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Background: Genomic alteration is the basis of occurrence and development of
carcinoma. Specific gene mutation may be associated with the prognosis of
hepatocellular carcinoma (HCC) patients without distant or lymphatic metastases.
Hence, we developed a nomogram based on prognostic gene mutations that could
predict the overall survival of HCC patients at early stage and provide reference for
immunotherapy.

Methods: HCC cohorts were obtained from The Cancer Genome Atlas (TCGA) and
International Cancer Genome Consortium (ICGC) databases. The total patient was
randomly assigned to training and validation sets. Univariate and multivariate cox
analysis were used to select significant variables for construction of nomogram. The
support vector machine (SVM) and principal component analysis (PCA) were used to
assess the distinguished effect of significant genes. Besides, the nomogram model was
evaluated by concordance index, time-dependent receiver operating characteristics
(ROC) curve, calibration curve and decision curve analysis (DCA). Gene Set
Enrichment Analysis (GSEA), CIBERSORT, Tumor Immune Dysfunction and Exclusion
(TIDE) and Immunophenoscore (IPS) were utilized to explore the potential mechanism of
immune-related process and immunotherapy.

Results: A total of 695 HCC patients were selected in the process including 495 training
patients and 200 validation patients. Nomogram was constructed based on T stage, age,
country, mutation status of DOCK2, EYS, MACF1 and TP53. The assessment showed the
nomogram has good discrimination and high consistence between predicted and actual
data. Furthermore, we found T cell exclusion was the potential mechanism of malignant
progression in high-risk group. Meanwhile, low-risk group might be sensitive to
immunotherapy and benefit from CTLA-4 blocker treatment.

Conclusion: Our research established a nomogram based on mutant genes and clinical
parameters, and revealed the underlying association between these risk factors and
immune-related process.
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INTRODUCTION

Liver cancer is one of the most common cancers in the world,
according to recent global estimates, liver cancer ranks sixth in
incidence rate and fourth in mortality (Bray et al., 2018). In
particular, hepatocellular carcinoma (HCC) accounts for 75–85%
of all cases of liver cancer (Bray et al., 2018). Liver cancer has a
disproportionate impact on the global poor, and as economic
gaps widen, the mortality rate of liver cancer in poor areas is
predicted to rise by 40% (Siegel et al., 2019). Developed countries
have begun to consider HCC a high priority public health
concern, because its risk factors, such as alcohol consumption
and obesity, are increasingly common as lifestyles change
(Makarova-Rusher et al., 2016; Baecker et al., 2018). Therefore,
it is an urgent need to improve tools for clinical diagnoses and
assessments of prognoses early in the course of HCC.While these
tools focus on biological factors, it is also important to consider
socioeconomic and lifestyle influences when analyzing HCC
patient prognoses (Tsai et al., 2018).

The progression of hepatic carcinogenesis involves a variety of
factors, including environmental exposure, somatic mutations
and transcriptional or epigenetic variations (Makarova-Rusher
et al., 2016; Liu et al., 2018; Calderaro et al., 2019). Genetic
mutations are of particular importance. There are approximately
30,000 genes in human cells, and these genes serve as the targets
of the many genetic mutation events that occur over the course of
a human life. Considering the potentially astronomical number of
potential mutation events, screening for significant mutations has
long been a hot research topic (Rao et al., 2017).

This research has led to the identification of some key
mutations, which commonly act as therapeutic targets and
frequently have particular significance to specific cancers. For
example, gefitinib, erlotinib, and afatinib are potent targeted
agents that are used for the treatment of advanced non-small
cell lung cancers in which the gene coding for the epidermal
growth factor receptor (EGFR) has been mutated (Mitsudomi
et al., 2010; Wu et al., 2017). Similarly, trastuzumab and
pertuzumab are targeted to breast cancers in which another
growth factor receptor, HER2, is aberrantly overproduced
(Swain et al., 2015; Swain et al., 2020). In addition to serving
as therapeutic targets, some gene mutations are also effective
prognostic indicators of patient outcomes. Examples in this
regard include mutations in TP53, PTEN and RB1 in prostate
cancer and mutations in TP53, PIK3CA, ERBB2 and KRAS in
gastric adenocarcinoma (Kato et al., 2018; Hamid et al., 2019).
However, prognostic tools for HCC patients based on specific
gene mutations have not been well established.

When studying mutations in tumors, it is important to
consider the tumor mutation burden (TMB), which is defined
as the total number of mutations, including base substitutions,
gene insertions and deletions, per tumor genomic region
(Fancello et al., 2019). A higher TMB means that the
cancerous cells generate more new antigens that will be easily
recognized by immune cells (Steuer and Ramalingam, 2018).
Patients with high TMB values have been found to be sensitive to
treatment with immune checkpoint inhibitors (ICIs) in the
context of lung cancer, melanoma and urothelial carcinoma

(Chan et al., 2015; Powles et al., 2018; Reck et al., 2021). The
advent of ICIs was a milestone event for treatment of advanced
tumor and immunotherapy had no advantage over conventional
therapy if excluding ICIs (Zhu et al., 2017; Petrelli et al., 2021a).
Compared with chemotherapy, ICIs treatment was safer and
induced less infection for patients with solid tumors (Petrelli
et al., 2021b). In terms of applicable population, recent evidence
indicated that patients aged more than 75 years still benefited
from ICIs (Petrelli et al., 2021a). Although the ICIs has shown
some benefit in clinical therapy, it is cautious that efficiency of
each ICIs in different tumors was various. For example, non-
small cell lung cancer patients possessed slightly better prognoses
under anti-PD-1therapy than anti-PD-L1therapy (Tartarone
et al., 2019). The correlation of TMB with ICIs treatment
success indicates that it is feasible and meaningful to explore
tumor mutations in order to guide clinical choices involving
immunotherapy.

While TMB has shown predictive power in the treatment and
prognosis of several cancer types, it has been insufficiently applied
to HCC. It is critical, then, to develop a multi-dimensional model
to identify patients at high risk in order to facilitate personalized
medicine in HCC patients. In the present work, we analyzed
representative mutated genes in HCC cases without distant or
lymphatic metastases. Conventional risk assessment was based
mainly on tumor, lymph node and metastasis (TNM) staging,
which ignores the biological heterogeneity of the primary tumor
(Kee et al., 2013; Buonaguro, 2020). We screened The Cancer
Genome Atlas (TCGA) and International Cancer Genome
Consortium (ICGC) databases to identify significant genes to
construct a prognostic nomogram and to study the correlation
between the derived risk score and tumor immunology, including
immune cell infiltration propensity and predicted sensitivity to
treatment with ICIs. Besides, the machine learning algorithms
were used to evaluate the application of nomogram.

MATERIALS AND METHODS

Data Collection
Transcriptome profile data, single nucleotide variation data and
corresponding clinical data were downloaded from the TCGA
data portal (https://cancergenome.nih.gov/) and ICGC data
portal (https://icgc.org/). As TCGA and ICGC data are open
to the public, approval from a local ethics committee is not
necessary. Inclusion criteria included: 1) complete clinical
information; 2) complete survival data; 3) complete gene
mutation data; 4) a single primary tumor lesion; and 5) no
distant or lymphatic metastases. In total, we identified five
cohorts containing 695 patients, who came from four
countries. Given that the incidence and mortality of HCC are
influenced by lifestyle and socioeconomic factors (Makarova-
Rusher et al., 2016; Baecker et al., 2018), we decided to include
nationality as a prognostic factor in the predictive model. To
achieve this vision and to ensure a balanced distribution of
countries between training and validation sets, we randomly
divided the patients in each cohort into two groups according
to the ratio of 7:3. Then, we extracted 70% of patients of each
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cohort to form the training set, which contained a total of 495
patients, and 30% of patients to form the validation set, which
contained 200 patients. The R code is provided in Supplementary
Materials.

Processing of Variables
Continuous variables were converted into categorical variables
according to a linear assumption. Age was divided based on the
optimal cut-off value generated by X-tile software version 3.6.1
(Yale University School of Medicine, United States). Overall
survival (OS) was the primary endpoint in this study.

Establishment and Validation of the
Nomogram
A univariate Cox analysis was used to identify significant
variables, as defined by a p value less than 0.05, from the
clinical information and gene mutation data. A multivariate
Cox analysis was then utilized to further identify significant
variables to construct the nomogram. We classified the
patients into a high-risk group and a low-risk group, with the
cutoff value defined as the median of the risk score (0.9180). The
related R code is provided in SupplementaryMaterials. A Kaplan-
Meier curve analysis was applied to calculate patient OS.

Validation was performed using concordance index (C-index),
time-dependent receiver operating characteristics (ROC) curve,
calibration curve and decision curve (DCA) analyses. A C-index
was used to assess the discrimination of the nomogram: the
higher the C–index, the more accurate the survival prediction.
Calibration plots were utilized to compare predictions based on
the nomogram with actual outcomes. ROC curve analysis was
applied to determine the sensitivity and specificity of the
nomogram, and DCA was used to measure the efficiency of
the nomogram. R software version 3.6.3, with packages limma,
survival, survminer, rms, foreign and survivalROC, was used for
all analysis. Differences were considered statistically significant
with p < 0.05.

Evaluation via Machine Learning
The SVM, one of the supervised learning models, was performed
via “Skelearn” under python 3.9.5 environment. We chose the
“rbf” as kernel for SVM and adjusted the parameters, such as
gamma and class weight, to make sure SVM performs optimally.
The transcriptome profile data of TCGA was divided randomly
into training and validation group. Based on the selected genes,
SVM was used to distinguish the normal and carcinoma tissue.
The relative code was provided in the Supplementary Materials.
Meanwhile, we used an unsupervised learning algorithm called
principal component analysis (PCA) to reduce the dimensionality
of the nomogram so that the spatial distribution of the sample
could be visualized.

Functional Enrichment Analysis
Data from total of 219 HCC patients from the TCGA cohort with
complete RNA-seq data were used for functional prediction.
Gene set enrichment analysis (GSEA) was employed as a
computational method that explores whether a defined set of

genes shows statistically significant differences between two
biological states (Subramanian et al., 2005). To investigate the
main biological functions and signaling pathways of the risk score
group, gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed using GSEA v4.1.0
software. After performing 1,000 permutations, gene sets with a
nominal p value < 0.05 were considered statistically significant.

Evaluation of Immune Cell Status
In total, 219 HCC patients with complete RNA-seq data from the
TCGA cohort were used for CIBERSORT analysis, which is an
approach to characterizing the composition of 22 different
tumor-infiltrating lymphocyte subsets within specific tissues
based on their gene expression profiles (Newman et al., 2015).
To uncover the underlying mechanisms relating gene mutations
to immune cell status, we estimated the abundance of immune
cell infiltration in HCC patients without distant and lymphatic
metastases on the basis of the CIBERSORT algorithm.

Prediction of Response to ICIs Treatment
There are 12 published clinical studies of ICIs and eight published
CRISPR screens on the Tumor Immune Dysfunction and
Exclusion (TIDE) website developed by Harvard University.
This website explores two primary mechanisms of tumor
immune evasion, T cell dysfunction and T cell exclusion, to
evaluate the tumor microenvironment and to predict responses to
treatment with ICIs (Fu et al., 2020). The TIDE score, T cell
dysfunction score, and T cell exclusion score of HCC patients
from the TCGA dataset were retrieved from the TIDE website
(http://tide.dfci.harvard.edu/) after uploading the transcriptome
profiles of 219 HCC patients from TCGA.

Assessment of Choice of Specific ICIs
Treatment
An immunophenoscore (IPS) was used to represent tumor
immunogenicity on a scale from 0 to 10. It has been
confirmed that an IPS value is positively associated with
tumor immunogenicity and predicts a patient’s response to
ICIs treatment (Charoentong et al., 2017). Therefore, we
obtained the IPS score of 219 HCC patients from The Cancer
Immunome Atlas (https://tcia.at/) to compare the potential use of
immunotherapy in high- and low-risk score groups.

RESULTS

Baseline Information of HCC Patients
A total of 695 patients were selected from five HCC data sets:
Liver Cancer-China (LICA-CN), Liver Cancer-France (LICA-
FR), Liver Cancer NCC-Japan (LINC-JP), Liver Cancer
RIKEN-Japan (LIRI-JP), and TCGA-Liver Hepatocellular
Carcinoma (TCGA-LIHC) (Figure 1). Among them, 495
patients were utilized as a training set to establish the
predictive nomogram. The remaining 200 patients were used
to validate the nomogram. The baseline characteristics of these
695 HCC patients, who did not have distant or lymphatic
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metastases, are shown in Table 1. Overall, 512 (73.7%) patients
were male. Together, Japanese and American patients (n � 542;
78.0%) accounted for the majority of the subjects. Patients were
distributed into groups based on age (less than 47, between 47 and
72, and greater than 72 years); 471 (67.8%) of the patients were
between 47 and 72 years old. The distribution of variables
between the training set and validation set was well balanced,
with all p values greater than 0.05.

Identification of Prognostic Variables Based
on Cox Regression Analysis
Four clinical variables and 116 commonly mutated genes
(Supplementary Table S1) were selected to conduct a
univariate Cox analysis (Table 2). The selected mutated genes
represented a combination of the 50 most frequently mutated
genes from the five study cohorts. We found that age, T stage,
country and mutation status of five genes, TP53, MACF1, EYS,

FIGURE 1 | Flow diagram of the HCC patients without distant and lymphatic metastasis in training and validation sets. ICGC-CN: LICA-CN, liver cancer-China;
ICGC-FR: LICA-FR, liver cancer-France; TCGA-US: TCGA-LIHC, The Cancer Genome Atlas-liver hepatocellular carcinoma; ICGC-JP1: LIRI-JP, liver cancer RIKEN-
Japan; ICGC-JP2: LINC-JP, liver cancer NCC-Japan., hepatocellular carcinoma.

TABLE 1 | Clinical characteristics of all 695 hepatocellular carcinoma patients.

Variables All patients,n (%) Training set,n (%) Validation set,n (%) p value

Total 695 (100.0) 495 (71.2) 200 (28.8)
Sex 0.163
Female 183 (26.3) 123 (24.8) 60 (30.0)
Male 512 (73.7) 372 (75.2) 140 (70.0)

Age 0.601
<47 73 (10.5) 53 (10.7) 20 (10.0)
47–72 471 (67.8) 330 (66.7) 141 (70.5)
>72 151 (21.7) 112 (22.6) 39 (19.5)

T stage 0.392
I 201 (28.9) 151 (30.5) 50 (25.0)
II 301 (43.3) 214 (43.2) 87 (43.5)
III 185 (26.6) 125 (25.3) 60 (30.0)
IV 8 (1.2) 5 (1.0) 3 (1.5)

Country 0.998
China 68 (9.8) 48 (9.7) 20 (10.0)
France 85 (12.2) 61 (12.3) 24 (12.0)
Japan 318 (45.8) 226 (45.7) 92 (46.0)
American 224 (32.2) 160 (32.3) 64 (32.0)
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DOCK2 and FREM2, were significantly associated with OS in HCC
patients without distant or lymphatic metastasis. Next, a multivariate
Cox regression analysis illustrated that age, T stage, country and
mutation status of four of the genes, TP53,MACF1, EYS andDOCK2,
were independent from other factors and could be used as
independent prognostic factors to establish a nomogram (Table 2).

The Construction and Validation of the
Nomogram
A nomogram was established based on the noted parameters,
including age, T stage, country and mutation status of TP53,
MACF1, EYS and DOCK2 (Figure 2A). As shown in the
nomogram, each risk factor is associated with a specific score.
The scores for these risk factors are summed to produce a total
score, which can be compared to a corresponding OS rate. Scores
calculated in this way are predictive of 1-year, 3-years and 5-years
survival rates. The Kaplan-Meier curve showed that the low-risk
group is associated with a better OS than the high-risk group in
both training and validation sets (Figure 2B).

To make the samples distribution visible, PCA algorithm was
used to reduce the dimensionality of the nomogram and the 3D
scatter diagram showed that the patients in high risk and low risk

group from validation cohort were divided into two well-defined
clusters (Figure 2C), which identified the broad applicability of this
prediction model. Based on TP53, MACF1, EYS and DOCK2, the
SVM constructed the hyperplane to distinguish the normal and
cancer tissue and the highest accuracy was 92.97%when gammawas
5.965 (Figure 2D). During the progression of adjusting parameter,
the accuracy, recall ratio and Area Under Curve (AUC) were
throughout more than 0.8 (Supplementary Table S2). The
precise diagnostic capability of SVM indicated those four genes
might play important roles during the occurrence of liver cancer.

The C-index of the nomogram was 0.710, indicating strong
predictive power. As shown in Figures 3A,B, the ROC curves of
3-years and 5-years survival rates were 0.686 and 0.715,
respectively. Further supporting the quality of the nomogram,
it was concluded that the actual and predicted survival are in good
agreement according to the 3-years and 5-years calibration
curves. Importantly, DCA of 3-years and 5-years survival rates
demonstrated that within threshold probability ranges of
approximately 0.1–0.6 and 0.2–0.8, respectively, nomogram-
mediated intervention provides more net benefit to patients
than is received in treat-all or treat-none patient schemes.

The external validation of the nomogram is illustrated in
Figures 4A,B. The nomogram was used to assess each patient

TABLE 2 | Univariate and multivariate analysis of overall survival for patients in the training set (495).

Variables Total (%) Univariate analysis Multivariate analysis

HR (95%CI) p value HR (95%CI) p value

Sex
Female 123 (24.8) reference 0.602
Male 372 (75.2) 0.900 (0.604–1.340)

Age
<47 53 (10.7) reference 0.043 reference 0.020
47–72 330 (66.7) 1.569 (0.811–3.033) 0.181 1.665 (0.849–3.266) 0.138
>72 112 (22.6) 2.279 (1.125–4.617) 0.022 2.168 (1.252–5.475) 0.011

T stage
I 151 (30.5) reference <0.001 reference <0.001
II 214 (43.2) 1.172 (0.740–1.857) 0.499 1.512 (0.910–2.512) 0.111
III 125 (25.3) 2.197 (1.374–3.513) 0.001 2.628 (1.594–4.333) <0.001
IV 5 (1.0) 8.696 (3.027–24.976) <0.001 5.637 (1.870–16.994) 0.002

Country
China 48 (9.7) reference 0.003 reference 0.001
France 61 (12.3) 1.643 (0.842–3.204) 0.145 1.666 (0.821–3.380) 0.157
Japan 226 (45.7) 0.702 (0.374–1.319) 0.272 0.628 (0.324–1.215) 0.167
American 160 (32.3) 1.379 (0.757–2.512) 0.293 1.442 (0.750–2.770) 0.272

TP53
Wild 370 (74.7) reference 0.038 reference 0.028
Mutation 125 (25.3) 1.497 (1.022–2.193) 1.565 (1.051–2.331)

MACF1
Wild 472 (95.4) reference 0.040 reference 0.010
Mutation 23 (4.6) 2.038 (1.033–4.023) 2.536 (1.247–5.158)

EYS
Wild 466 (94.1) reference 0.030 reference 0.019
Mutation 29 (5.9) 0.212 (0.052–0.857) 0.185 (0.045–0.756)

DOCK2
Wild 475 (96.0) reference 0.001 reference 0.001
Mutation 20 (4.0) 3.312 (1.861–5.896) 2.797 (1.497–5.225)

FREM2
Wild 475 (96.0) reference 0.022 reference 0.493
Mutation 20 (4.0) 2.217 (1.124–4.374) 1.298 (0.615–2.739)

HR, hazard ratio; CI, confidence interval.
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in the validation cohort. The C-index of the nomogram was
0.735. The ROC curves of 3-years and 5-years survival were 0.720
and 0.680, respectively. The calibration curves for 3-years and 5-
years survival probabilities demonstrated good consistency
between predicted results and actual observations. The DCA
of 3-years and 5-years survival, within the threshold
probability range of approximately 0.1–0.6 and 0.1–0.7,
showed that the clinical utility of the nomogram is better than
all-treat or none-treat scheme.

Functional Enrichment Analyses of High-
and Low-Risk Groups via GSEA
HCC patients from the TCGA cohort with complete immune
therapy data (n � 219) were included for further study. Based on

the nomogram-generated risk score, the cohort was separated
into 88 high-risk subjects and 131 low-risk subjects. KEGG
enrichment analysis showed that genes that characterized the
high-risk group were mainly associated with responses to
infection with pathogenic Escherichia coli, the cell cycle, DNA
replication and cancer-related pathways. Genes characterizing
the low-risk group, on the other hand, were found to be closely
related to complement and coagulation cascades; metabolism of
retinol, butanoate and fatty acids, including linoleic acid;
metabolism of several amino acids, including tryptophan,
glycine, and leucine; and drug metabolism through the
cytochrome P450 pathway (Figure 5A).

GO enrichment analysis demonstrated that differentially
expressed genes of the high-risk group were connected with
activation of the innate immune response, production of

FIGURE 2 | The nomogram based on training cohort and the efficient evaluation of training and validation cohort. (A) Nomogram predicting 1-year, 3-years and 5-
years OS for HCC patients without distant and lymphatic metastasis. Each variable has a corresponding score on the point scale. Sum the score and locate it on the total
point axis. Then, draw a vertical line down to get the nomogram-predicted probability at each time point. (B) Kaplan-Meier curve of high-risk and low-risk HCC patients
based on themedian of nomogram risk score in the training and validation cohort. (C) The visualization of high- and low-risk patients’ distribution via PCA algorithm.
(D) The schematic diagram of SVM and the adjusting progression to solve maximum accuracy of the model.
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immunoglobulins involved in immunoglobulin-mediated
immune responses, signal transduction cascades activated
during the innate immune response, positive regulation of the
innate immune response, positive regulation of myeloid
leukocyte cytokine production that facilitates immune
responses and somatic diversification of immune receptors
(Figure 5B), which suggested that the strong immune-related
process might occur in tumor microenvironment of high-risk
group patients.

Connections Between Immune Cell
Infiltration and the Nomogram
The close correlation between the high-risk group and immune-
related biological pathways suggested potential biological
mechanisms leading to poor outcomes in HCC. The
distribution of the abundances of a variety of immune cells
between high- and low-risk groups are displayed in Figure 5C.
The high-risk group had a higher proportion of M0 macrophages
and eosinophils. In contrast, the low-risk group had higher

FIGURE 3 | The areas under the receiver operating curves, Calibration plots, and decision curve analysis of OS associated nomograms in training set. The training
set of 3-years (A) and 5-years (B), respectively.

FIGURE 4 | The areas under the receiver operating curves, Calibration plots, and decision curve analysis of OS associated nomograms in validation set. The
validation set of 3-years (A) and 5-years (B), respectively. OS, overall survival.
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populations of naïve B cells, CD8+ T cells and resting CD4+

memory T cells. The relationships between these different
immune cells and specific gene mutations is shown in
Figure 5D, Supplementary Figure S1. As shown, mutations
in TP53 were associated with a higher proportion of memory
B cells, M0 macrophages and eosinophils. On the contrary, a
normal TP53 status was associated with a higher population of
naïve B cells and resting CD4+ memory T cells. The most obvious
results in a heatmap of correlations (Figure 5E) were negative
correlations between M0 macrophages and CD8+ T cells
(correlation index � −0.64) and positive correlations between
resting natural killer cells and gamma delta T cells (correlation
index � 0.72).

Prediction of Response to ICIs Treatment
Based on TIDE and IPS
As shown in Figure 6A, TIDE scores were significantly different
between the high- and low-risk groups (p � 0.0445). The low-risk
group had lower TIDE, which suggests that these patients would
be more responsive to immune therapy. Furthermore, the high-
risk group was characterized by a significantly higher T cell
exclusion score than low-risk group (Figure 6B). However,
there was no significant difference between high- and low-risk
groups with regard to the T cell dysfunction score (Figure 6C).
Further results showed that 53.4% patients from the low-risk
group responded to immune therapy (Figure 6D), whereas only
35.2% patients from the high-risk group responded to immune
therapy. This difference was statistically significant (p < 0.05).

We additionally utilized IPS to uncover the specific immune
therapies that would have differential applicability to the high-

and low-risk groups. The results demonstrated that responses to
treatment with CTLA-4 blockers were significantly different
between the high- and low-risk groups (Figure 6E). Here, the
median IPS of the high-risk group was 7.920, while that of the
low-risk group was 8.198. On the other hand, there was no
significant difference between the high- and low-risk group
when it came to PD-1 blocker treatment or treatment
combining PD-1 and CTLA-4 blockers (Figures 6F,G).

DISCUSSION

The connections of mutations to cancer development and
progression have led to advances in treatment, as various
targeted therapies have focused on specific gene mutations
(Maemondo et al., 2010; Zhao et al., 2017; Christensen et al.,
2020). However, few studies have taken advantage of these
connections in a predictive way by aiming to develop
nomograms based on specific genes to guide the prognosis of
HCC (Hsu et al., 2016; Wang et al., 2020). Our development of a
strongly correlative predictive tool, then, fills an important gap in
management of a common and deadly cancer. Moreover, given
that the prognosis of HCC patients is affected by socioeconomic
conditions and lifestyle, it is important to note that we have
pioneered the inclusion of nationality as a prognostic factor into
the model (Makarova-Rusher et al., 2016; Siegel et al., 2019). Our
purposeful study of five different cohorts from four different
countries strengthens clinical applications of our model by
avoiding a narrow focus only on biological factors.

Considering the status of the majority of HCC cases, we paid
specific attention to the population without distant or lymphatic

FIGURE 5 | The results of gene set enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and GeneOntology (GO) databases and the
assessment of infiltrated immune cells. (A) Four significantly enriched KEGG pathways in high-risk group. Nine significantly enriched KEGG pathways in low-risk group.
(B) Six significantly enriched GO pathways in high-risk group. (C) Relative proportion of immune cell infiltration in high- and low-risk patients. (D) Relative proportion of
immune cell infiltration in TP53 mutation and normal status patients. (E) Correlation matrix of all 21 immune cell proportions. The red color represents positive
correlation and the blue color represents negative correlations.
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metastasis. After a series of steps, we developed a model that used
T stage, age, country and the mutation status of four specific
genes (TP53, MACF1, EYS and DOCK2) as independent
variables in the nomogram.

Given that so many variables, we used PCA to reduce the
dimensionality of nomogram and achieved the visualization of
samples distribution. Obviously, patients in the high- and low-
risk groups are easy to distinguish in Figure 2C. SVM’s
excellent discrimination between normal tissues and tumor
tissues proved that these genes were of great significance for the
occurrence and development of liver cancer. Mutations in both
tumor protein 53 (TP53) and dedicator of cytokinesis 2
(DOCK2) were found to correlate with high risk and thus
were considered to be antioncogenes. TP53 variants were
universal and detected in 79.54% of Iranian lung cancer
cases (Fathi et al., 2018). If the function of the TP53 gene
product is lost due to mutation, the cell may lose regulation of
growth, apoptosis and DNA repair (Hollstein et al., 1991;
Blandino and Di Agostino, 2018). Accordingly, it has been
reported that mutations in TP53 correlate with a worse
prognosis after resection of colorectal liver metastases (Chun
et al., 2019; Kawaguchi et al., 2019; Berg et al., 2020). Mutations
in TP53 further influenced our prognostic model for HCC
through alteration of immune-related genes. TP53 mutations
have previously been shown to induce such alteration of
immune-related genes (Long et al., 2019). Moreover, TP53

was involved in gene mutation classifier constructed by Luo
et al. to guide the ICIs treatment for bladder cancer patients
from Memorial Sloan Kettering Cancer Center, TCGA and
other cohorts (Pan et al., 2021). Here, in the evaluation of
immune cell infiltration, the fraction of M0 macrophages in the
infiltrate were significantly higher in the TP53 mutation group,
which suggests that mutations might induce the absence of
CD8+ T cell and activated natural killer cells (Figures 5D,E).
DOCK2, which belongs to the dedicator of cytokinesis protein
family, plays an important role in migration, activation and
proliferation of lymphocytes (Nishikimi et al., 2013; Jing et al.,
2019). Patients with DOCK2 mutations have been shown to be
more susceptible to immunodeficiency diseases (Dobbs et al.,
2015). On the other hand, DOCK2 acted as an important
participant in 4-gene signature for hypermutated colorectal
cancer to identify suitable patients for immunotherapy (Ge
et al., 2019).

Products of other mutated genes have intriguing but perhaps
less direct connections to HCC. Mutations in another gene in
our model, eyes shut homolog (EYS), have mainly been
connected to ophthalmologic diseases, such as retinitis
pigmentosa (Abd El-Aziz et al., 2008; Messchaert et al.,
2018). The EYS protein is critical for protecting the stability
of the ciliary axoneme in both rods and cones (Alfano et al.,
2016). At present, the potential mechanisms linking EYS to
oncogenic progression is still under development. Microtubule-

FIGURE 6 | The prediction of response to immunotherapy of HCC patients in high- and low-risk group according to risk score. (A) The distribution of TIDE score,
(B) T cell exclusion score, and (C) T cell dysfunction score in high- and low-risk groups. (D) The comparison of beneficiaries from immunotherapy between the high- and
low-risk group. The relative probabilities of respond to CTLA-4 blocker treatment (E), PD-1 blocker treatment (F) and the combination of CTLA-4 and PD-1 blocker
treatment (G) in the low- and high-risk group.
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actin crosslinking factor 1 (MACF1), is known to play an
important role in regulating cytoskeleton dynamics, cell
migration, growth and differentiation, and its abnormal
expression has been closely connected to schizophrenia,
Parkinson’s disease, cancer and osteoporosis (Hu et al.,
2017). When HepG2 cells were transfected with the gene
coding for hepatitis B protein X, the levels of the MACF1
protein varied, suggesting that MACF1 might play an
important role in occurrence of liver cancer (Feng et al.,
2010). Meanwhile, MACF1 mutation was used to distinguish
three different immunotypes of muscle-invasive bladder
cancer which were associated with benefit from ICIs (Chen
et al., 2021). Importantly, our nomogram analysis combined
critical genetic components with clinical and socioeconomic
factors. It is clear that cancer occurrence and progression are
impacted by more than just molecular biological influences, and
predictive models should take into account these other factors.
Here, it was not surprising to see that higher T stage and age
correlated with worse prognoses. We were interested to see that
country of residence was a specific and powerful risk factor.
Country of residence likely represents a specific risk factor
because it is related to lifestyle and socioeconomic conditions
of patients.

The quality assessment and validation tests showed that the
gene mutation-associated nomogram possesses excellent
accuracy and therefore extensive clinical applications. For both
the training and validation sets, the C-index of the nomogram
was more than 0.70, which indicates that it has a high
discrimination ability. The calibration curves for the 3-years
and 5-years survival probabilities displayed good fitness
between the predicted and actual observations. In addition,
DCA indicated that the clinical utility of the nomogram
significantly exceeded an all-treat or none-treat scheme.
Hence, it is reasonable to predict the prognosis of HCC
patients at early stage via the nomogram.

Because of limitations of the ICGC database, further
functional analyses, such as GSEA, immune cell infiltration
and prediction of response to ICIs treatments, were based on
data from the TCGA database. The patients in the TCGA cohort
were divided into high- and low-risk groups according to the
nomogram risk score. GSEA analyses suggested that nomogram-
based grouping resulted in accurate discrimination. Predicted
KEGG pathways that have beneficial functions were enriched in
the low-risk group. These pathways include those involved in
metabolism of fatty acids, tryptophan, and retinol. Compared
with high-risk group, the results indicated that tumor cells in low-
risk population might possess higher differentiated grade so that
they were qualified to perform normal physiological functions.
On the other hand, the pathways enriched in high-risk group
tended to involve the cell cycle and DNA replication. These cells,
then, might be more prone to escape cell cycle checkpoints and to
develop mutations that would enhance aberrant proliferation or
other functions supporting malignant progression. Moreover, as
there were numerous immune-related pathways in both high-
and low-risk groups, we believe that the nomogram and the
underlying findings may be applicable to the fine-tuning of our
understanding of tumor immunity.

The results of infiltrated immune cell calculations indicated
that there were more M0 macrophage cells recruited into the
tumor microenvironment of the high-risk group and that this
increase was accompanied by a significant decrease of CD8+

T cells. CD8+ T cells are the ultimate executors of the immune
system in the destruction of tumor cells, via interaction with the
T cell receptor (van der Leun et al., 2020). Accordingly, an
absence of CD8+ T cells is an omen that the tumor immune
microenvironment has deteriorated (Cheng et al., 2014). As
associated immune surveillance weakens, a carcinoma is more
apt to travel to other parts of the body in a phenomenon known as
immune escape (Wu et al., 2021). Given the correlation of risk-
score with CD8+ T cell status and the importance of these cells in
immune escape, we employed a TIDE algorithm further focused
on CD8+ T cell status. Where the degree of infiltration of CD8+

T cells was low, the score of T cell exclusion was noted
(Figure 6B). The results of this analysis indicated that the
immune microenvironment of high-risk patients was not
conducive for treatment with ICIs, as these patients did not
receive benefits of these inhibitors. Correspondingly, the
analyses that compared IPS suggested that patients in the low-
risk group were more likely to benefit from CTLA-4 blocker
treatment. Thus, the results of TIDE and IPS analyses both
indicate that the nomogram is applicable to guiding targeted
immunotherapies.

While we have developed a powerful nomogram, there are
some limitations that must be acknowledged. First, the study
examined a modest number of patients; though it should be noted
that the polycentricity of the sources provides a significant
benefit. Second, we acknowledge the potential for selection
bias, in that only patients with complete biological and clinical
data were included. Finally, and most importantly, the potential
prognostic factors available in public databases are finite. Further
analysis with more complete data sets may enhance the predictive
power of this tool.

CONCLUSION

In this study, we combined multiple cohorts to established a
nomogram based on gene mutations and clinical parameters. The
clinical function of this nomogram involves more than just
prognosis; the analysis extends to guidance of immunotherapy.
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