, manipulates the immune system (24, 25).

An important feature of cHL [and primary mediastinal B-cell 
lymphoma (PMBCL)] is gain of chromosome 9p24 (Figure 2A), 
which leads to an overexpression of PDL1 (25, 26) that can also 
be shown in situ (27, 28), and seems to be of probable prognostic 
importance in patients treated with standard treatment regimens 
(25) and offers the opportunity to be specifically targeted, result-
ing in unprecedented response rates in otherwise hopeless cases 
of multiple-relapsing cHL (29). Other genes in this region encom-
pass JAK2, PDL2, and JMJD2C, the upregulation of all of which 
seems to be vital for HRS cells (30), explaining why blocking PD1 
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FiGURe 2 | (A) Amplification of the PDL1/JAK2 locus at 9p24 in a primary 
mediastinal B-cell lymphoma (PMBCL); note multiple green FISH signals 
corresponding to the locus of interest compared to only 2 red centromere 9 
signals/cell. (B) Rearrangement of the CIITA locus at 16p13 a PMBCL; note 
fused green and red signals corresponding to the non-rearranged wild-type 
allele and free green and red signals corresponding to the rearranged allele.

FiGURe 1 | (A) PDL1 expression study of classical Hodgkin lymphoma with 
PDL1 (red chromogen)-MUM1p (brown chromogen) double-staining; note 
that a lot of PDL1+ cells, corresponding to tumor-infiltrating macrophages,  
do not express MUM1p while yielding dendroid cytoplasmic projections and 
form “immunosuppressive microniches,” in which PDL1 and MUM1p 
co-expressing Hodgkin- and Reed–Sternberg cells (see also inset) are 
scattered. (B) PD1 expression by single tumor cells (large ones) and plenty of 
tumor-infiltrating lymphocytes in T-cell- and histiocyte-rich B-cell lymphoma.
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might be more effective than blocking PDL1 in cHL as the first 
might prevent the tumor cells also from relying on PDL2 as a 
substitute of blocked PDL1 (31).

Other immune escape mechanisms in cHL (and PMBCL) are 
deactivating translocations of CIITA (Figure 2B), the transactiva-
tor gene of MHC class II, that can be found in a subset of cHL 
(32), and downregulation of MHC class II that is reported to be 
also an adverse prognostic factor in affected individuals (33). 
The same applies to MHC class I (34), although this study could 
not confirm the impact of MHC class II as a prognostic factor. 
Regarding MHC class I, mutations in the B2M gene, which is 
important for MHC class I composition and function, are among 
the commonest in cHL and have been shown to be a predictor of 
inferior outcome independently of the 9p24 status (34).

CD58, also known as lymphocyte function-associated antigen 3,  
is a glycosylated surface molecule on both B- and T-cells, which 
provides a stimulatory signal for T  cells via the CD2 receptor. 
The function of CD58 in cHL is two-faced: on the one hand, it 
is necessary for HRS cells to communicate with CD4-positive 
T-cells (35), on the other hand, loss of CD58 expression due to 

mutations can facilitate immune escape, especially in advanced 
disease, when HRS cells become less dependent on the surround-
ing microenvironment (36, 37). HLA-G, a non-classical HLA 
molecule, plays a similar role in cHL and modulates the micro-
environment to foster immunotolerance. HLA-G expression has 
been demonstrated both on HRS cells and the microenvironment, 
with high HLA-G expression on HRS cells and, conversely, low 
expression in the microenvironment correlating with a better 
outcome in one study (38).

Epstein–Barr virus (EBV) infection of HRS cells is a com-
mon feature in 30% of cHL in the Western world and >90%— 
especially in pediatric cases—in Central America (39). EBV infec-
tion is clonal and, thus, an early event in cHL. It immortalizes 
B-cells by rescuing them from apoptosis (40). EBV shows latency 
II state in HRS cells, with expression of the EBV-encoded genes 
EBV nuclear antigen 1 (EBNA1), latent membrane protein 1 
(LMP1), and LMP2a. In EBV-negative cHL, the oncogenic impact 
of EBV seems to be substituted by mutations of genes related to 
the NF-κB pathway (e.g., C-REL) as well as several receptor tyros-
ine kinases (41). EBV can also upregulate PDL1 expression (42). 
This is primarily mediated by LMP1. LMP1 activates both the 
JAK/STAT pathway directly via JAK3 as well as activated protein 
1 (AP1) via the microtubule-associated protein kinase (MAPK) 
pathway, both of which promote PDL1 gene expression (42). 
Interestingly, while frequencies of 9p24 gains and amplifications 
are similar in EBV-positive and EBV-negative cHL, PDL1 expres-
sion is mostly and more selectively upregulated in EBV-positive 
cHL (25). EBNA1 and LMPs also directly interact with immune 
cells helping to create an immunosuppressive environment with 
enhanced amounts of regulatory T-cells (43).

Finally, HRS cells secrete a plethora of immunosuppressive 
soluble mediators, which is beyond the scope of this review 
(44, 45).

vARiOUS MeCHANiSMS OF 
iMMUNOMODULATiON iN 
LYMPHOMAS—A CLOSeR LOOK

In the second part of this review and after having focused on one 
specific lymphoma subtype, which is the prototype for immu-
nomodulative cancer, we will have a closer look at the various 
mechanisms touched in the previous sections, namely, PD1/
PDL1, CTLA4/B7, HLA-G, CD58 and B2M, CD70, and CD27 
as well as EBV. Beside a discussion on how these pathways exert 
their function and by which types of lymphomas they are used, 
we will also focus on interactions between them and show their 
synergistic and/or complementary mode of action.

PD1/PDL1—The Best Studied and Most 
Frequently Therapeutically Used Pathway 
of immune evasion
PD1 and its ligand PDL1 have already been discovered in the 
early and late 90s, respectively (46, 47). A second ligand of 
PD1, PDL2, the expression of which is more restricted than that 
of PDL1, has been identified as well (48). These molecules are 
important tools to control T-cell activity and proliferation, and 
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can both inhibit T-cells as well as stimulate immunosuppressive 
regulatory T-cells (49, 50). Another recently discovered ability 
is the effect of PDL1 on TAM briefly touched in the section on 
cHL. Gordon et al. recently showed that PDL1 blockade increases 
the phagocytic capability of TAM in rodent models and leads to 
increased survival and tumor control (19). This is an interesting 
and potentially also clinically relevant finding considering the bad 
prognostic effect of high numbers of TAM in cHL (51, 52), which 
might thus be counterbalanced by PDL1 inhibition. In contrast 
to CTLA4, which is discussed in the next paragraph, PD1 and its 
ligands exert their function in the peripheral tissue and thus do 
not lead to a systemic affection of the immune system, which has 
been nicely shown in several animal models (53, 54). The cyto-
plasmic tail of PD1 contains an immunoreceptor tyrosine-based 
switch motif (ITSM) and an immunoreceptor tyrosine-based 
inhibitory motif (ITIM), of which the ITSM is essential for the 
transmission of inhibitory signals [reviewed in Ref. (55)]. Upon 
T-cell receptor (TCR) stimulation and ligation with either PDL1 
or PDL2, the ITSM and ITIM undergo phosphorylation, leading 
to the recruitment of the phosphatases SHP-1 and SHP-2, which 
in turn lead to dephosphorylation (inactivation) of the crucial 
T-cell signaling molecules ZAP70 and CD3ζ, and, in addition, 
of the phosphatidylinositol 3-kinase, which interrupts AKT and 
ERK signaling; even more, upon PD1 engagement by PDL1, 
protein tyrosine kinase-θ, which is necessary for the activation 
of the transcription factors NFκB and AP1, is attenuated and the 
negative regulator of T-cell activation, the E3 ubiquitin ligase 
CBL-b is upregulated (56–58). As a net effect, TCR-mediated 
activation and T-cell proliferation are impeded.

PD1/PDL1 expression in lymphomas (Figures  1A,B) has 
been investigated by a variety of studies with mostly consistent 
results (27, 28); it can be demonstrated in up to a third of DLBCL, 
mainly of the activated B-cell type (59), and in PMBCL, in other 
lymphoma entities it is expressed in only a low percentage of cases 
(27). Interestingly, in chronic lymphocytic B-cell leukemia (CLL), 
PDL1 expression has been described in the proliferation centers 
(60). PDL1 expression is observed both in the tumor microen-
vironment (particularly in tumor-infiltrating macrophages) and 
in lymphoma cells, while PD1 is primarily expressed in T-cells 
of the microenvironment. In T-cell- and histiocyte-rich B-cell 
lymphomas, PDL1 expression is seen in both T-cells and his-
tiocytes, while the tumor cells themselves are negative for PDL1 
(27). Importantly, in extranodal natural killer (NK)- and T-cell 
lymphoma of the nasal type, which is known to have an aggressive 
and mostly fatal course, PDL1 is substantially upregulated due 
to EBV infection of the tumor cells, and PD1 blockade has been 
shown to be very effective in otherwise hopeless relapse cases in 
a small case series (61).

As mentioned above, the genetic mechanism of PDL1 overex-
pression has been first elucidated in cHL consisting of alterations 
in chromosome 9p24.1. Similar alterations have been found in 
PMBCL (62) and DLBCL (63) as well as lymphomas of immune-
privileged sites such as the central nervous system and the testis 
(64). In addition to gene gains, PDL1 expression is inducible by 
LMP1 of EBV via activation of STAT- and AP1-mediated pathways. 
As to be expected, other causes of STAT activation also enhance 
PDL1 expression as seen in anaplastic lymphoma kinase-positive 

anaplastic large cell lymphomas (65) or in instances with active 
cytokine signaling (66). Another mechanism of enhancing PDL1 
expression was just recently reported by Kataoka et  al., who 
demonstrated the presence of disruption of the 3′-untranslated 
region (UTR) of the PDL1 gene leading to a marked increase of 
PDL1 that is stabilized by truncation of the 3′-UTR (67). Finally, 
at least in DLBCL, translocations of IGH, PIM1, and TP63 with 
the PDL1 locus that lead to latter’s overexpression have been 
described, too (63).

As in solid tumors, the direct applicability of PD1/PDL1 
expression to predict therapy responsiveness and prognosis 
remains to be fully elucidated. Xing et al. could show that PDL1 
expression in DLBCL treated with standard R-CHOP treatment 
is associated with a better overall survival rate, yet not with 
remission after first therapy, relapse- or progression-free survival 
(68). Several studies with small patient cohorts suggest that best 
responses are seen in lymphomas harboring 9p24 alterations such 
as lymphomas of immunoprivileged sites (69). In PMBCL, high 
PDL1 expression and low MUM1p expression is correlated with 
a better outcome than vice versa expression of these two proteins 
(70). A study on refractory lymphomas revealed that there is a 
discrepancy between PDL1 expression and amplification of the 
PDL1 locus, supporting the hypothesis that other mechanisms—
next to gene amplifications—are involved in upregulation of 
PDL1 expression (71). It has also become evident that in several 
lymphoma types such as follicular lymphoma and CLL, adding 
PDL1 blockers to conventional therapy regimens shows a benefit 
in comparison to only very limited treatment response if given as 
single agents (72). For comprehensive overviews of ongoing and 
already finished clinical trials, we refer to several recent excellent 
clinically centered reviews as well as the contributions of Proff. 
Renner and Stenner in this issue.

CTLA4—A Key Player Seemingly Not Only 
in T-Cell Lymphomas
CTLA4 belongs to the superfamily of immunoglobulins (73). 
It is generally expressed in T-cells, and regulatory T-cells are 
constitutively positive (74). It shares its ligands B7-1 (CD80) and 
B7-2 (CD86) together with CD28, which has a function opposite 
to CTLA4 as it is a stimulator of TCR signaling (75). CTLA4’s 
affinity and avidity to these ligands is greater than that of CD28 
due to its bivalent binding to the B7 molecules (76). The main 
function of CTLA4 is T-cell inactivation, which is exerted by 
two different mechanisms: it competitively binds its ligands B7-1 
and B7-2 leading to a reduced stimulatory signaling of CD28; 
furthermore, via its cytoplasmic tail, CTLA4 can inhibit various 
intracellular signaling pathways in T-cells such as NF-κB, AP1, 
and nuclear factor of activated T-cells (77), it can impede the cell 
cycle (78) and inactivate MAPK, extracellular signal-regulated 
kinase-1 (ERK) and c-Jun NH2 terminal kinase signaling, and 
thus impair interleukin 2 production (79). In contrast to PD1/
PDL1, which exert their function in the periphery, CTLA4 is 
acting rather early in the time course of the immune response as 
it is involved in priming T-cells in primary lymphoid organs (80).

CTLA4 expression is noted in a variety of T-cell lymphomas, 
namely, peripheral T-cell lymphomas and mycosis fungoides/
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FiGURe 3 | (A) Expression of HLA-G in a diffuse large B-cell lymphoma.  
(B) Expression of HLA-G by Hodgkin- and Reed–Sternberg cells of classical 
Hodgkin lymphoma.
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Sézary syndrome. Besides inducing T-cell anergy and, thus, fos-
tering immune escape, CTLA4 has also a direct oncogenic effect: 
a fusion of the two opponents CTLA4 and CD28 has recently 
been described in a variety of T-cell lymphomas and proposed to 
be a major driver of lymphoma development (81). The fusion pro-
tein consisting of the extracellular and transmembrane domains 
of CTLA4 and the cytosolic signaling domain of CD28 showed 
increased activation of intracellular MAPK and ERK signaling 
in cell culture experiments, confirming observations of earlier 
studies (82). Herrmann et  al. reported CTLA4 expression in 
B-cell lymphomas, primarily in DLBCL (83). These lymphomas 
were shown to be able to exert their immunosuppressive func-
tion by binding of B7.1 and thus reducing CD28 activation on 
tumor-infiltrating/immunosurveillance T-cells; furthermore—as 
in T-cell lymphomas—CTLA4 can enhance proliferation via the 
STAT3 pathway, which is an important driver also in B-cell lym-
phomas (84). So far, CTLA4 inhibition is not commonly used in 
lymphoma therapy. In cHL, CTLA4 blockade has been tested in 
transplanted patients (85) and in combination with brentuximab, 
the latter still being an ongoing trial (86).

HLA-G—The Unknown Member  
of the HLA Family
HLA-G is a non-classical MHC class I molecule and besides 
the classical function of HLA proteins—presenting protein 
fragments on the cell surface—it exerts its function mainly by 
immunomodulation (87). In contrast to the classical HLA mol-
ecules, the non-classical HLA are highly conserved molecules 
with only few alleles. Immunomodulation by HLA-G occurs 
via a plethora of ways as it can interact with different recep-
tors found on T-cells, B-cells, macrophages, dendritic cells, and 
NK cells (88). It interferes with proliferation and cytotoxicity as 
well as promotes apoptosis. Furthermore, it also inhibits chemo-
taxis by downregulating several chemokine surface receptors 
(89), hampers the function of neutrophils (90), and reduces 
neoangiogenesis (91). HLA-G expression has been investigated 
in a variety of cancers and is correlated with worse overall sur-
vival or increased risk of tumor progression and metastases in 
most studies (88). In lymphomas, HLA-G has been explored in 
only few studies so far and the results regarding the predictive 
role of HLA-G expression are still equivocal (92). As alluded 
to above, HLA-G expression has been demonstrated in cHL 
(Figures 3A,B) and its high expression in the tumor microen-
vironment has been correlated with an inferior response rate 
(38). Bielska et al. demonstrated that HLA-G polymorphisms, 
which have a direct impact on the expression of HLA-G RNA, 
differ between different prognostic groups of DLBCL (93), and 
similar findings were reported in CLL patients (94). Both studies 
showed independently that especially the 14 base pair deletion 
polymorphism (rs66554220) in the 3′ UTR of HLA-G has an 
adverse prognostic impact.

CD58 and B2M—important Prerequisites 
for immunosurveillance
Both CD58 and B2M are important for the correct assembly of 
MHC class I molecules (95) and alterations thereof are another 

immune escape mechanism of tumors (96). Inactivating muta-
tions of CD58 have been initially described in approximately one 
sixth of DLBCL with no preference for either cell of origin subtype 
(97). They are as frequent as mutations of B2M; in our study on 76 
DLBCL in immunocompetent patients, the mutational frequency 
of B2M was 16% (98). Interestingly, loss of CD58 cell surface 
expression is more commonly observed than assumed from its 
mutational frequency and many DLBCL show a concomitant loss 
of HLA class I and CD58. As loss of HLA class I alone might 
increase susceptibility to lysis by NK cells (99), the concomitant 
loss of CD58, which is a CD2 ligand, might act in a counterbal-
ancing way. The reduced cytolysis of DLBCL cells lacking CD58 
expression has been confirmed in cell culture experiments (97). 
CD58 mutations have also been described in a small percentage 
of peripheral T-cell lymphomas along with B2M mutations (100). 
Mutations of CD58 and B2M are thought to be a main reason 
for non-responsiveness to immune checkpoint inhibition (101). 
Cao et al. showed that both mutations and copy number losses of 
CD58 and TP53 genes are independent unfavorable prognostic 
factors in DLBCL (102). This is the first study attributing such a 
high impact to CD58 mutations.

B2M mutational rates vary in specific subtypes of DLBCL: in 
DLBCL of the testis and the central nervous system, i.e., DLBCL 
arising in immunoprivileged sites, B2M mutations have been 
reported to be frequent (103), while in our study on posttrans-
plant DLBCL, no B2M mutations were detected (104). From this 
finding, we concluded that B2M mutations do not provide an 
additional advantage in the state of immunosuppression as there 
is, for obvious reasons, no genetic pressure for immune escape 
on the tumor cells.

The CD70–CD27 Axis: Another Key  
to T-Cell Control
CD27 belongs to the tumor necrosis factor family; it is involved 
in the activation of both innate and adaptive immunity. It is 
expressed in thymocytes and naïve T-cells as well as activated 
T-cells (105), memory B-cells (106), and NK  cells in the bone 
marrow but not in circulating NK cells (107). CD27 has a unique 
ligand, CD70, which has become a focus of potential therapeutic 
interaction. A plethora of different tumor entities including 
many lymphomas (Figure 4) have been shown to express CD70 
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FiGURe 4 | Expression of CD70 in a testicular diffuse large B-cell lymphoma; 
note a negative seminiferous canaliculus.
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(108, 109), whereas CD27 expression is primarily restricted to 
hematopoietic tumors (108). Tumors use the CD70–CD27 axis in 
order to manipulate T-cells in an immunosuppressive manner by 
increasing the proportion of inhibitory regulatory FoxP3+ T-cells 
(110), induction of T-cell apoptosis (111), and skewing T-cells 
toward anergy and exhaustion (112).

First studies using monoclonal antibodies directed against 
CD70 have been tested with rather low response rates [complete 
remission in 1/19 lymphoma patients (113)]. Currently, several 
trials of combining anti-CD70 therapy and chemotherapy and 
radiotherapy are ongoing. The rationale behind this approach is 
that by activating the immunosurveillance of the microenviron-
ment by CD70 blockade, the effect of conventional chemotherapy 
and radiotherapy is increased (114).

eBv—The Classical Model of 
Oncogenicity and immune escape
Epstein–Barr virus’s role in lymphomagenesis was first discov-
ered in Burkitt lymphoma (BL). While the MYC translocation 
is important for upholding the proliferative activity of BL, the 
main effect of EBV is thought to be effectively preventing c-myc-
induced apoptosis (115). EBV-infected non-neoplastic memory 
B-cells express only one EBV-specific protein (EBNA1)—known 
as “latency type 1”—in order to avoid recognition by the immune 
system, and these cells provide the life-long reservoir of EBV in 
humans. This latency type 1 is sustained in many B-cell lympho-
mas including BL, DLBCL and terminally differentiated B-cell 
lymphomas, while in cHL and many NK- and T-cell lympho-
mas, virus-infected tumor cells express to a certain extent LMP1 
and LMP2A&B (without EBNA2), known as latency type 2, and 
in lymphomas of immunosuppressed individuals EBNA2-3C 
are expressed along with LMPs, referred to as latency type 3 
(116). Importantly, latency type 2 is an intriguing therapeutic 
target for PD1/PDL1-blocking agents as exemplified in cHL 
and NK/T-cell lymphomas (29, 61), while the latter latency 

type 3 would be recognizable by a functional immune system 
and is tolerated due to the concomitant immunosuppression in 
affected individuals as exemplified by recurrent tumor control 
in seldom instances, in which the respective immunosup-
pression can be restored (117, 118) (see also: expansion of 
decreased T helper 1 and CD8+ T cell subsets associates with 
regression of lymphoproliferative disorders developed during 
methotrexate treatment. Saito et  al., published in the same 
journal issue). Even more, EBV relatedness in several of the 
above listed instances may even stand for distinct diseases, as 
it has been shown for DLBCL and PTLD (104) and recently 
also for plasmablastic lymphoma (119) that EBV-positive and 
EBV-negative tumors have both different pathogenesis as well 
as different prognosis. EBV exerts effects on the tumor cells 
related to proliferation and preventing apoptosis, and on the 
microenvironment, particularly on the host’s immune system. 
In the setting of human immunodeficiency virus (HIV) infec-
tion, a marked increase of EBV-related lymphomas has been 
initially observed (120). With the introduction of highly active 
antiretroviral therapy (HAART), the incidence of HIV-related 
lymphomas has considerably changed: while there was a steep 
decline of EBV-associated lymphomas of the CNS and DLBCL, 
cHL incidence has risen, and the incidence of BL has remained 
stable (121). This shows that the risk to develop certain types 
of lymphoma is related to the function of the immune system. 
While several subtypes thrive in severe immune suppression 
(EBV-related DLBCL in general), cHL is dependent on an at least 
partially functioning immune system due to HRS cell interac-
tion with the microenvironment, particularly their dependence 
on CD4+ T-cell signaling (122), and thus their restoration by 
HAART “paradoxically” promotes cHL development. In BL, it 
is postulated that the expansion of the germinal center reac-
tion and the pronounced activation of polyclonal B-cells seen 
in the early stages of HIV—induced by several viral proteins 
(123)—increases the amount of EBV-infected B-cells with MYC 
translocations (115). This reservoir of translocated and virus-
infected B-cells, already “replenished” at the very beginning of 
HIV infection, increases the risk of BL outgrowths, which is 
independent of future control over HIV.

Apart from improving T-cell function and numbers, a key 
to treatment of EBV-related lymphoma is modulation of the 
ubiquitin–proteasome system. This vital cell component is used 
by EBV in several ways: it is inhibited by the virus to foster 
immune evasion (124); furthermore, it is used for modulation 
of cell cycle checkpoint proteins such as proto-oncogene serine/
threonine protein kinase 1 (PIM1) (125) or tumor suppressors 
such as p16 and retinoblastoma protein (pRb) (126); finally, 
it is involved in inhibition of apoptosis by fostering degrada-
tion of p53 and BCL6. The proof of concept of inhibiting the 
ubiquitin-proteasome system has been delivered in several 
EBV-associated malignancies (both carcinomas and lympho-
mas); however, larger clinical trials for testing this approach 
in the clinical setting are still required (127). In plasmablastic 
lymphoma, which is EBV-associated in the vast majority of cases 
(128), bortezomib treatment has already shown considerable 
improvement of treatment response and survival rates in small 
cohorts (129).
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Hematological Side effects of 
immunomodulative Therapies
Adverse events (AE)/side effects of immune checkpoint inhi-
bition drugs are reported to be rarer than those of classical 
chemotherapy agents (130). In contrast to the well understood 
genesis of pathologic changes in peripheral organs, which can 
mainly be explained by a graft-versus-host-like pathophysiology, 
the underlying mechanisms for hematological side effects of 
checkpoint inhibitors are not yet fully understood. Hematological 
AE in general seem to be more common in lymphoma patients 
than in patients treated for solid tumors (131). They manifest 
as isolated neutropenia, thrombocytopenia, or anemia, in some 
cases as pancytopenia, which may all have in common decreased 
auto-tolerance mechanisms under immunomodulation (132). 
Furthermore, development of hemophilia A in patients treated 
with anti-CTLA4 antibodies has been described (133, 134). 
In one study on DLBCL patients, a condition referred to as 
myelodysplastic syndrome (MDS) occurred in a single patient 
and was listed among the AE (131). However, in our point of 
view, it is difficult to attribute a MDS to immune checkpoint 
inhibition as several potential other causes should be considered 
(e.g., therapy-associated myeloid neoplasm after several previous 

chemotherapy courses!) and the mechanism how immune check-
point inhibitors entice MDS-related mutations remains com-
pletely unclear. Though the pathophysiology of hematological 
AE seen in the context of immunomodulative therapies is not 
fully elucidated yet, it is highly likely that they develop in an 
autoimmune disease-like manner. In AE suspect instances, it 
is vital to rule out other potential causes of cytopenias such as 
lymphomatous bone marrow involvement, substrate deficiencies 
or toxicities of former (chemo-)therapies including evolving 
therapy-associated myeloid neoplasms, concomitant treatment 
with myelotoxic medications, e.g., certain NSAR, mycophenolate, 
or mTOR inhibitors (135). Interestingly, occurrence or worsening 
of graft-versus-host disease (GvHD) in previously transplanted 
individuals, whom immune checkpoint inhibition was given, has 
been reported as an AE in some studies, while others reported a 
reduced incidence (132). Importantly, in an experimental setting, 
PDL1 inhibition reduced GvHD without hampering the graft 
versus lymphoma effect in mice (136).

CONCLUSiON

In this review, we have summarized mechanisms lymphoma 
cells employ to influence or circumvent the immune system 
(Figure  5). We have shown that many mutations and pathway 
alterations discovered in cHL—the pathognomonic example for 
a lymphoma interfering with the immune system—can also be 
found in other types of lymphomas and that these alterations, 
to which many lymphomas are oncogenically addicted, can be 
specifically targeted. Indeed, it has become evident that manipu-
lating the immune system taints to be an advantageous manage-
ment strategy for many tumors including lymphomas. Thorough 
research has elucidated several mechanisms how this is achieved, 
it has also become clear that both tumor cells and microenvi-
ronmental compounds should be considered and modulated in 
a proper manner. These findings have led to a plethora of new 
potential treatment options, which have already proven to be 
beneficiary for patients.

However, it has also become evident that there is no uniform 
treatment response, highlighting the need for individualized 
analysis of patients’ tumors and the corresponding individual 
immunological/immunogenetic background in order to decipher 
on the one hand the specific pathways used by the tumor to ham-
per the hosts’ immune system and the potential responsiveness of 
the latter. It has also become evident that immunotherapy can and 
probably should be synthetically combined with the other pillars 
of cancer therapy—surgery, chemotherapy, and radiotherapy—as 
this can markedly improve the impact of each therapy approach.
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