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Abstract 

Background:  Acetaminophen (APAP) overdose is a common cause of hepatotoxicity. Antioxidants like N-acetyl 
cysteine are recommended as a therapeutic option; nevertheless, it has limitations. The search for efficient alternatives 
is ongoing. Probiotics are live microorganisms that maintain a healthy gut microecology. Lactobacillus rhamnosus GG 
(LGG) is one of the widely used probiotics. Our study aimed to assess the protective and therapeutic effects of probi‑
otic LGG on APAP-induced hepatotoxicity and evaluate the molecular pathways behind this effect.

Methods:  Wistar Albino male rats were randomly distributed into the following experimental groups: group 1, non-
treated rats (vehicle); group 2, rats received oral gavage of suspension of probiotic LGG (5 × 1010 CFU GG/0.5 ml in 
PBS) daily for 2 weeks (probiotic control); group 3, rats received APAP dose of 2 g/kg body weight (positive control); 
group 4, rats received oral gavage of suspension of probiotic LGG for 2 weeks followed by a single dose of APAP injec‑
tion (prophylactic); and group 5, rats received a single dose of APAP and then 24 h later treated with oral gavage of 
probiotic LGG daily for 2 weeks (treatment).

Results:  Our study revealed that administration of probiotic LGG (either as prophylactic or treatment) exhibited a 
remarkable reduction in APAP-induced liver injury as resembled by the decrease in liver enzymes (ALT and AST) and 
the histopathological features of liver sections. Moreover, the significant reduction in the oxidative marker malondial‑
dehyde, along with the enhancement in glutathione reductase, and the significant reduction in inflammatory markers 
(nitric oxide and tumor necrosis factor-α) were all indicators of the efficiency of LGG in ameliorating the alterations 
accompanied with APAP-induced hepatotoxicity. Our findings also demonstrate that LGG administration boosted the 
expression of Nrf2 and PGC-1 while decreasing the expression of protein kinase C (PKC). As a result, the nuclear abun‑
dance of Nrf2 is increased, and the expression of various antioxidants is eventually upregulated.

Conclusion:  Our study shows that probiotic LGG supplementation exerts a prophylactic and therapeutic effect 
against APAP-induced hepatotoxicity through modulating the expression of PKC and the Nrf2/PGC-1α signaling path‑
way and eventually suppressing oxidative damage from APAP overdose.
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Background
Drug-induced liver injury represents a serious adverse 
event associated with several drugs uptake. Acetami-
nophen (N-acetyl-p-aminophenol, APAP, commonly 
named Paracetamol) is a well-known antipyretic and 
analgesic drug. Although it is effective and safe at ther-
apeutic doses, an overdose may lead to hepatotoxicity 

Open Access

Journal of Genetic Engineering
and Biotechnology

*Correspondence:  sm.el-daly@nrc.sci.eg; sherien_eldaly@yahoo.com

1 Medical Biochemistry Department, Medicine and Clinical Studies Research 
Institute, National Research Centre, Dokki, Cairo 12622, Egypt
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0049-8606
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43141-022-00422-4&domain=pdf


Page 2 of 14Ahmed et al. Journal of Genetic Engineering and Biotechnology          (2022) 20:142 

and acute liver damage [1, 2]. Paracetamol intoxication 
is reported to be responsible for a high number of acute 
liver failure cases and thus has grown to be a significant 
public health concern. APAP poisoning is responsible for 
46% of acute hepatotoxicity in the USA and 40–70% of 
all cases in the UK and Europe over the last 40 years [3]. 
According to the primary poison control center at the 
Ain Shams University Hospitals in Egypt, Paracetamol 
is one of the top ten most commonly involved exposure 
compounds [4].

At therapeutic doses, acetaminophen is metabolized 
hepatically by sulfation and glucuronidation and con-
verted to nontoxic metabolites. The cytochrome P450 
enzymes oxidize a minor amount of acetaminophen to 
the reactive metabolite N-acetyl-p-benzoquinone-imine 
(NAPQI) in the liver. In cases of APAP overdose, the 
phase II biotransformation pathway is decreased, and the 
activity of cytochromes is increased, generating higher 
amounts of NAPQI in hepatocytes, leading to ACUTE 
liver damage.

In the case of acetaminophen toxicity, high amounts 
of NAPQI are produced, depleting glutathione storage 
in the liver, thus causing oxidative stress, mitochondrial 
dysfunction, and decreased adenosine triphosphate, lead-
ing to liver toxicity [5–7]. Previous studies have explored 
the role of antioxidants in protecting the liver from APAP 
intoxication. It was reported that N-acetylcysteine, and 
activated charcoal, in addition to some natural products 
and herbs, has protective and therapeutic roles against 
APAP-induced hepatotoxicity [8, 9].

Live microbial food supplements, known as probiotics, 
have been reported to provide health benefits to the host 
when consumed in appropriate proportions. Probiotics 
are safe, well-accepted by the public, and have recently 
been considered promising natural treatments. Probiot-
ics are generally considered safe for human administra-
tion by the US Food and Drug Administration (FDA) and 
have received a qualified presumption of safety (QPS) 
status by the European Food Safety Authority (EFSA) 
[10]. Probiotics are accessible in the form of functional 
meals, supplements, and pharmaceuticals. It is available 
in a wide range of commercial products with diverse 
doses and microbial components (tablets, capsules, vials, 
supplements, milk formulas, etc.). Probiotics’ therapeu-
tic benefits on a number of health conditions have been 
extensively researched in different animal models and 
clinical investigations. Studies have demonstrated the 
efficacy of probiotics against several diseases, such as 
gastrointestinal bacterial infection [11], hepatic encepha-
lopathy [12], alcohol-induced liver toxicity [13], and non-
steroidal anti-inflammatory drug enteropathy [14], as 
well as promising anti-tumor activity [15, 16]. These ben-
eficial effects result from restoring the balance between 

commensal and pathogenic gastrointestinal flora, inhib-
iting harmful bacteria by altering the intestinal environ-
ment, reducing ammonia and endotoxin levels in the 
liver, increasing vitamin synthesis, and reducing choles-
terol levels. Moreover, probiotics inhibit the growth of 
harmful bacteria by producing free fatty acids and anti-
microbial peptides [17–19].

Probiotics primarily consist of lactic acid bacteria, such 
as Lactobacillus, Enterococcus, Streptococcus, and Bifi-
dobacterium. The Lactobacillus rhamnosus GG (LGG), 
a gram-positive bacterium, is well used probiotic strain 
because of its numerous beneficial impact on the gas-
trointestinal barrier and inflammatory profile [20, 21]. 
Therapeutic effects of LGG have been demonstrated in 
multiple diseases, including diarrhea, allergy, and fatty 
liver in preclinical studies [22, 23]. A randomized clinical 
trial showed that LGG was safe in patients with liver cir-
rhosis, reduced endotoxemia, and improved gut dysbiosis 
in cirrhotic patients [24].

The current study aimed to assess the protective and 
therapeutic effects of probiotic Lactobacillus rhamno-
sus LGG on acetaminophen-induced hepatotoxicity. We 
evaluated the modulatory impact of LGG administration 
on the key molecular markers and pathways involved in 
hepatotoxicity from oxidative stress to inflammation. 
Our study revealed the efficiency of probiotic LGG to 
improve most signs of acetaminophen-induced hepato-
toxicity. Interestingly administration of probiotic LGG 
was also able to prevent the expected damaging effect of 
acetaminophen, indicating a prophylactic efficiency of 
probiotic LGG.

Methods
Animals and materials
Wistar Albino male rats (160–180  g body weight) 
were provided from the Animal Laboratory Unit at the 
National Research Centre, Giza, Egypt. The animal study 
protocol was reviewed and approved by the ethical com-
mittee, National Research Center (Ethical approval code 
19–017). Animal study protocols were in compliance 
with the guidelines of the NRC animal research ethics 
committee. Rats were kept in merit conditions, includ-
ing a 12-h light/dark cycle at 22 °C ± 2 °C, open access to 
water, and a pellet diet. The animals were acclimated to 
these terms for 2 weeks before the start of this study.

The probiotic dietary supplement Lactobacillus rham-
nosus was purchased under the commercial name L. 
rhamnosus 200 billion CFUs per gram from custom pro-
biotics, Inc. Glendale, California. This product is a gram-
positive lactic acid bacterium that is found in the normal 
gut microflora of humans. It is generally recognized 
as safe and has been widely utilized in food goods and 
health supplements. It contains no gluten, casein, dairy, 
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sugar, soy, flavors, yeast, artificial colors, preservatives, or 
genetically modified or altered organisms. It can survive 
harsh stomach acids to reach the intestinal tract where 
they exert its greatest benefits. The probiotic mixture was 
given at the dose 5 × 1010  CFU GG/0.5  ml phosphate-
buffered saline (PBS), prepared by directly suspending 
lyophilized bacteria in PBS by oral gavage [22]. Paraceta-
mol (acetaminophen) A5000 meets USP (United States 
Pharmacopeia) testing specifications, 98.0–102.0% pow-
der; was purchased from Sigma Aldrich. Paracetamol 
(acetaminophen) dose of 2 g/kg b.wt was applied in our 
study [25].

Experimental design
Rats were randomly divided to five groups (n = 8 per 
group) as follows:

•	 Group 1 (vehicle): Rats served as negative control 
and only received saline.

•	 Group 2 (probiotic control): Rats received oral gav-
age of suspension of probiotic Lactobacillus rhamno-
sus LGG (5 × 1010 CFU GG/0.5 ml in PBS) daily for 
2 weeks [26].

•	 Group 3 (positive control): Rats received acetami-
nophen APAP) dose of 2  g/kg body weight once 
orally [25, 27].

•	 Group 4 (prophylactic group): Rats received oral gav-
age of suspension of probiotic Lactobacillus rhamno-
sus LGG (5 × 1010 CFU GG/0.5 ml) daily for 2 weeks, 
and then on day 14, rats received a single dose of 
acetaminophen orally (2 g/kg b.wt.).

•	 Group 5 (therapeutic group): Rats received a single 
dose of acetaminophen orally (2 g/kg b.wt.) then 24 h 
later treated with oral gavage of suspension probi-
otic  Lactobacillus rhamnosus LGG (5 × 1010  CFU 
GG/0.5 ml) daily for 2 weeks.

At the end of the experiment, blood samples were 
freshly obtained from the retro-orbital venous plexus of 
the eye using capillary tubes after adding a topical anes-
thetic solution to the site of puncture. Blood samples 
were centrifuged at 3000 rpm for 10 min, and the serum 
was separated and stored at − 20  °C for further analysis. 
Rats were killed by decapitation, and liver tissue samples 
were dissected from all rats for histopathological exami-
nations, measurement of different biochemical markers, 
and gene expression analysis. For biochemical analysis, 
fresh liver tissue sections were cut into small pieces and 
homogenized in phosphate buffer saline (PBS, pH = 7.4), 
then centrifuged at 4000  rpm for 15  min, and stored 
at − 20 °C for further biochemical analysis.

Histopathological and immunohistochemical examination
Liver tissue samples were removed, washed with cold 
and isotonic saline, and excised into small tissue sec-
tions. Liver sections were dried using filter paper and 
preserved in 10% formaldehyde until further used. Pre-
served liver tissue was then embedded in paraffin blocks. 
Paraffin-embedded (FFPE) blocks of tissue were cut into 
5-µm-thick sections and stained with the hematoxylin–
eosin (H&E stain) for histological examination by light 
microscope. For immunohistochemical examination, 
liver tissue sections cut from the formalin-fixed paraffin-
embedded blocks were mounted onto positively charged 
adhesive slides. The tissue slides were subject to immu-
nohistochemical staining, including deparaffinization, 
rehydration, blocking, and staining with an anti-Nrf2 
monoclonal antibody (cell signaling, no. 33649) with rat 
species reactivity. Stained tissue sections were visualized 
using a streptavidin–horseradish peroxidase technique. 
Tissue sections were examined, and images were cap-
tured by light microscopy (Axio Imager Z2, Carl Zeiss, 
Jena, Germany) [28].

Biochemical analysis
Fresh liver tissue sections were cut into small pieces and 
homogenized in phosphate buffer saline (PBS, PH = 7.4) 
and then centrifuged at 4000 rpm for 15 min. The super-
natant was separated and stored at − 20  °C for further 
biochemical analysis.

Estimation of liver function biomarkers
We evaluated the levels of liver enzymes (ALT and AST) 
using commercial kits (Teco Diagnostics, Lakeview Ave., 
USA) following the colorimetric method previously 
described by Huang et al. [29]. Serum ALT and AST lev-
els were measured using glutamate dehydrogenase by 
determining the amount of glutamate formed in 20  μl 
serum incubated for 45 min at 37 °C. The dehydrogena-
tion of glutamate reduces the diazonium salt, which is 
measured by absorbance at 520 nm [30]. For each param-
eter measured colorimetrically, the appropriate blank 
was considered. Data is calculated and presented as U/L.

Estimation of kidney function biomarkers
Urea and creatinine were measured in serum to evalu-
ate kidney function. Serum urea in all samples was 
detected using commercial colorimetric kits. For urea 
measurement (BioMed Diagnostic, Cat. no. UR 2110, 
EGY-CHEM, Egypt), the enzyme urease hydrolyzes 
urea to ammonia (NH3) and carbon dioxide (CO2). In 
the presence of salicylate and nitroferricyanide, the 
released ammonium reacts with the alkaline solution 
(sodium hypochlorite) to form a green dye compound 
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that absorbs at 570 nm [31]. Serum creatinine level was 
measured using a colorimetric kit (BioMed Diagnostic, 
Cat. no. UR 1250, EGY-CHEM, Egypt) in which creati-
nine reacts with picrate ions under alkaline conditions to 
form an orange complex that is measured at 520 nm [32]. 
The intensity of the color produced is proportional to the 
concentration of creatinine in the sample. Data is calcu-
lated and presented as mg/dl.

Evaluation of oxidant and antioxidant activities
Oxidant and antioxidant activities were estimated in liver 
tissue homogenates. Liver tissue homogenates were pre-
pared by homogenizing liver samples in PBS solution (pH 
7.4) containing 0.16  mg/ml heparin to clean the tissues 
from clots or red blood cells.

Malondialdehyde (MDA)
Malondialdehyde (MDA) was measured in tissue 
homogenates by a colorimetric method using (Biodi-
agnostic kit, Cat. no. MD-2529, Egypt) according to a 
method described earlier [33]. At 95  °C, the chromogen 
thiobarbituric acid (TBA) interacts with the malondi-
aldehyde in the sample under acidic conditions to form 
a TBA-reactive pink product. The absorbance of the 
colored product is measured at 534 nm [34]. Data is cal-
culated and presented as nmol/mg protein.

Glutathione reductase (GR)
Glutathione reductase levels were determined using a 
Biodiagnostic kit (Cat. no. GR 2511, Giza, Egypt) based 
on the enzymatic method described by Pannala et al. [35]. 
In the presence of NADPH, GR catalyzes the reduction of 
glutathione (GSSG), which is then oxidized to NADPH+. 
The decrease in absorbance at 340 nm is tracked kineti-
cally over time. Data is calculated and presented as U/L.

Evaluation of inflammatory biomarkers

Nitric oxide  Nitric oxide (NO) levels were estimated 
using a Biodiagnostic kit (Cat. no. 2533, Giza, Egypt). 
The measurement of total nitrite NO levels in liver tis-
sue homogenates was done for a reliable determination 
of total NO production. We used a commercial kit that 
relies on the Griess reaction following the methodology 
described by Guevara et al. [36]. The Griess reaction pro-
duces a colored azo dye substance that absorbs visible 
light at 540 nm, which is proportional to nitrite concen-
tration. Data is calculated and presented as umol/L.

Tumor necrosis factor‑α (TNF‑α)  The sandwich 
enzyme-linked immunosorbent assay (ELISA) tech-
nique was used to measure serum tumor necrosis 
factor-α (TNF-α) levels. Detection and quantitation were 

conducted using a commercially available kit specific 
for rat TNF-α (Glory Science Co., Ltd. Cat no.:30635). 
TNF-α in serum samples forms a complex with a target-
specific capture antibody coated on the microtiter plate. 
A second (detector) antibody is then applied to this com-
plex, followed by the addition of a substrate solution that 
interacts with the enzyme-antibody-target complex to 
create a detectable signal read at 450 nm [37].

RNA extraction and real‑time PCR for gene expression 
analysis
Total RNA was extracted from all liver tissue sections 
using PureLink® RNA Mini Kit-Cat. no. 12183018A 
(Life Technologies, USA) to efficiently isolate high-qual-
ity total RNA while removing the majority of genomic 
DNA. The quality and quantity of extracted total RNA 
were assessed using NanoDrop Nucleic Acid Quantifi-
cation (Thermo Fisher, USA). Extracted RNA samples 
were reverse-transcribed with RevertAid-RT Reverse 
Transcription Kit (Thermo Fisher Scientific, Cat. no. 
K1691, USA) under the following conditions: 60  min at 
42 °C and the reaction terminated by heating at 70 °C for 
5  min. Real-time PCR was conducted using Quantitect 
SYBR-Green PCR kit, Cat. no. 204243 (Qiagen, USA) on 
an Agilent RT-PCR machine (Mx3000P). Primers used in 
our study were purchased from the Qiagen QuantiTect 
primers collection as follows:

•	 Protein kinase C-alpha (PRKC-α) primer: Rn_
Prkca_2_SG QuantiTect Primer Assay

•	 Protein kinase C-gamma (PRKC-γ) primer: Rn_
Prkcg_1_SG QuantiTect Primer Assay

•	 Nuclear factor erythroid 2-like2 (Nrf2) primer: Rn_
RGD:620360_1_SG QuantiTect Primer A

•	 Peroxisome proliferator-activated receptor-
gamma coactivator1 alpha (PGC-1α) primer: Rn_
Ppargc1a_1_SG QuantiTect Primer Assay

•	 β-actin primer: Rn_Actb_1_SG QuantiTect Primer 
Assay

SYBR Green PCR master mix for one sample was pre-
pared in a total volume of 25 μl by mixing the following: 
12.5  μl 2 × QuantiTect SYBR Green PCR Mix + 2.5  μl 
of QuantiTect Primer Assay (0.5 uM) + 2.5  μl Template 
cDNA (5–10  ng) + RNase-free water (variable). The 
cycling conditions used for real-time PCR were set as fol-
lows: 15 min at 95 °C, followed by 35 cycles of 94 °C for 
15 s, 60 °C for 30 s, and 72 °C for 30 s [38]. Melting curve 
analysis was performed following each run to assess the 
dissociation characteristics. Cycle threshold (Ct) values 
were obtained following amplification, and gene expres-
sion for the samples was normalized to the internal 
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control β-actin. The relative mRNA expression was cal-
culated using the comparative 2−ΔΔCt method, and data 
are represented as relative expression.

Statistical analysis
The results of the present study are presented as 
mean ± SD. Statistical analysis was assessed using the sta-
tistical software SPSS V16.0. One-way ANOVA followed 
by Fisher’s least significant difference (LSD) test was 

performed for statistical significance between different 
groups. Differences with p-values < 0.05 were considered 
statistically significant.

Results
Histopathological examination
Microscopic examination of various liver tissue sec-
tions from control rats (vehicle group) revealed a nor-
mal histological structure of the central vein, normal 

Fig. 1  Histopathological features of liver tissue sections from the different study groups. A) Liver section from vehicle group shows normal 
histological structure of central vein (CV), normal hepatic parenchymal cells (HCs), and normal portal area (arrow). B) Liver section of probiotic 
control reveals normal histological structure except congestion of some sinusoids (arrow). C) and D) Liver tissue sections from APAP-positive 
control group show severe congestion of the central vein (CV), hepatic sinusoids (arrow), portal vessels congestion, multiple newly formed bile 
ductules (dashed arrows), and mild fibrosis (asterisk) were also detected. E) and F) Liver sections from APAP-administrated group received probiotic 
as a prophylactic dose demonstrates mild degree of hepatocellular degenerative and necrotic changes (arrow), with some leukocytic exocytosis 
of the hepatic sinusoids (dashed arrow). G) and H) Liver sections of APAP-administrated rat that received probiotic LGG as treatment show mild 
congestion of the central vein, hepatic sinusoids, and portal vessels (PV), along with moderate degree of periportal hepatocellular degeneration 
(arrow). H) Hepatocellular swelling, mild scattered vacuolar degeneration (arrow), and necrosis (dashed arrow). H&E staining, magnification 200 × 
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hepatic parenchymal cells, and normal portal area 
(Fig.  1A). Simultaneously, liver sections from nor-
mal rat-administrated LGG probiotic (probiotic con-
trol group) exhibited a normal histological structure 
except for congestion of some sinusoids (Fig.  1B). In 
contrast, liver sections of APAP-administrated rats 
(positive control group) revealed severe congestion of 
the central veins and hepatic sinusoids (Fig. 1C). Peri-
central hepatocellular necrosis and peripheral vacu-
olar degeneration were also observed with some cyst 
formation as well as necrosis. The portal areas dis-
played congestion of the portal vessel, newly formed 
bile ductules, and mild fibrosis (Fig.  1D). In the liver 
of APAP-treated rats which received probiotic LGG as 
a prophylactic intervention, the examination of which 
showed good protection of the hepatic parenchyma 
with a mild degree of hepatocellular degenerative 
and necrotic changes with some leukocytic exocy-
tosis of the hepatic sinusoids (Fig.  1E). The portal 
areas in the liver showed only congestion of the por-
tal vessel with near to normal appearance of the por-
tal tract (Fig. 1F). However, the liver of APAP-treated 
rats which received a therapeutic dose of LGG probi-
otic (therapeutic group) showed mild congestion of 
the central vein, hepatic sinusoids, and portal vessels 
along with mild to moderate degree of hepatocellular 
degeneration, particularly vacuolar degeneration, and 
scattered necrosis (Fig.  1 G and H). Semiquantitative 
histopathologic scoring in the five studied groups is 
depicted in Table 1.

Alterations of biochemical markers 
following administration of paracetamol and/or probiotic
Liver and kidney function biomarkers
Our results revealed that all rats that received paraceta-
mol and were divided into positive control, prophylactic, 
or therapeutic groups showed significant elevation of 
ALT, AST, creatinine, and urea compared with the vehicle 
group (Table 2). The administration of the probiotic LGG 
as a prophylactic or therapeutic significantly (p < 0.05) 
decreased serum levels of those biomarkers compared 
with the APAP-positive control group (Table 2). Interest-
ingly, a significant reduction in liver and kidney parame-
ters was most evident in the group that received probiotic 
LGG as a prophylactic.

Oxidative stress biomarkers
Cellular oxidative stress was evaluated in liver tissue 
homogenates, and the results revealed that the tissue 
level of the lipid peroxidation product, MDA, in the 
APAP-positive control group was significantly elevated 
(3.69 ± 0.5) compared with the vehicle group (1.9 ± 0.4). 
However, this elevation was found to be significantly 
reduced in the groups that received probiotic LGG either 
as a prophylactic (2.3 ± 0.2) or therapeutic (2.5 ± 0.2) 
compared with the APAP-positive control (3.69 ± 0.5) 
(Fig. 2). In contrast, measurement of the key cellular anti-
oxidant marker GR in tissues revealed that APAP signifi-
cantly (p < 0.05) reduced this antioxidant enzyme activity 
in the APAP-positive control group (81.2 ± 3.7 U/L) com-
pared to the vehicle group (310 ± 20.3 U/L), respectively. 
However, administration of probiotic LGG was able to 

Table 1  Semiquantitative histopathologic scoring in the different studied groups. The H&E stained liver tissue sections were graded 
using the following scale: ( −) normal, (0/ +) normal or mild, ( +) mild, (+ / + +) mild or moderate (+ +) moderate, and (+ + +) severe

 Groups Blood vessels and 
sinusoids congestion

Inflammatory 
cellular infiltrate

Vacuolar 
degeneration

Parenchymal 
necrosis

Ductular 
proliferation

Fibrosis

Vehicle  −   −   −   −   −   − 

Probiotic control  +   +   −   −   −   − 

Positive control  +  +  +   +  +  +   +  +  +   +  +  +   + / +  +   + 

Prophylactic  +   +   +   +   −   − 

Therapeutic  + / +  +   +  +   + / +  +   + / +  +   − / +   − 

Table 2  Levels of serum ALT, AST, creatinine, and urea in the different studied groups administered APAP and/or probiotic LGG

a Significant difference compared to vehicle group
b Significant difference compared to positive control

 Parameters Vehicle Probiotic control Positive control Prophylactic Therapeutic

Serum ALT (U/L) 44.75 ± 5.3 47.38 ± 7.61b 82.28 ± 9.2a 46.86 ± 4.1b 61 ± 9.6a,b

Serum AST (U/L) 145.25 ± 7.3 155.13 ± 14.05b 254.8 ± 17.9a 161.25 ± 21.3b 172.5 ± 16.7b

Serum creatinine (mg/dl) 0.26 ± 0.02 0.28 ± 0.05b 0.41 ± 0.04a 0.35 ± 0.05a,b 0.32 ± 0.04a,b

Serum urea (mg/dl) 29 ± 5.61 33.38 ± 3.3b 45.38 ± 4.14a 37.75 ± 4.77a,b 41.2 ± 3.5a
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modulate this reduction to some degree as determined 
by the elevation of GR level in groups that received pro-
biotic LGG either before or after APAP administration 
(Fig. 2), suggesting the ability of probiotic LGG to refine 
oxidative stress generated by APAP administration.

Inflammatory biomarkers
Enhanced inflammation associated with APAP hepa-
totoxicity was detected in our study (Fig.  3). The 
APAP-positive control group showed a significant 
increase in the levels of tissue nitrite and serum TNF-α 

(26.7 ± 5.2  µmol/mg and 151.8 ± 11  ng/L) respectively, 
compared with the vehicle group (12.3 + 2.1  µmol/mg 
and 35.3 ± 7.4 ng/L) respectively. This elevated state of 
inflammation was significantly decreased (p < 0.05) by 
the administration of probiotic LGG. In the prophy-
lactic group, lower levels of tissue nitrite and TNF-α 
were observed (17.1 ± 2.4  µmol/mg protein and 
61.88 ± 8.4 ng/L) respectively. This reduction in inflam-
matory biomarkers was also detected in the therapeutic 
group with total nitrite level of 14 ± 2.2 µmol/mg pro-
tein and TNF-α level of 130.7 ± 5 ng/L (Fig. 3).

Fig. 2  Effects of probiotic LGG administration on oxidant and antioxidant activity. Levels of malondialdehyde (MDA) and glutathione reductase (GR) 
were estimated in liver tissue homogenates of the different studied groups. Data presented as mean ± SD. aSignificant p < 0.05 compared to the 
vehicle group. bSignificant p < 0.05 compared to positive control

Fig. 3  The modulatory effect of probiotic LGG administration on inflammatory markers. Total nitrite in liver homogenate (µmol/mg protein) and 
serum tumor necrosis factor-α (ng/ml) were measured in the different studied groups. Data presented as mean ± SD. aSignificant p < 0.05 compared 
to the vehicle group. bSignificant p < 0.05 compared to positive control
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Enhancement effect of probiotic administration 
on the expression of Nrf2 and PGC‑1α
The mRNA expression analysis of Nrf2 revealed a sig-
nificant elevation (p < 0.05) in its relative expression in 
all groups that received probiotic LGG compared with 
the vehicle group (Fig.  4). Moreover, APAP-treated rats 
that received probiotic LGG as a prophylactic or thera-
peutic showed a significant increase in Nrf2 expression 
compared with the APAP-positive control group. This 
indicates the involvement of Nrf2 in the prevention and 
treatment of APAP-induced hepatotoxicity.

The expression of Nrf2 is under the control of the tran-
scriptional coactivator PGC-1a. Therefore, we also esti-
mated the expression of PGC-1α. Similar to the results 
for Nrf2, probiotic LGG was able to significantly enhance 
the expression of PGC-1a when administered to APAP-
treated rats either as a prophylactic or therapeutic 
(Fig. 4).

Effect of probiotic administration on the expression 
of protein kinase C (α and γ)
APAP hepatotoxicity is mediated by a signal transduc-
tion pathway involving the activation of protein kinase C 
(PKC) family members. Therefore, we evaluated the dif-
ferential expression of PKC family members alpha and 
gamma (α and γ) following probiotic LGG administra-
tion (Fig. 5). Our results revealed that the relative expres-
sion of both PKC (α and γ) significantly increased in the 
positive control group because of APAP-hepatotoxicity 

induction (Fig.  5). However, treatment with probiotic 
LGG was able to significantly (p < 0.05) reduce the ele-
vated expression of PKC (α and γ) compared with APAP-
positive control group. Regarding the prophylactic group, 
we detected a significant reduction in PKC-γ, but no 
significant decrease was detected for PKC-α. Based on 
our results, PKC-γ is the family member of PKC that is 
mostly affected by the probiotic LGG when administered 
as a prophylactic or therapeutic.

Immunohistochemical analysis of Nrf2 protein expression 
in liver tissue sections
Examination of paraffin-embedded immune-stained 
liver sections for Nrf2 protein expression showed results 
similar to that of real-time PCR. Nrf2 protein was 
expressed in the hepatic cells of all groups but to a vary-
ing degree. While lower levels of Nrf2 protein expression 
were observed in the vehicle group (Fig.  6A), liver sec-
tions from the probiotic control group showed moder-
ate expression of Nrf2 among the hepatic cells (Fig. 6B). 
Meanwhile, liver tissue sections from the positive control 
group exhibited increased expression of Nrf2 (Fig.  6 C 
and D) compared with that of the vehicle and probiotic 
control group. Administration of LGG probiotic either as 
a prophylactic or therapeutic following APAP injection 
significantly increased Nrf2 protein expression (Fig.  6 E 
and F), with intense staining observed for the therapeutic 
group (Fig. 6F).

Fig. 4  Probiotic LGG enhances the expression of Nrf2 and PGC-1α. Expression of Nrf2 and PGC-1α was detected in the liver of different studied 
groups using real-time PCR. Values were normalized to β-actin. Relative mRNA expression was calculated using the comparative 2−ΔΔCt method. 
aSignificant p < 0.05 compared to the vehicle group. bSignificant p < 0.05 compared to positive control
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Discussion
The use of acetaminophen has dramatically increased, 
emerging as the most commonly utilized analgesic and 
antipyretic. Hence, APAP-related toxicity represents 
an intense healthcare problem, and it is ranked among 
the most common causes of toxicity worldwide [39]. 
Although the therapeutic window is narrow, the overdose 
of APAP is extremely hepatotoxic due to its ubiquitous 
nature and wide availability causing unintentional over-
dose [40]. In the present study, the pathological altera-
tions in liver tissue sections of rats which received APAP 
were associated with severe congestion of the central 
veins, hepatic sinusoids, and a detected pericentral hepa-
tocellular necrosis and peripheral vacuolar degeneration, 
indicating induced hepatotoxicity [41, 42]. Moreover, 
the significant elevation of liver enzymes ALT and AST 
indicates cellular leakage and loss of liver cell membrane 
functional integrity [43].

In the current study, the administration of probiotic 
LGG improved the histopathological features of liver tis-
sue sections. Moreover, it significantly suppressed the 
elevation of serum liver enzymes, AST and ALT, toward 
normal levels in both groups that received LGG either 
as a prophylactic or therapeutic. This suggests that the 
hepatoprotective and therapeutic effect of probiotic LGG 
includes preserving the structural integrity of the hepa-
tocellular membrane, thus preventing enzyme leakage 
into the blood circulation. These findings are considered 

healing signs of the hepatic parenchyma and hepato-
cyte regeneration [30, 44]. In our study, we noticed that 
the beneficial effect of LGG, in terms of histopathologic 
scoring, seems higher when used as a prophylactic agent, 
rather than as a treatment.

APAP-induced hepatotoxicity is initiated by the 
electrophilic metabolite NAPQI, which depletes glu-
tathione in hepatocytes resulting in the elevation of 
mitochondrial oxidative stress. Consequently, reactive 
oxygen species (ROS) production is enhanced, and oxi-
dative stress markers are elevated, accompanied by the 
depletion of antioxidants [41]. This is confirmed in the 
present study, in which APAP-induced hepatotoxicity 
was coupled with a significant elevation in lipid per-
oxidation and a simultaneous reduction in the activity 
of the antioxidant enzyme GR. The antioxidant prop-
erty of probiotics, particularly LGG, and their power-
ful redox systems have been the focus of many studies 
over the past few years [45, 46]. The antioxidant ability 
of probiotic LGG is mainly related to its O2 tolerance 
and capacity to scavenge free radicals, chelate pro-oxi-
dative metal ions, and enhance the production of anti-
oxidant metabolites. Therefore, probiotics effectively 
support the redox balance in the human body. Moreo-
ver, in food manufacturing, the powerful redox system 
of probiotics can help extend the shelf life of food [47]. 
In the present study, we found that probiotic LGG, 
administered as therapeutic or prophylactic, modified 

Fig. 5  Relative expression of protein kinase C-alpha and -gamma in the liver of groups that received APAP and/or administered probiotic LGG. 
Expression values of PKC-alpha or gamma from RT-PCR were normalized to β-actin. Relative expression was calculated using the comparative 2−ΔΔCt 
method. aSignificant p < 0.05 compared to the vehicle group. bSignificant p < 0.05 compared to positive control
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all oxidative stress markers and increased the activity of 
antioxidant enzymes. Our findings are consistent with 
previous studies that reported the efficiency of probi-
otics, in general, in enhancing the total antioxidant 
capacity [48, 49].

Inflammation is considered a protective reaction 
against pathogens or chemicals to maintain body health. 
During inflammation, many cytokines are secreted and 
accumulated in the liver; among them, TNF-α is impli-
cated as a critical mediator of APAP-induced hepatotox-
icity [50]. In the present study, we found that the TNF-α 
levels significantly increased in all APAP-treated groups, 
an indication of a hepatic inflammatory response. In con-
trast, the administration of probiotic LGG was able to 
halt and manage the detected inflammatory state. Recent 

evidence highlighted the inhibitory effect of probiotics on 
TNF-α signaling through suppressing the phosphoryla-
tion of mitogen-activated protein kinase (MAPKs), c-Jun 
N-terminal kinases (JNK), and ERK signaling pathways 
[50]. In our study, we found that probiotic LGG, as a ther-
apeutic or prophylactic agent, reduced the TNF-α levels 
in the APAP-induced liver injury model. In agreement 
with our finding, previous experimental models also sup-
port the anti-inflammatory efficacy of probiotics and 
the significant reduction in proinflammatory cytokines, 
including TNF-α, following probiotics administration 
[9, 51]. Interestingly, according to our data, the benefi-
cial effect of LGG, in terms of TNF-α reduction, seems 
higher when used as a prophylactic agent, rather than as 
a treatment.

Fig. 6  Representative images for immunohistochemical staining of Nrf2 expression in liver tissue sections of the different studied groups. Lower 
levels of Nrf2 protein expression were detected in the vehicle group (A). Mild to moderate Nrf2 expression scores in the probiotic control group (B) 
and positive APAP control group (C–D). Moderate to strong Nrf2 expressions were detected in rats that received probiotic LGG as a prophylactic (E) 
or as a treatment (F). (IHC × 200)
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Nitric oxide is a well-established proxy of increased 
oxidative and inflammatory status. NO is a vital con-
tributor to oxidative stress, and its level is positively 
correlated with ROS levels [52, 53]. On the other hand, 
APAP overdose can lead to hepatic necrosis, secondarily 
to oxidative stress, and enhance the release of cytokines 
by Kupffer cells [54]. According to our results, adminis-
tration of LGG was able to significantly suppress the ele-
vated levels of NO induced by APAP.

The transcriptional factor nuclear factor erythroid 
2-like 2 (Nrf2) is the major regulator of the primary 
means of cellular defense and protects mammalian cells 
from chemical and oxidative damage. This has been high-
lighted in several investigations that have shown that 
Nrf2 knockout animals are more susceptible to xeno-
biotic-induced toxicity [55]. In the absence of stress, 
the activity and level of Nrf2 are suppressed by KEAP1 
(Kelch-like ECH-associated protein 1), a cysteine-rich 
protein that functions as a substrate adaptor for CUL3-
dependent ubiquitination of Nrf2, moving Nrf2 to pro-
teasomal degradation. However, a chemical/oxidative 
stress can disrupt Nrf2 repression, allowing it to accu-
mulate in the nucleus and transactivate the expression of 
cytoprotective genes and provoking an anti-inflamma-
tory expression profile [55–57]. As an oxidative stress-
mediated reaction, we found that the administration 
of probiotic LGG as a prophylactic or therapeutic was 
significantly associated with increased Nrf2 expression 
in the liver. Moreover, the combined administration of 
APAP with probiotic LGG as prophylaxis resulted in a 
higher significantly elevated expression of Nrf2 com-
pared to its therapeutic effect.

Our findings can be interpreted in light of the results 
of previous studies highlighting the significant con-
nection between the defense role of Nrf2 and probiotic 
administration [58]. Our findings are also consistent with 
previous studies linking probiotic supplementation to 
increased antioxidant activities of Nrf2 in different mod-
els and diseases [59–61].

Peroxisome proliferator-activated receptor-gamma 
coactivator 1 alpha (PGC-1α) is a key regulator of mito-
chondrial biogenesis and proliferation. PGC-1α has 
the ability to regulate the antioxidant activity of Nrf2 
by suppressing the activity of glycogen synthase kinase 
3β (GSK-3β). GSK-3β functions as an inhibitor of Nrf2 
through phosphorylating Nrf2, thus suppressing its 
translocation to the nucleus. At the same time, Nrf2 
regulates the transcriptional activity of PGC-1α. Accord-
ingly, PGC-1α and Nrf2 synergistically participate in the 
regulation of antioxidant activity [62]. Moreover, the 
Nrf2/PGC-1α pathway regulates mitochondrial function 
and homeostasis. PGC-1α has a beneficial role against 
APAP-induced hepatotoxicity through the upregulation 

of Nrf2 and several antioxidant genes [63]. Therefore, the 
expression of both Nrf2 and PGC-1α works  for support-
ing  hepatoprotection. This explains the expression pat-
tern detected for Nrf2 and PGC-1α in the present study, 
in which probiotic LGG was able to increase their expres-
sion, indicating an enhancement of antioxidant activity.

One of the interesting findings in our study is the con-
trast observed between Nrf2 and PGC-1α expression 
detected in the APAP-positive control group, where we 
observed a slight non-significant increase of Nrf2 directly 
following APAP-induced hepatotoxicity, and this could 
be explained as a first-line cellular adaptive response 
against the hepatotoxic drug APAP. On the other hand, 
we detected a suppression in the level of PGC-1α directly 
following APAP administration. Although it is not clear 
the reason behind this contrast, it is well established 
that hepatotoxicants can induce different responses of 
the cytoprotective modulator. In a previous study by 
Yan et al. [64], the expression level of PGC-1α decreased 
when detected at 6  h after APAP overdose, suggesting 
that mitochondrial biogenesis is disturbed by APAP at 
this time point. On the other hand, the study by Gol-
dring et  al. [65] reported that APAP activates Nrf2 to 
some extent in mouse liver following administration 
of non-hepatotoxic and hepatotoxic doses, implying 
that Nrf2 has a sudden response effect against APAP 
administration.

In addition to the oxidative stress pathway, studies sug-
gest that upregulation of protein kinase C (PKC) medi-
ates APAP-induced hepatotoxicity. PKCs are serine/
threonine kinases that participate in several cellular sig-
nal transduction cascades. The PKC-α and γ isoforms 
are commonly expressed in liver tissue, and they are 
usually activated and involved in hepatotoxicity [66, 67]. 
Moreover, according to the study by Meng et. [68], PKC 
inhibitor treatment was protective against liver injury 
in diabetic rats. Based on the gene expression analysis 
in our study, the therapeutic administration of probiotic 
LGG resulted in notably lower levels of PKC-α and -γ in 
rats with APAP-induced hepatotoxicity.

Conclusion
 The results of our study supports that probiotics have 
a therapeutic and protective role against APAP-induced 
hepatotoxicity. We found that pre-and posttreatment 
with probiotic Lactobacillus rhamnosus GG signifi-
cantly enhanced antioxidant activities, reduced the 
level of oxidants, proinflammatory cytokines, and liver 
enzymes, and limited the pathological changes within 
the liver tissue. Moreover, our results revealed that pre-
treatment with Lactobacillus rhamnosus GG had more 
beneficial effects on the liver than a posttreatment regi-
men. Further  studies are warranted to assess the other 
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molecular pathways involved in the potential protec-
tive and therapeutic effect of probiotics against APAP-
induced hepatotoxicity.
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