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Abstract

GenBank is a popular National Center for Biotechnology Information (NCBI) database for

submission and analysis of DNA sequences for biomedical research. The resource is part

of the Entrez environment which enables for cross-linking of concepts and entries in other

participating NCBI databases such as Taxonomy, PubMed and Protein. For example, a

GenBank record of an influenza A hemagglutinin gene DNA sequence might have a link to

the Taxonomy database for the organism, a link to the related article in PubMed (if pub-

lished) and a link to the Protein entry for the hemagglutinin protein. Despite its importance

in biomedical research such as population genetics, phylogeography and public health sur-

veillance, the host and geospatial metadata of genetic sequences in GenBank are not linked

to any database. Therefore, to facilitate biomedical research based on georeferenced DNA

sequences and/or DNA sequences with normalized host names, we designed and de-

veloped a framework that enriches GenBank entries by linking their host metadata to the

NCBI Taxonomy database and their geospatial metadata to a comprehensive knowledge

base of geographic locations called GeoNames. Here, we introduce a database created

through the application of this framework to virus sequences in GenBank, and evaluate our

normalization algorithms on a set of manually annotated records pertaining to viruses.

Although currently applied to viruses, our framework can be easily extended to other or-

ganisms, and we discuss the potential utilization of our resource for biomedical research.
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Introduction

GenBank is a public database of nucleotide sequences de-

veloped and maintained by the National Center for

Biotechnology Information (NCBI), which is part of the

U.S. National Library of Medicine (NLM) of the National

Institutes of Health (NIH) (1). With its participation in the

International Nucleotide Sequence Database Collaboration

(INSDC), NCBI exchanges sequences with international

institutes such as the European Nucleotide Archive (ENA)

(2) and the DNA Data Bank of Japan (DDBJ) (3). At the

time of writing, GenBank contains a total of 200 877 884

sequences (4), along with pre-defined metadata describing

each sequence. Over two million of these sequences are of

virus origin, and include metadata such as the name of in-

fected host of the virus, the location of infected host of the

virus (LOIH) and the name of the gene the sequence cor-

responds to.

Viruses represent one of the principal causes of emerg-

ing and re-emerging infectious diseases across the world

(5), and, therefore, understanding their evolutionary dy-

namics and geographical transmission, through diverse

methods of analysis, is of critical importance. As one of the

most comprehensive sources of virus sequence informa-

tion, GenBank presents an invaluable resource for a wide

range of virus-related research. It is frequently used in

fields such as phylogenetics, phylogeography, molecular

epidemiology, evolutionary biology and environmental

health for studying viruses through a variety of different

approaches. In addition to genetic sequence data, the rich

metadata present in many GenBank records are vital for

analysis and comparison. For instance, when mapping the

global spread of each type of Dengue viruses across a time

span of 70 years, Messina et al. extracted the type and geo-

graphical coordinates of 1070 GenBank records pertaining

to Dengue viruses from their respective metadata fields (6).

Similarly, Scotch et al. also utilized the geospatial metadata

available for GenBank records when conducting a phylo-

geographic analysis of Influenza A H5N1 viruses isolated

from Egypt (7).

One significant challenge faced by researchers in their

efforts to incorporate GenBank metadata within their

study, is the task of appropriately normalizing the data so

that it is usable. Although GenBank contains distinct fields

for storing sequence-related metadata, it does not place

strict constraints on values that an author may enter for

each field. As a result, many of the metadata fields in

GenBank are semi-structured in nature, and must be pro-

cessed before being utilized by a researcher. For instance,

the host field of GenBank records with accession numbers

AB618040 (8), AB618529 (9) and AJ312308 (10) contains

the values ‘Homo sapiens’, ‘Homo sapiens 54-years-old fe-

male’ and ‘Man’, respectively, to denote the same species.

Therefore, if a researcher intends to focus on virus se-

quences infecting, for example, humans and chimpanzees,

they would first have to guess the different possible ways

of denoting human and chimpanzee hosts, then query the

GenBank website for each such possibility, and finally nor-

malize each host field manually to allow grouping based

on its value.

When extracting geographic metadata denoting the

LOIH of a virus sequence, researchers may frequently have

to perform an additional step of integrating geographic in-

formation from different fields in the GenBank record,

prior to normalization. The designated field for storing the

LOIH of sequences in GenBank is called the country field.

Despite its name, the country field may contain geographic

metadata of varying degrees of specificity, rather than only

country-level information. For instance, the annotated

data in the country field of the GenBank record with acces-

sion number CY045959 is ‘Canada: Ontario’ (11). Because

of the specific nature of virus nomenclature, additional

geographic information may often be found in the strain

field and isolate field of GenBank records. For instance,

the annotated data in the strain field of this record is

‘A/Toronto/T5294/2009(H1N1)’ (11). Combined with the

information in the country field, it can be inferred that the

LOIH of the virus is ‘Toronto, Ontario, Canada’. This pro-

cess of extracting, integrating and normalizing the LOIH

of sequences from GenBank record metadata can be highly

challenging, especially when a researcher is not very famil-

iar with the geographic region in which the study is being

conducted. The ambiguous nature of many locations can

make this process even more difficult. For instance, the lo-

cation ‘Malang, Indonesia’ may be mapped to 20 distinct

geo-coordinates based on GeoNames (12), a comprehen-

sive database of geographic locations across the world.

In 2005, GenBank introduced the lat_lon field (13)

which, in the case of viruses, may be used to store the

specific latitude and longitude coordinates of their

LOIH. However, in our review, we found that this field is

missing in over 99% of all GenBank records pertaining to

viruses. Therefore, for the large majority of GenBank re-

cords, the task of geocoding is left to each individual

researcher.

In this study, we describe the design and development

of an integrated framework for normalizing host and loca-

tion metadata in GenBank records pertaining to viruses.

We applied a rule-based framework to map the name and

location of the infected hosts of viruses to their cor-

responding NCBI taxonomy IDs (14) and GeoNames

IDs (12) respectively. Our algorithm successfully linked

1 971 328 GenBank records to the GeoNames database,

and 1 592 541 GenBank records to the Taxonomy data-

base based on their host names. Prior to normalizing the
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LOIH of virus sequences in GenBank, we first used an

automated approach to integrate data from different fields

in the record which may contain geographic metadata.

Therefore, our database includes the most comprehensive

geographic metadata denoting the LOIH of each virus se-

quence in GenBank, which our algorithm is capable of ex-

tracting. To the best of our knowledge, this is the first

framework that normalizes these two types of GenBank

metadata for all virus-related GenBank records.

Given the significance of normalized GenBank meta-

data in a wide range of virus-related studies, our frame-

work would help support a variety of different approaches

used for understanding and/or analyzing virus epidemi-

ology, migration patterns and evolutionary dynamics.

This, in turn, may lead to major advances in infectious dis-

ease surveillance, and vaccine design and distribution,

thereby enhancing our ability to control and contain dis-

ease outbreaks. In addition, our normalization algorithms

linked each GenBank metadata to widely used and well-

managed databases. This would facilitate cross-database

queries, allowing the conduction of many new analytical

studies. Moreover, the methods of normalization

described here may also be easily applied to create similar

databases for organisms such as bacteria or eukaryotes.

Therefore, the work presented in this paper has the poten-

tial to considerably accelerate research in diverse biomed-

ical fields.

Related work

Over the past few years, NCBI has undertaken several

large-scale efforts to add more structure to its data, result-

ing in the development of valuable resources such as

BioSample (15, 16), Refseq (17, 18), NCBI Virus Variation

(19, 20) and NCBI Viral Genomes (21, 22). These re-

sources facilitate curation of GenBank metadata and are

crucial for advancing biomedical research. However, we

believe that our framework is distinctly different from each

of them and serve a purpose not yet satisfied by any exist-

ing resource that we are aware of. The BioSample project

represents a significant attempt by NCBI to integrate data

across different resources, and provides an intuitive inter-

face to facilitate submission of rich and consistent meta-

data. However, it relies on manual submission of metadata

and is not linked to a large section of virus GenBank re-

cords. The Refseq database is a widely used resource

within the research community which includes non-

redundant, well-annotated genetic sequences but it requires

manual curation of data, and, once again, a large portion

of virus GenBank records do not have Refseq links. The

NCBI Virus Variation project, which is part of the NCBI

Viral Genomes project, utilizes a semi-automated pipeline

for mapping GenBank metadata, including host and geo-

graphic metadata, to a controlled vocabulary. However,

the pipeline is currently applied to newly-released

GenBank records pertaining to seven viruses only. In con-

trast, we have successfully applied our automated system

to over two million GenBank records pertaining to viruses.

Moreover, the pipeline used by the NCBI Virus Variation

project appears to map the geographic metadata of virus

records to their corresponding countries/continents/regions

only to allow recognition of up-to country-level hierarchy,

while our framework normalizes the metadata to specific

GeoNames entries (which includes their geographic coord-

inates) and is capable of recognizing up-to state/province-

level hierarchy. Also, unlike our system, the NCBI Virus

Variation pipeline appears to map host names to a con-

trolled vocabulary of taxonomic host groups rather than

specific taxonomy ids.

Although this work represents the first effort to create a

comprehensive database including the normalized forms of

the infected host and LOIH of all virus sequences in

GenBank, several attempts have been previously made to

normalize different GenBank metadata fields for different

organisms. In our prior work (23), we used a rule-based

approach similar to the one described here to extract, inte-

grate, and normalize the LOIH of virus sequences in

GenBank. However, instead of applying our approach to

develop a database of virus-related GenBank records with

normalized LOIH, we used it to develop a system for

enhancing existing geographic metadata in ‘insufficient’

virus-related GenBank records by extracting additional in-

formation from linked full-text publications. We defined

‘Insufficiency’ as geographic metadata which was not more

specific than Administrative Division 1 (ADM1) level, that

is, state or province level. For instance, ‘Arizona, USA’

would be categorized ‘insufficient’ while ‘Maricopa

County, Arizona, USA’ would be categorized ‘sufficient’.

Therefore, once our system found ‘sufficient’ geographic

metadata in a GenBank record, it would stop searching.

For instance, if the geographic metadata in a record was

‘Tempe, Maricopa County, Arizona, USA’, our system

would stop searching once it found ‘Maricopa County’,

thereby missing the more specific location ‘Tempe’. Here,

we updated our algorithm so that it finds the most specific

geographic location, along with its parent ADM1 and

country-level location, if present, for semantic context.

Therefore, in the previous example, our current system

would extract, and subsequently normalize, ‘Tempe,

Arizona, USA’. Moreover, the rules for LOIH extraction in

the system developed through our prior work were primar-

ily designed for GenBank records pertaining to only the in-

fluenza virus. For this study, we added rules to optimize

geographic metadata extraction for non-influenza viruses

Database, Vol. 2017, Article ID bax093 Page 3 of 16

Deleted Text: ,
Deleted Text: RELATED WORK
Deleted Text: &hx201C;insufficient&hx201D;
Deleted Text: &hx201C;Insufficiency&hx201D;
Deleted Text: i.e.
Deleted Text: &hx201C;Arizona, USA&hx201D;
Deleted Text: &hx201C;insufficient&hx201D;
Deleted Text: &hx201C;Maricopa County, Arizona, USA&hx201D;
Deleted Text: &hx201C;sufficient&hx201D;. 
Deleted Text: &hx201C;sufficient&hx201D;
Deleted Text: &hx201C;Tempe, Maricopa County, Arizona, USA&hx201D;, 
Deleted Text: &hx201C;Maricopa County&hx201D;, 
Deleted Text: &hx201C;Tempe&hx201D;. 
Deleted Text: &hx201C;Tempe, Arizona, USA&hx201D;. 


as well, and introduced additional features, such as a sim-

ple Lucene-based spell corrector, to minimize errors for all

organisms. Furthermore, in our prior work, we used an

SQL database for storing and querying the GeoNames

knowledge base (KB). Here, we migrated to a Lucene index

representation of the KB to enable faster queries.

In another recent work, Gratton et al. (13) utilized

an automated approach for geocoding all previously

un-geocoded GenBank records associated with tetrapods.

However, they did not extend their study to include

viruses, and limited the extraction of geographic metadata

from the country field only, while we integrated geo-

graphic metadata from different fields in virus-related

GenBank records for this study. Furthermore, they mapped

the extracted geographic metadata to their respective lati-

tude and longitude coordinates, while we mapped se-

quences to their corresponding GeoNames IDs, whenever

possible, in addition to their geo-coordinates. This would

enable cross-database studies involving the GeoNames

database and the GenBank database, and provide a unique,

normalized string representation of each LOIH to facilitate

studies such as discrete phylogeography, where each LOIH

is represented as a discrete character state (24).

Recent efforts have also been made to extract and

normalize non-geographic metadata in GenBank. For

instance, Sarkar (25) extracted the anatomical source of

microbiome bacteria in ten mammalian hosts from the

isolation_source and note fields in GenBank records, and

normalized them using existing ontologies and annota-

tion services available through the National Center for

Biomedical Ontologies (NCBO) (26). In a separate work,

Chen and Sarkar (27) conducted a feasibility study for nor-

malizing the host and isolation_source fields in GenBank.

They applied an automated approach to normalize host

fields to their corresponding Taxonomy IDs, and used the

NCBO web service annotator for normalizing the isola-

tion_source field based on different ontologies. However,

their work only involved an exploratory analysis of

GenBank records, and no datasets including the normal-

ized fields was made publicly available. Another related

work by Sinclair et al. (28) introduced Seqenv, a software

for linking genetic sequences to the Environmental

Ontology (29). However, Seqenv takes genetic sequences

as input instead of GenBank records, and the linking is per-

formed based on the isolation_source field in GenBank.

Therefore, it is specifically geared toward assisting re-

searchers specializing in environmental genomics while our

framework serves as a general framework for normalizing

GenBank metadata, which may address the needs of di-

verse research areas.

Research in the emerging domain of viroinformatics has

also lead to the development of many computational tools

and databases to support the work of virologists. Sharma

et al. (30) provided an exhaustive list of such resources,

and included key features and functions of each resource.

However, none of the listed resources was reported to have

used computational methods for normalizing the host and

geospatial metadata of all virus sequences in GenBank.

Outside of GenBank and viral genomics, different normal-

ization methods have been utilized in a wide range of studies

to normalize mentions found in free-text articles (31–35),

tables and lists in web documents (36, 37), social media (38)

and other databases/KBs (39). Although we exploited the

basic principles involved in some of these normalization tech-

niques, which are commonly used by researchers, the exact

heuristics applied here remain unique to our study.

Materials and methods

Our study can be divided into three distinct stages:

(i) Database Design and Development, (ii) Entity

Normalization, (iii) Evaluation. Below, we describe each

stage in detail.

Database design and development

Database design

For this study, we designed an efficient and flexible data-

base schema. In Figure 1, we illustrate the portion of the

schema relevant to the task of entity linking. Within our

database, the GenBank accession number is the main

identifier used to connect all related metadata for each

virus sequence. We organized the database around the

‘Sequence_details’ table which includes sequence metadata

extracted from important fields in GenBank records such

as the organism field, isolate field, strain field and collec-

tion_date field. We stored the data extracted from the host

field, along with their normalized forms, in the ‘Host’

table. We stored the data from the country field, along

with the latitude and longitude coordinates (which we

derived from the lat_lon field), in the ‘Location_GenBank’

table. In the table ‘Location_Geoname’, we saved the inte-

grated LOIH which we extracted from the relevant fields

in each GenBank record. In this table, we also stored its

corresponding GeoNames ID and latitude and longitude

coordinates. We chose to use separate tables for storing the

normalized host name and LOIH of each virus sequence to

facilitate updating and/or analyzing the novel pieces of in-

formation derived through this study. We stored additional

metadata from the ‘Features’ section of each GenBank re-

cord in the ‘Features’ table. Here, we utilized a flexible

structure by using ‘Key’ and ‘Value’ columns to store each

feature. Finally, we stored the entire nucleotide sequence

included in each GenBank record in the ‘Sequence’ table.
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GenBank data download

NCBI offers several web-based services to access or

download the entire GenBank database. Here, we used

the anonymous ftp server located at https://www.ncbi.

nlm.nih.gov/genbank/ftp/ to acquire all GenBank records

pertaining to viruses listed in the gbvrl files (excluding

laboratory strains). Using a parser written in Java, we se-

quentially downloaded all GenBank flat files correspond-

ing to virus nucleotide sequences from the anonymous

ftp server. After downloading each file, we ran our parser

to automatically extract relevant data for each sequence

contained in the file, and stored them in our SQL

database.

Entity normalization

The task of normalization aims to map the mention of a

concept to its corresponding ID in a predefined KB (40).

For example, in the sentence ‘one SOR strain that was also

isolated from a human in Germany’ (41), p. 2052, the men-

tion ‘human’ can be linked to the concept Homo sapiens

(ID: 9606) in the NCBI Taxonomy (42) and the mention

‘Germany’ to the concept of Federal Republic of Germany

(ID: 2921044) in the GeoNames database (43). The nor-

malization task is also known as ‘concept mapping’, ‘con-

cept grounding’ or, as in our study, ‘entity linking’ when

the concepts are only limited to entities. In entity linking,

the mention of concepts, such as quality, process or events,

is excluded from normalization.

Normalizing concepts in documents is made difficult

due to the presence of various linguistic phenomenons. An

intuitive approach to normalize the mention of a concept

appearing in a document is to compare the mention with

each entry in the chosen KB. If an entry matches exactly

with the mention, the ID of the entry is linked to the

mention. However, synonyms, polysemy, acronyms and

spelling variations render a search by exact match ineffect-

ive (40).

When exploring the feasibility of normalizing concepts

in the semi-structured host and isolation_source fields of

the GenBank database, Chen et al. (27) noted that the host

field often included the common names of the host, rather

than their scientific names, in a wide range of different

formats, along with additional information about the host,

such as its age and gender (e.g. for accession CY138679

(44), the field host is ‘American black duck; gender M; age

L—Local’). The isolation_source field presented an even

richer syntactic and semantic diversity since its values var-

ied based on the anatomy of the hosts. Therefore, in both

cases, complex methods are required to successfully nor-

malize the fields, and a simple search by exact match

would likely be ineffective. Complex approaches of entity

normalization rely on the exploitation of the properties of

mentions and concepts, along with the contexts in which

Figure 1. Database schema.
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they appear (45). Below, we list some of the common

features used in such complex approaches for entity

normalization:

• Names similarities: The most intuitive and commonly

used property to link a concept to a mention is the simi-

larity between their names. When a strict string matching

is not directly applicable, many named entity linking sys-

tems compute a distance of some sort, such as the

Hamming distance or edit distance, between the string of

the mention and the names of different concepts in the

KB, to search for the closest concept. Some systems may

choose to perform partial string matching instead of

computing a string similarity score, while others may

apply existing or domain-specific spell correctors to find

the closest lexical and/or phonetic matches.

• Concept popularities: Some concepts are more frequently

used than others. For example, if the name ‘Marie

Currie’ is mentioned in a document, it is more likely to

refer to the famous Polish physicist than the less famous

American rock singer, ‘Marie Michelle Currie’. A simple

metric to confirm this claim may be derived by compar-

ing the number of Wikipedia articles referring to the

physicist with the number of articles referring to the rock

singer. An a priori probability can model this likelihood

and be used to bias the default choice of a concept for a

given mention.

• Lexical context: When normalizing the mentions in a

document, it may often be possible to exploit the lexical

context around each mention (e.g. the words in the para-

graph containing the mention) by comparing it with the

lexical context of all possible concepts in the KB (e.g. the

words describing the concept in the KB). The lexical

context of the concept which corresponds to the mention

is expected to be more similar to that of the mention

in the document. However, when normalizing concepts

in the fields of a database, such context may not always

exist or be very informative. For instance, the host

name entered in the GenBank record with accession

KR349276 (46) is ‘mouse’. This mention is ambiguous

with the taxonomy concepts Shrew mouse (ID: 10093)

(47), House mouse (ID: 10090) (48) and Western Wild

Mouse (ID: 10096) (49). However, it is not possible to

exploit lexical context to disambiguate this mention

since it is not surrounded by any other word in this field.

• Semantic context: The concepts discovered in a docu-

ment are rarely independent of each other, and the

chosen concept for a mention should be coherent with

the concepts chosen for other mentions in the document.

In our previous example, if the name ‘Marie Currie’ is

found in a document mentioning the names ‘Cherie

Currie’ and ‘Steve Lukather’, which match the names of

the American rock singer Marie Michelle Currie’s sister

and husband respectively, it is more likely to refer to the

American rock singer rather than the more famous

Polish physicist. Therefore, the semantic context of a

mention may often be used to successfully disambiguate

the entities in a document.

In this study, we used several of the entity linking strategies

listed above for normalizing GenBank metadata, in add-

ition to using search by exact match. When normalizing

the host field, we exploited the name similarities between

mentions and concepts (through partial string matching

based on the head of the mention phrase) as well as the

popularity of the concepts. In case of geospatial metadata

normalization, we exploited the semantic context of the

mentions along with the name similarity (based on a

domain-specific spell corrector which uses edit distance

and phonetic similarity between strings to find matches)

and concept popularity features. Geographic locations are

hierarchical in nature and GenBank metadata often in-

cludes hierarchical information for the LOIH, which we

refer to here as semantic context. For instance, if the ‘coun-

try’ field of a GenBank record contains ‘Paris, Texas,

USA’, our algorithm would use ‘Texas’ and ‘USA’ as se-

mantic context when disambiguating ‘Paris’. As a result,

‘Paris’, in this specific case, would be mapped to the

GeoNames ID of 4717560 (50), representing the city of

Paris in Texas, USA, rather than the GeoNames ID of

2988507 (51) representing the capital city of France, which

is the more widely known of the two locations. Without

taking the semantic context of ‘Texas, USA’ into consider-

ation, our algorithm would have mapped Paris to the cap-

ital city of France. We did not utilize lexical context in

either of the two normalization algorithms presented here

since the description included in GenBank for each meta-

data is too short to benefit from this normalization strat-

egy. Further details about each normalization method are

described below.

Host normalization

We normalized the host field in GenBank records by apply-

ing a set of matching rules in sequence (see Figure 2). First,

we isolated the name of the host from any additional infor-

mation the field may contain using a series of handwritten

regular expressions. The regular expressions we applied

were designed to recognize several formats followed by au-

thors when entering this field during the sequence submis-

sion process. For example, based on one of our rules, we

discarded any text in the field which followed the occur-

rence of the first punctuation mark, if the punctuation was

not a period, and kept only the remaining phrase. For ex-

ample, in GenBank record KT390491: ‘Abelmoschus
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angulosus; IC-140156’ (52), we only kept Abelmoschus

angulosus.

Once we isolated the names of the hosts, we applied a set

of rules to map the mention of common host names, such as

mouse and human, to their corresponding IDs in the

Taxonomy database. If none of these rules matched, then we

implemented a second set of rules to search for regular pat-

terns against the entire taxonomy tree, instead of a small set

of common hosts. If no matching host name was found, we

tokenized the name and checked if the head token matched

any of the rules included in the second set. If a match was

still not found, then we assigned the host field a Taxonomy

ID of 0, to indicate that the host name of the record was un-

known. At its current state, our host metadata normalization

method does not utilize any spell corrector or string similar-

ity scoring algorithm to find additional matches.

Although several NLP tools currently exist for the gen-

eric task of species normalization (34, 53), we opted to de-

velop our own algorithm for this domain instead of

adopting one of the existing tools. Most GenBank records

pertaining to viruses contain very short descriptions of the

infected host within the host field. In many cases, the

included host name is a scientific name which can be dir-

ectly mapped to an NCBI Taxonomy entry. Non-scientific

host names used typically fall within a limited set of

common host names. Therefore, we attempted to use a

simple rule-based approach for normalizing the host names

in GenBank records rather than applying more complex

NLP tools. This allowed us to keep our methods as simple

and efficient as possible while still having complete flexi-

bility to make any changes needed to enhance performance

specifically for this domain.

Geospatial metadata normalization

To extract and normalize the geospatial metadata of virus

sequences in GenBank, we constructed a Lucene index of

geographic locations, based on the GeoNames database,

to serve as our KB of location names. The GeoNames

database, which encodes the properties and hierarch-

ical structure of over 10 million geographic locations, is

a widely-used resource for geographic information extrac-

tion. However, it contains many entries such as ‘rat’ and

‘fox’ which may generate many false positives. Therefore,

we collected different lists of commonly used words from

different sources to filter them out. This includes a list of

the names of common virus hosts and a list of English stop

words (23). GeoNames also includes the alternate names

of each location in different languages. We included these

alternate names in our KB for all ADM1-level locations to

maintain a high recall. For country-level locations we

Figure 2. Host metadata extraction and normalization algorithm.
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manually added commonly used country names and con-

sidered the Socrata dataset (54), which includes geospatial

data for 243 countries, when adding these alternate names

(23). For all other locations, we did not include any alter-

nate name to minimize false positives. The choice of

whether to add the alternate names in each case was based

on a preliminary analysis we performed on a small set of

records to determine the ideal configuration for minimiz-

ing false positives and false negatives.

We used the developed KB, along with a set of rule-

based heuristics, to automatically extract, integrate and

normalize geospatial metadata from multiple fields in

virus-related GenBank records (see Figure 3). We analyzed

the following GenBank metadata fields of all virus se-

quences: country, strain and isolate. As mentioned earlier,

the country field is the designated field in GenBank for

storing information about the LOIH of virus sequences but

additional geographic information may often be found in

the strain field or the isolate field of GenBank records. In

case of GenBank records pertaining to influenza viruses,

the strain name of the virus sequence may also be recorded

in the organism field of the record, which, therefore, pre-

sents another potential source of information for the LOIH

of the virus, especially when the strain field is empty.

However, many species of viruses, such as the Puumala

virus, contain location mentions (in this case Puumala)

within their species name which do not refer to the LOIH

of the specific virus sequence. Therefore, to avoid the pos-

sibility of including erroneous locations, and for simplicity,

our system only analyzed the organism field for influenza

viruses.

For each GenBank record included in our database, our

system first segmented the string in each pertinent field of

the record based on simple delimiters, and considered each

segment to be a possible candidate location. It then

searched our developed KB to find possible matches for

each candidate location. In case of overlapping locations,

it chose the location with the greater number of tokens.

For instance, if the content of the country field in a

GenBank record is ‘Sierra Leone’, our system would ex-

tract ‘Sierra Leone’ (55) as a single location although

GeoNames includes separate locations named ‘Sierra’ (56)

and ‘Leone’ (44) respectively. To avoid false positives, our

system discarded any candidate location which consisted

of only three letters, unless it corresponded to a US state

postal code (e.g. NY for New York). If no match was

found, our system removed words such as ‘state’, ‘county’,

‘region’, ‘east’ and ‘west’ from the candidate location

name and re-initiated the search. If still no match was

found, our system applied a simple Lucene-based spell cor-

rector to check for misspellings. The spell corrector first

checked if a match could be found by inserting a space

after each character in the query string to handle cases like

‘NewYork’. If no match was found, it retrieved the top ten

Lucene matches within two edit distance of the string if its

length was greater than seven characters, and within one

edit distance of the string if its length was greater than five

characters but less than seven characters. The thresholds

for choosing the edit distance limits were determined based

on observations we made when analyzing system errors on

a few preliminary datasets, separate from the one used in

this study. Among the ten Lucene matches retrieved

through this method, our spell corrector prioritized

matches with the same phonetic representation as that of

the query string (via the phonetic algorithm in Double

Metaphone (57)) over those that did not have the same

representation, and selected the top ranked match as the

corrected spelling. It then integrated extracted location

mentions to produce a coherent set of locations.

Our location integration algorithm functioned under

the assumption that country-level locations are more likely

to have been extracted correctly by our system than

ADM1-level locations, which in turn are more likely to

have been extracted correctly than locations less specific

than ADM1. For instance, if our system extracted the loca-

tions ‘Grebe’ and ‘Russia’, it would disregard ‘Grebe’

since, according to the GeoNames KB, there is no location

called ‘Grebe’ in Russia, and so it would assume that

‘Grebe’ was extracted incorrectly. Similarly, if it extracted

the locations ‘Grebe’, ‘California’ and ‘USA’, it would

once again disregard the location ‘Grebe’, even though one

exists in the state of Oregon in USA, since none can be

found in California, USA. Before integrating any location

more specific than ADM1-level, we ensured that it was

contained within any ADM1-level or country-level loca-

tion extracted from GenBank. We did not control the co-

herence between locations beyond the ADM1-level since

we considered hierarchical data in GeoNames to be ad-

equately complete up to ADM1 level. For instance, we are

confident that the GeoNames KB would include the parent

country name and ADM1-level location name for all lo-

cations named ‘Grebe’. Therefore, our coherence checking

process is more likely to lower false positives, than intro-

duce false negatives. However, we are not as confident

that GeoNames would correctly include the parent

ADM2-level location and beyond for all locations, and so

we chose not to check coherence beyond ADM1-level, to

minimize the risk of missing valid locations. If multiple sets

of coherent locations were found, our algorithm chose the

set that provided more information. For instance, if our

system extracted ‘Connecticut, USA’, and ‘Summit, New

Jersey, USA’, it would choose the latter since that includes

a larger set of coherent locations. After selecting a coherent

set of locations, our algorithm outputted the most specific
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location in the set, along with its parent country and

ADM1-level location, if available. For instance, if the se-

lected set included ‘Chicago’, ‘Illinois’ and ‘USA’, our sys-

tem would produce the integrated metadata ‘Chicago,

Illinois, USA’. We included the parent country and ADM1-

level locations to provide semantic context for our normal-

ization algorithm, as we detail next.

When performing normalization, our system first

searched our KB of geographic locations to retrieve all pos-

sible GeoNames entries for the location, using the most

comprehensive information available. For instance, if the

integrated geographic metadata was ‘Chicago, Illinois,

USA’, a search was performed to retrieve all matches for

‘Chicago’ in the state of Illinois in the country of USA

and, thus, the locations ‘Illinois’ and ‘USA’ were used as se-

mantic context by the normalization algorithm. Next,

it narrowed the search results to the group of entries

which possessed the least specific feature code (code in

GeoNames denoting the type of the location, e.g. country,

state, city, etc.). For instance, in GeoNames, ‘Arizona’ can

be both a state in USA (with a feature code of ADM1) and

a populated place in the state of Texas, USA (with a feature

code of PPL) but our system would only select the former

entry since it has a less specific feature code. This heuristic

is based on the assumption that the less specific a location

is, the more widely known it tends to be, and authors typ-

ically tend to refer to more widely known locations (23).

Our system then further narrowed down the search to the

set of entries with the highest population. This heuristic is

based on the assumption that geographic locations that

have higher populations tend to be referenced more often

by authors (23, 32). If the system still failed to uniquely

identify the location, it randomly selected one of the pos-

sible entries. In case of records for which our system was

unable to extract any location from any of the fields

analyzed, the LOIH was listed as ‘Unknown’ with a

Figure 3. Geospatial metadata extraction and normalization.
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GeoNames ID of ‘�1’, and the latitude and longitude fields

were populated with ‘0’.

As we outline in Related Work, our geospatial metadata

extraction and normalization algorithm expands upon our

prior work (23) in this area. However, we made a significant

number of changes to the pipeline to enhance its efficiency

and accuracy, so that it may be more easily applied for the

large-scale project undertaken here. Important updates in-

clude the following: (i) migration from MySQL database to

Lucene index for storing the KB of geographic locations in

order to enable faster queries, (ii) addition of rules to parse

strain and isolate fields of non-influenza viruses, which tend

to be less structured than those of influenza viruses, (iii) add-

ition of a simple spell-corrector to account for spelling errors

in GenBank, (iv) addition of rules to allow the system to ex-

tract the most specific LOIH of the virus, instead of simply

extracting any location more specific than ADM1-level (e.g.

if the complete geospatial metadata was ‘Chicago, Cook

County, Illinois, USA’, our prior algorithm may not extract

‘Chicago’ since it would stop searching once it found ‘Cook

County’) and (v) normalization to GeoNames IDs rather

than latitude and longitude coordinates (this was a not a sig-

nificant change with respect to implementation, but has im-

portant implications in supporting GenBank-related

research by enabling cross-database queries).

Evaluation

To evaluate the accuracy of our normalization algorithms,

we randomly selected 100 GenBank accession numbers

among those included within our database, for manual an-

notation. Two annotators, whose biomedical specialties

required them to work extensively with GenBank records

pertaining to viruses, annotated and normalized the LOIH

and infected host of each selected GenBank record. In both

cases, the annotators used the GenBank website to acquire

pertinent GenBank metadata for completing their annota-

tion tasks. For each virus sequence, they tried to find the

most comprehensive information available in GenBank

concerning its LOIH and host name, using all fields present

in GenBank, regardless of if our program used the field. In

addition, in case of host metadata, our annotators also

used domain knowledge to annotate host names even

when they were not included in GenBank. For instance,

they automatically assigned ‘host¼ human’ to any HIV re-

cord. Also, the strain name of the influenza virus typically

includes the name of its infected host, unless the host is

human. Therefore, with the absence of any host metadata

included in the strain field, it is reasonable to infer that the

host was human for any non-laboratory strains.

After retrieving each relevant GenBank metadata, our

annotators normalized it based on the selected KB. For

normalizing geospatial metadata, they searched each loca-

tion in the GeoNames website (12) to retrieve their corres-

ponding GeoNames ID. Like our program, when multiple

GenBank entries were available for a given location, they

selected the one with the least specific feature code. For

normalizing host names, our annotators used the NCBI

Taxonomy website (58) to determine the Taxonomy ID of

the host. In cases where they were unable to link a

GenBank metadata to the selected KB, they inserted ‘0’ in

the ID field.

Once the annotations were complete, we computed per-

centage agreement between our annotators for each anno-

tation type to serve as a measure of inter-rater reliability.

We chose to use percentage agreement, rather than Kappa

statistic, because the number of possible categories in each

annotation is over a million. The Kappa statistic is used to

take into account agreement by chance (59). However,

given the number of possible categories in each annotation,

the possibility of agreement by chance is negligible. Other

studies in information retrieval have used f-score as a

measure of agreement (23, 60). However, in this study,

each annotation simply involves entering a single value;

therefore, the calculation of f-score would be redundant

and a simple percentage agreement calculation is justified.

Once we completed the calculation of percentage agree-

ment between our two annotators, a third annotator went

through each case where they differed and selected the cor-

rect annotation to create our gold standard dataset. If it was

unclear which annotation should be chosen, all annotators

discussed the reason for the difference in annotation and

mutually decided on one. Once the gold standard was cre-

ated, we compared the annotations in the gold standard

with the corresponding content in our database for measur-

ing accuracy. In addition, to obtain a baseline performance

measure for the host normalization task, we also computed

the accuracy of the MetaMap (53) tool for this task on our

gold standard dataset. When running MetaMap, we re-

stricted sources to the NCBI Taxonomy vocabulary and

retrieved the UMLS concept id with the highest score in

each case. We then used the UMLS MRCONSO.RRF file to

map the concept ids to their corresponding NCBI

Taxonomy IDs. We applied the bias-corrected and acceler-

ated (BCa) bootstrap method (61) with 10 000 iterations

using the ‘boot’ package (62) in R to calculate the 95% con-

fidence intervals (CI) for each accuracy value.

Results and discussion

Database statistics

We provide key statistics pertaining to our database,

which currently contains 2 244 971 GenBank records
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corresponding to 162 043 distinct virus organisms (see

Figure 4). We successfully mapped:

1. The LOIH of 2 014 269 (89.7%) records to their re-

spective GeoNames IDs by our LOIH normalization al-

gorithm. Only 18 525 (0.8%) of these records

originally had values in their ‘lat_lon’ field.

2. The infected hosts of 1 583 989 (70.6%) records to

their respective NCBI Taxonomy ID by our host nor-

malization algorithm. None of the GenBank records

contained a formal link between the host field and an

entry in the NCBI Taxonomy database.

Host normalization analysis

Rule-based methods are known to fail to capture the infinite

variety of the human language, and consequently, our ap-

proach is expected to be imperfect. The host names of

29.4% of the GenBank records in our database were not

normalized and were assigned the Taxonomy ID of 0.

27.4% were not normalized simply because the value in the

host field was left empty. However, for 2.2%, 49 644 in-

stances with instances repeated corresponding to 6803

unique instances, the host field contained a value but our

rules failed to find the corresponding Taxonomy ID. We

randomly selected 100 unique instances from this set and

analyzed the reasons for the failure of the rules. For 41 in-

stances, the presence of an abbreviation made the exact

matching impossible, for example, C. tantalus didn’t match

with Chlorocebus tantalus (ID: 60712) (63), and tantalus

alone is not a concept in the taxonomy. For 35 instances,

the host field contained the host name but also included

additional information which was often not separated by

delimiters from the host name, making the search difficult,

for example, marine Heterobranchia species where

Heterobranchia is found in the taxonomy (ID: 216305) (64)

but the presence of marine and species leads our algorithm

to fail. The last 24 instances were not found in the tax-

onomy due to misspellings like Lepus europeaus for Lepus

europaeus (ID: 9983) (65), and missing entries in the

Taxonomy database for alternative names of species such as

isard for Pyrenean chamois (ID: 72545) (66) or species such

as Paradoxurus musangus. These reasons can also be found

together in the same name of host making its normalization

even more difficult. Further research is needed to design

dedicated strategies to discover the reasons for the failure of

the rules and finalize the normalization.

Geospatial metadata normalization analysis

In case of geospatial metadata normalization, our system

analyzed data from multiple fields in each GenBank re-

cord, and when running the pipeline, we recorded the num-

ber of locations extracted from each field. We found that

our system extracted a total of 2 968 570 locations from

the GenBank record fields analyzed. This count simply rep-

resents all unique locations extracted by our system per re-

cord, and includes duplicate locations, in cases where they

were extracted from different records. For instance, given a

sample of two records, one having the location ‘Chicago’

in the strain field and ‘USA’ in the country field, and the

other having the location ‘USA’ in both the strain and

country fields, the total number of extracted locations,

counted through this method, would be three. The percent-

age of the 2 968 570 locations that were extracted from the

country, strain, organism and isolate fields was 87.3%

(2 594 402 locations), 17.3% (514 282 locations), 14.7%

(434 931 locations) and 4.75% (141 064) respectively (the

percentages do not add up to one since many of the loca-

tions were extracted from multiple fields, for example, if a

location in a given record was collected from both the

strain and country fields, it would be included in the count

for both fields). Therefore, 12.7% of the locations were ex-

tracted from GenBank fields other than the country field.

This indicates the importance of analyzing GenBank fields

other than the country field for extracting geospatial

metadata.

A comparison of the percentage of GenBank records in

our database having missing values in the country field,

with the percentage our algorithm failed to normalize, also

illustrates the significance of integrating geospatial meta-

data from multiple GenBank record fields rather than only

the country field. In 12.4% (278 350 records) of all

GenBank records in our database, we did not find any data

in the country field. However, we were unable to normal-

ize the geospatial metadata of only 10.3% of the GenBank

Figure 4. Database statistics.
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records in our database. This means that for at least 2.1%

of the GenBank records, we added additional information

from GenBank record fields other than the country field.

To obtain an estimate of the frequency with which our

algorithm failed to extract geospatial data from the country

field, we counted the number of records our algorithm failed

to normalize despite the presence of geographic information

in the country field. For a total of 2310 records (0.1% of all

records), representing 13 unique LOIH and 14 unique loca-

tions, the country field contained geospatial metadata which

our algorithm was unable to extract. Of the 14 locations

missed, seven were missed because we did not include the al-

ternate names of all locations from GeoNames. For in-

stance, GeoNames lists ‘British Guiana’ as an alternate

name for the main entry ‘Guyana’, but since we are not ana-

lyzing alternate names, our system failed to extract it. For

four of the missed locations (e.g. ‘Kpokhankro’), we did not

find any match in the GeoNames website when we manu-

ally searched for them. Therefore, the locations are most

likely missing in GeoNames. Two of the locations were

missed due to the presence of the word ‘the’ before the geo-

graphic location mention, for example, ‘The Netherlands’.

Although, as described in Methods, we used a list of stop-

words to remove every GeoNames entry from our database

which was an exact match for one of the stopwords in our

list (such as ‘but’), we did not remove stop words from

within GeoNames entries which were composed of multiple

words. For instance, we did not remove the string ‘but’ from

within the GeoNames entry called ‘Ban Nong Yai But’ (67),

which represents a city/town in Thailand. Similarly, we did

not remove stop words from within strings extracted from

GenBank metadata such as ‘The Netherlands’. In case of lo-

cations for which our algorithm failed to find a match in

GeoNames, it removed words such as ‘state’, ‘county’ and

‘south’ and attempted to find a match again. However, stop-

words such as ‘the’ were not included in this list since their

presence may possibly provide valuable context (as in the

case of ‘But’ in ‘‘Ban Nong Yai But’). Moreover, our spell

correction algorithm only searched for matches within 1 or

2 edit distance of the candidate string, depending on the

string length. Addition of ‘the’ represents an insertion of

four additional characters (including space) and, therefore,

our spell correction algorithm failed to find a match as well.

The remaining location was missed due to the failure our al-

gorithm to correctly identify the abbreviation ‘USSR’ stand-

ing for the former Union of Soviet Socialist Republic, now

dissolved.

Annotation statistics

Our gold standard annotation dataset includes 100 GenBank

records with 64 distinct LOIH and 20 distinct host names.

The percent agreement between our annotators for host and

LOIH normalization was 95 and 83 respectively (Table 1).

Differences in host annotation resulted from either of the

two annotators missing a host name present in GenBank, er-

roneously adding a host name not present, not selecting the

most specific host name available (e.g. deer instead of roe

deer) or not annotating the host name of a record with miss-

ing host metadata even when it could be inferred based on

the virus organism. In case of geospatial metadata annota-

tion, our annotators annotated the same location in seven of

the 17 instances where their final ID annotation differed.

However, they disambiguated the locations differently. The

remaining differences arose from missed locations.

Accuracy statistics

We found that the accuracy of our normalization algo-

rithms for host and geospatial metadata to be 70% (95%

CI [0.60–0.77]) and 87% (95% CI [0.78–0.92]) respect-

ively when evaluated on the manually annotated gold

standard (Table 1). The baseline performance for host nor-

malization using MetaMap was found to be 63% (95% CI

[0.52–0.71]).

Of the 30 errors in host normalization, 28 were from

lack of domain knowledge, 27 of which were specifically

the result of the program not knowing that certain viruses

affected only a single species of organism. One error re-

sulted from the inability of the system to extract the host

‘bar-headed goose’ and in case of the remaining error, the

program correctly extracted the host name but incorrectly

normalized it to the ID of its parent organism.

MetaMap’s accuracy was found to be 7% lower than

that of our system. As expected, MetaMap missed all host

names where domain knowledge was required. In addition,

in many cases it mapped the entities to higher level con-

cepts than what was annotated by our annotators. For in-

stance, MetaMap normalized the host ‘duck’ to the

concept id corresponding to the genus ‘Anas’(68) while our

annotators normalized it to the taxonomy id correspond-

ing to the specific species ‘Anas platyrhynchos’ (69).

Of the 13 errors in LOIH geospatial metadata normal-

ization, eight were due to disambiguation errors (same

Table 1. Inter-rater agreement and accuracy of normalization

tasks based on manually created gold standard of 100

GenBank records

Task Inter-rater

agreement (%)

System

accuracy (%)

Host metadata normalization 95 70

LOIH metadata normalization 83 87
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string representation of locations but different GeoNames

IDs), three were due to missed locations, and the remaining

two were due to the detection of locations not annotated

by our annotators. The disambiguation errors resulted

from the inability of our algorithm to choose the correct lo-

cation based on exact string match. For instance, based on

our annotation guidelines, the annotators normalized the

location ‘Ningbo, Zhejiang, China’ to the GeoNames ID

‘1799395’ (70) which corresponds to the second order ad-

ministrative division (ADM2) named ‘Ningbo Shi’ in

GeoNames. Since ‘Ningbo Shi’ is not an exact match for

‘Ningbo’, our program incorrectly normalized it to the

GeoNames ID ‘1799397’ (71) instead, which corresponds

to the capital city of Ningbo Shi, and is named ‘Ningbo’ in

GeoNames. Among the missed location errors, one was a

result of GeoNames including a different spell variant of

the location, which our system was not able to recognize.

The remaining locations were missed because they were

annotated based on the title field in GenBank (a field con-

taining the title of a publication linked to the record) but

our program does not extract metadata from the title field.

Both of the locations extracted by our program but not

annotated in our gold standard were valid locations. We

chose to not include one of them in our gold standard be-

cause it was too ambiguous and it was not possible to cor-

rectly normalize it based on available information. The

other was most likely missed by both of our annotators.

Conclusion

In this study, we developed an automated framework for

extracting and normalizing two different types of GenBank

metadata which are widely used in different domains of

biomedical research. We applied our framework to retrieve

the host and geospatial metadata of over two million

GenBank records pertaining to viruses, and link them to

the NCBI Taxonomy database and the GeoNames data-

base respectively. We have made the database including

the normalized metadata publicly available to allow re-

searchers to easily integrate them within their works and

help accelerate biomedical discovery. In addition, we also

created a manually annotated gold standard dataset

consisting of 100 randomly selected GenBank records for

evaluating the normalization algorithms. The percent

agreement between our annotators was over 80% for the

annotation of the two GenBank metadata types, which is

adequately high. It was higher (95%) for host annotation

than for geospatial metadata annotation (83%), illustrat-

ing the latter to be the more challenging of the two tasks

when performed manually.

When evaluated on the gold standard set, our host and

LOIH normalization algorithms achieved accuracies of

70% (95% CI [0.60–0.77]) and 87% (95% CI [0.78–

0.92]) respectively. The majority of the errors in host nor-

malization resulted from lack of domain knowledge, indi-

cating the need to incorporate additional rules within our

system to account for cases where a virus organism may

only infect a single type of host organism. However, our

current lack of such rules should not in any way reduce the

applicability of our released dataset, since researchers are

more likely to utilize it for GenBank records where the

host name is not definitively known based on the nature of

the virus organism. Our system correctly normalized the

host name in all but two records, where specific domain

knowledge was not required. In case of geospatial meta-

data normalization, the accuracy of our system was in fact

higher than the inter-rater agreement calculated for its an-

notation. The systematic nature of our algorithm made it

more suitable for this difficult task which requires exten-

sive efforts when done manually.

Our gold standard dataset is relatively small and, since

it was randomly selected, it often included duplicates of

the most common hosts or geographic locations included

in GenBank, leading to an even lower number of distinct

metadata annotations. This is especially true for host meta-

data annotation, since the infected host in most records

included within our dataset was ‘human’. Therefore, our

measured performance may not be reflective of the average

performance of the algorithms in other datasets.

In addition to evaluating our normalization algorithms

on the gold standard dataset, we also performed supple-

mentary analysis to investigate the completeness of the

normalized host and geospatial metadata in our database.

Our analysis showed that our normalization algorithms

could normalize nearly all GenBank records for which the

host and country fields were not empty. Although this does

not necessarily mean that the extraction and normalization

of metadata was performed correctly in each case, it never-

theless provides a simple measure of our system’s ability

to extract metadata whenever available. In addition, our

analysis also revealed the importance of including geospa-

tial metadata from different GenBank record fields rather

than only the country field.

Although various large-scale efforts are currently being

made by NCBI to facilitate curation of rich and consistent

GenBank metadata, we believe that the framework and

database presented in this manuscript would continue to

remain highly useful to researchers, both in the present

time and in the near future. Manual annotation of millions

of GenBank records could take years and is an expensive

process. In contrast, our normalization algorithms take

only a few seconds to process each record and could help

considerably accelerate this process. Moreover, it also pro-

vides a standardized method for disambiguating metadata
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and may even help correct some errors made by humans.

We have already applied our framework to create a com-

prehensive database including the normalized host and

geospatial metadata of over two million GenBank records,

which is easily accessible online. Our database has the po-

tential to support a wide range of large-scale analyses

involving viruses and would greatly benefit researchers

working with virus GenBank records. Furthermore, by

providing a thorough description and analysis of the geo-

spatial and species metadata normalization methods we

developed through our project, we hope to assist re-

searchers working with similar normalization problems in

any field.

We have made the source code for our framework avail-

able through github and it can be easily extended to other

pathogens as well. The country and host field of all entries

in GenBank are similarly formatted, regardless of which

organism it pertains to. Therefore, it should be possible to

use our framework, as it is, for extracting metadata from

these fields for any pathogen. However, unlike viruses,

most pathogens do not contain additional information per-

taining to their location of collection in the other GenBank

record fields analyzed by our algorithm, such as the strain

field and organism field. Therefore, the inclusion of such

fields would be unnecessary for other pathogens.

As future work, we plan to evaluate our existing algo-

rithms on larger datasets, and work on improving their ac-

curacy by including additional features such as a more

sophisticated spell corrector. We also intend to use infor-

mation extraction techniques to extract additional infor-

mation about the locations of the infected host often

mentioned in the unstructured texts of the notes and com-

ments metadata fields. Our future work would also include

exploring additional resources containing species informa-

tion, such as Interagency Taxonomic Information System

(72), Encyclopedia of Life (73) and Catalogue of Life (74),

for host name normalization instead of relying solely on

the NCBI Taxonomy database, which has missing entries

for the alternative names of some organisms. In addition,

we intend to modify our host normalization algorithm so

that it is capable of recognizing varying degrees of tax-

onomy hierarchy, thereby allowing normalization to differ-

ent levels of the taxonomy tree based on user needs.

Addition of this feature would facilitate the normalization

of host names which cannot be mapped to a single organ-

ism, since they could instead be mapped to higher nodes in

the taxonomy tree, and would be highly useful in case of

viruses which may live in different host organisms. Further

important steps we plan to take through future work in-

clude developing normalization algorithms for other meta-

data in GenBank and extending our normalization

algorithms to other non-virus organisms (72).
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