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This paper explores whether mathematical education has effects on brain development

from the perspective of brain MRIs. While biochemical changes in the left middle front

gyrus region of the brain have been investigated, we proposed to classify students

by using MRIs from the intraparietal sulcus (IPS) region that was left untouched in

the previous study. On the cropped IPS regions, the proposed model developed

popular contrastive learning (CL) to solve the problem of multi-instance representation

learning. The resulted data representations were then fed into a linear neural network to

identify whether students were in the math group or the non-math group. Experiments

were conducted on 123 adolescent students, including 72 math students and 51

non-math students. The proposed model achieved an accuracy of 90.24 % for student

classification, gaining more than 5% improvements compared to the classical CL frame.

Our study provides not only a multi-instance extension to CL and but also an MRI insight

into the impact of mathematical studying on brain development.

Keywords: educational cognitive, MRI, mathematical learning, multi-instance learning, contrastive learning, brain

development

1. INTRODUCTION

Mathematical learning has significant impacts on the brain’s plasticity and cognitive functions
and has been associated with many quality-of-life and development indices (Beddington et al.,
2008; Zacharopoulos et al., 2021). The understanding of these associations could help in utilizing
mathematical learning to benefit the individual’s development (Baglama et al., 2017; Steffe,
2017; Zacharopoulos et al., 2021). Toward a better understanding of education behaviors, many
researchers made a great number of efforts and yielded a wide range of education discoveries and
educational tools from psychological measurements to artificial intelligence (AI) techniques (Steffe,
2017; Barzagar Nazari and Ebersbach, 2018; Mammarella et al., 2018; Zhang et al., 2020a, 2021a;
Peng et al., 2021a,b).

This paper reviewed related works for Educational Information Science and Engineering (EISE)
from the four aspects, i.e., psychological measurement (Mammarella et al., 2018), biological analysis
(Zacharopoulos et al., 2021), educational computer engineering (Robertson and Howells, 2008),
and educational data science (Zhang et al., 2020a, 2021a). The psychological measurement aims to
quantify education behaviors and understand the learning process from sociality and mentality by
using statistical and cognitive models, e.g., item response theory (IRT) (Zhang et al., 2019, 2020a).
Leslie reviewed the studies from 1901 to the present and augmented that the mathematics curricula

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.765754
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.765754&domain=pdf&date_stamp=2021-11-24
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:shang@nwpu.edu.cn
https://doi.org/10.3389/fpsyg.2021.765754
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.765754/full


Zhang et al. Mathematical Education Affects Brain MRI

should be constructed following children’s psychology (Steffe,
2017). Yupei et al. developed the classical psychological IRT
model by seeking latent factors in response records to predict
student responses to exam questions (Zhang et al., 2019).
Robert et al. explored the nature of the relations among prior
information to show the effectiveness of the social cognitive
theory (Lent et al., 1993). While psychology explores learning
behaviors from phenotypes, biological analysis is used extract the
intrinsic impact of education on individuals from brain structure
or genotypes (Liu et al., 2021; Peng et al., 2021c; Zacharopoulos
et al., 2021). By investigating the numerical cognition in the
brain, Korbinian et al. determined that numerical cognition
is subserved by a frontoparietal network that connects the
cortex, basal ganglia, and thalamus (Moeller et al., 2015).
Annie et al. explored the association between neural changes
and behaviors, suggesting teachers could help students remedy
student misconceptions (Brookman-Byrne and Dumontheil,
2020). Brain et al. reviewed specific learning disabilities to
understand the complex etiology and co-occurrences, and
accordingly underpin the optimization of learning contexts for
individual learners (Butterworth and Kovas, 2013). Based on the
understanding of learning behaviors, computer engineering is
introduced to create automatic tools or intelligent games to aid
student learning and instructor teaching (Ng and Chan, 2019;
Alur et al., 2020). Oi-Lam et al. examined students mathematics
learning with computer-aided learning software and found that
the students used 3D CAD to develop spatial skills and to
achieve mathematics learning far beyond using formulate and
performing procedures (Ng and Chan, 2019). Christos et al.
showed mobile game-based learning could further assist students
in higher education toward advancing their knowledge level
(Troussas et al., 2020). Alberto built a multi-view early warning
system with genetic-programming classification rules and the
multi-view learning strategy to enhance the prediction (Cano
and Leonard, 2019). In this era of big data, educational data
science creates a new path toward educational understanding and
increasingly becomes a hopeful prospect for education revolution
(Bienkowski et al., 2012). With a sparsity learning model
(Zhang and Liu, 2020), Yupei et al. proposed a meta-knowledge
dictionary learning model that learnt the latent meta-knowledge
instead of the traditional manual Q-matrix (Zhang et al., 2020a).
They also used the technique of matrix factorization, integrating
the side information of students and courses to predict the
learning performance on the next-term course (Zhang et al.,
2020c). Through assessing the relations between controlling and
autonomy-supportive teaching behaviors on 672 students, Nuria
et al. showed that controlling teaching behaviors are negatively
associated with psychological needs satisfaction and positively
associated with procrastination (Codina et al., 2018). More works
in educational data science can be referred to in Cristobal’s
recent review (Romero and Ventura, 2020). Nevertheless, data
science needs to consider a wider range of data types in
education research.

In recent years, the impact of mathematical learning on
brain development has attracted great attention, where the
neuroimage is the usually adopted technique (Kershner, 2020;
Zacharopoulos et al., 2021). Mariano et al. discussed four specific

cases in which neuroscience synergizes with other disciplines
to serve education, ranging from very general physiological
aspects of human learning to brain architectures, showing that
the neuroscience method, tools, and theoretical frameworks have
broadened our understanding of the mind in a way that is
highly relevant to educational practices (Sigman et al., 2014).
Marie et al. used quantitative meta-analyses of fMRI studies to
identify brain regions concordant among studies on number and
calculation, yielding a topographical brain atlas of arithmetic
(Arsalidou and Taylor, 2011). Ching-Lin et al. reviewed the
MRI neuroimaging approach in education studies and kinds
of learning themes investigated in MRI research and provided
objective and empirical evidence to connect learning processes
outcomes and brain mechanisms (Wu et al., 2021). Karin
et al. used fMRIs to observe brain activation in mathematical
calculation, revealing similar parietal and prefrontal activation
patterns in children with developmental dyscalculia compared
to controls for various conditions (Kucian et al., 2006). To
probe the impact of a lack of mathematical education on
brain development, Georege et al. took more than 120 fMRIs
from adolescent students that were allowed to stop studying
math in the United Kingdom (Zacharopoulos et al., 2021). By
examining the neurotransmitter concentrations in the brain,
they found that the γ -aminobutyric acid (GABA) concentration
in the middle frontal gyrus (MFG) is closely associated with
mathematical learning and mathematical reasoning. This is
evidence that the lack of math education has effects on brain
plasticity and cognitive functions.

However, few studies investigated the effects of education
on brain development from the perspective of structural
neuroimages. The medical image is a technique of probing the
intrinsic structure of the human body that is often utilized in
disease diagnosis and therapy (Zhang et al., 2020b, 2021b). While
the GABA in the MFG was investigated (Zacharopoulos et al.,
2021), we in this paper looked into the math-learning impact on
brain development from the intraparietal sulcus (IPS) region that
is also frequently reported in neuroimaging studies of arithmetic.
This study made an attempt to assess the problem of whether
math students and non-math students could be separated by
using brain MRIs. The used method first cropped the voxel
of interest (VOI), i.e., IPS, from the MRI and then fed all
VOI image patches to our proposed multi-instance contrastive
learning (MiCL) model, followed by a linear classifier for student
identification. Our contributions could be summarized in two
aspects: (1) We developed the classical CL model into the setting
of multi-instance learning to solve our problem formulation.
(2) This study aimed to explore the impact of mathematical
education from structural brain MRIs.

2. MATERIALS AND METHODS

This study aims to identify math and non-math students by
using MRI data to understand the impact of math learning on
brain structure in the IPS region. With this purpose, we designed
the following workflow: (1) acquiring MRIs from adolescent
students including math students and non-math students and
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cropping all images into the IPS region (Zacharopoulos et al.,
2021), (2) designing a classification tool by using CL for image
representations and a linear classifier (Chen et al., 2020; Xu
et al., 2021), and (3) evaluating the performance and experiment
analyses on the student classification.

2.1. The Used MRIs
The used MRI data (XNAT Project ID: PN21) were acquired
from 16-year-old adolescents that chose to stop or continue math
learning in the United Kingdom. Math education was controlled
as a single variable to a set math group with 72 students who
engaged in A-level math and a non-math group containing 51
students who were not engaged in A-level math. In total, 123
MRIs were acquired on a 3T Siemens MAGNETOM PrismaMRI
System equipped with a 32-channel receive-only head coil at the
Oxford Centre for Function MRI of the Brain (FMRIB). With an
MPRAGE sequence, the anatomical high-resolution T1-weighted
MRI was taken by 192 slices, where echo time TE=3.97 ms,
repetition time TR =1,900 ms, and voxel size = 1 × 1 × 1 mm.
The IPS regions of 20 × 20 × 20 mm were manually defined
on the individual’s T1-weighted images while the student was
lying down in the MR scanner (Zacharopoulos et al., 2021).
Acquisition time was 10–15 min per voxel, including planning
and shimming. Figure 1 shows the used T1-weighted MRIs
together with the left MFG region. We in this study cropped the
left IPS region from the T1-weighted MRIs, leading to 3D image
VOI patches of 20×20×20mm slices. To ensure the computation
in deep learning, we normalized all voxels of image patches by

Iij =
Iij − xmin

Imax − Imin
(1)

where Iij is an arbitrary pixel in all images; Imax and Imin are
the maximal and minimal values among all VOI image voxels,
respectively. To train the model in a supervised schema, we
shuffled all image slices and took the student’s label (i.e., class 1:
non-math group, class 0: math group) as slice labels.

2.2. Multi-Instance Contrastive Learning
The proposed multi-instance contrastive learning (MiCL)
model aims to deal with the problem of student classification
where each student involves 20 2D image slices. MiCL
includes an input layer of 20 slices per student, a data
transform layer for data augmentations, a hidden layer
for slice representation learning, a feature layer for
student representation learning, and a loss subspace layer
for loss computation. Figure 2 shows the framework of
the proposed MiCL.

2.2.1. Formulation
LetX = {X1,X2, · · · ,X20} represent student data consisting of 20
instances, where Xi represents an instance for an image slice. All
students are denoted by D = {Xi, yi}

N
i=1, where N is the number

of students, and yi is the label of the i-th student. Note that yi = 1
is for students that have stopped math education, while yi = 0
is for students that have continued mathematical studying. The

problem we will handle in this study is

argmin
N∑

i=1

Q(G(F(Xi)), yi) (2)

where F aims to extract the representations from 20 instances
per student; G is a classifier that maps Xi to its label yi; and Q

is the loss function. In this formulation, the major problem is to
learn student representations from all the 20 instances, i.e., the
function F. A simple method is used to fuse the 20 instances
into one student representation, which has been investigated
in Dongkuan’s work (Xu et al., 2021). While their model is
focused on the time series data in a supervised setting, we in
this study proposed a new unsupervised model to learn student
representations in a multi-instance setting.

2.2.2. Contrastive Learning
Recently, contrastive learning (CL) has become a popular scheme
for robust image representation learning and has been widely
used in many fields, e.g., text classification (Gao et al., 2021),
image classification (Chen et al., 2020), and medical image
segmentation (Chaitanya et al., 2020). CL learns the latent
image feature by training a nonlinear model on two noisy
versions of each data point toward minimizing the difference
between them. SimCLR is a representative framework for CL by
training a ResNet for image representations and a multiple-layer
perceptron (MLP) for loss calculations (Chen et al., 2020). In
mathematics, SimCLR is used to seek an optimal solution to the
following problem,

argmin
L,R

1

2N

N∑

i=1

L(R(T1(Xi)),R(T2(Xi))) (3)

where T1 and T2 are the two data augmentation operations from
the same family of augmentations; R is the classical ResNet
for F1 and F2. L is the contrastive loss, which is defined in
detail as L = l(zi, zj) + l(zj, zi), where zi and zj are the results
from R(T1(·)) and R(T2(·)), respectively. The loss function
l(·) is

l(zi, zj) = −log
exp(sim(zi, zj)/τ )

∑2N
k=1 1[k 6=i]exp(sim(zi, zk)/τ )

(4)

where τ is a temperature parameter; 1 is an indicator function;
and sim(zi, zj) = (zTi zj)/(||zi||

2
2||zj||

2
2).

2.2.3. Objective Function
However, the objective function in Equation (3) fails to handle
our multi-instance problem of student classification. To this end,
we extended SimCLR into MiCL as

arg min
L,G,F1 ,F2

1

2N

N∑

i=1

L(G(z1⊕z2⊕· · ·⊕z20),G(ẑ1⊕ẑ2⊕· · ·⊕ẑ20))

(5)
where ⊕ is the concentration operation; zi and ẑi (i =

1, · · · , 20) are latent representations for the two transformed
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FIGURE 1 | Positions of VOI in a representative T1-weighted MRI for IPS. Three cyan boxes show the IPS from sagittal, coronal, and axial views, respectively. (A)

Sagittal slice, (B) coronal slice, and (C) axial slice.

FIGURE 2 | The proposed MiCL model. T1 and T2 are two data augmentation operators; F1 and F2 are the ResNets; and G is a multi-layer perception.

versions of an input image Xi, i.e., zi = F2(F1(Xi)).
As is shown in Figure 2, we implemented T1 and T2 by
randomly cropping and resizing, Gaussian blur, translation,
and distortions, and F1 and F2 by using the classical ResNet,
G by using MLP, and CL loss by using Equation (4).
After all mappings were achieved, we used outputs of the
feature layer as student representations for the subsequent
classification tasks.

2.2.4. Linear Classifier
To implement the final student classification, this study
employs the single-layer neural network that has been
investigated in the evaluation of SimCLR (Chen et al.,
2020). By denoting hi, the resultant representation for
the i-th student, the classifier aims to minimize the

cost function.

L0 =
1

N

N∑

i=1

−[yilog(C(hi))+ (1− yi)log(1− C(hi))] (6)

where h denotes the obtained representation from Equation (5)
and C(·) = Sigmoid(·) is the activated function mapping student
representations to the label space. Equation (6) is the function
that measures the binary cross-entropy between the target and
the output.

2.3. Model Setting and Evaluation
The proposed model shown in Figure 2 was set up in detail
as follows. All instances share the same F1 and F2, so the
two functions are implemented by using the ResNet. The
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ResNet comprises a convolutional layer with a kernel size
of 3 × 3, three residual modules of four bottleneck blocks,
and an average pooling layer. The number of channels is
64, 128, 256, 512, 256, 128, and 64, respectively. And the
bottleneck block is composed of three convolutional layers with
ReLU. Besides, batch normalization (BN) is utilized after each
convolutional layer. Our model transfers image instances into a
128-dimensional space, and thus, student features into a 2,560
dimensional space. Then, the MLP for G is composed of two
fully connected layers of channels 1,024 and 128. Finally, the
linear classifier is from 2,560 to 1 and employs the Sigmoid as the
activation function to yield the prediction probability. The model
was trained by 2,000 iterations with a learning rate of 0.001, and
1,000 iterations trained the linear classifier with a learning rate
of 0.005.

In this study, we finally calculated accuracy (ACC), F1-score
(F1), and area under the ROC (AUC) on the used 123 MRIs.
From the confusion matrix, we calculated the four metrics, i.e.,
true positive (TP), false positive (FP), false negative (FN), and
true negative (TN). ACC and F1 are calculated by

ACC =
TP + FN

TP + FP + TN + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2×
Precision× Recall

Precision+ Recall
(10)

and AUC is defined as the area under the ROC. Besides, the
two-tailed t-test is adopted to compute the p-value for the
statistic significance test (Zhang et al., 2018). Due to the small-
size dataset, we could conduct five-fold cross-validation on
the 123 students. That is to say, the model could be trained
on four folds and tested on the remaining fold to obtain the
average evaluations.

3. RESULT

To have a comparison with SimCLR (Chen et al., 2020),
we implemented the student classification by firstly learning
an image representation for each slice per student, secondly
connecting the 20 representations, and finally reducing them into
a 2,560-dimensional PCA subspace (Zhang et al., 2017). In short,
we called this method SimCLR through the following context.

3.1. Visualization
Figure 3 scatters all 123 student representations from SimCLR
and MiCL in the 2D subspace. All obtained representations were
reduced into 50-dimensional PCA subspaces and then reduced
into 2-dimensional t-SNE subspaces. There were 51 students
who stopped math education for class 1 and 72 students who
continuedmath studying for class 0, colored in brown and blue in
the figures, respectively. As is shown, the student representations
yielded from MiCL could be easily separated between class 1
and class 0, compared to SimCLR, in the 2D t-SNE subspace.

This observation potentially suggests that joint learning of the 20
image slices in a multi-instance setting could yield more smart
student representations.

3.2. Overall Evaluation
Figure 4 shows the confusion matrixes from SimCLR and the
proposed MiCL. Note that this study took the non-math group
as the positive class and the math group as the negative class.
TPSimCLR > TPMiCL shows that SimCLR prefers non-math
students, while MiCL prefers math students from TNMiCL >

TNSimCLR. SimCLR has a big FN while MiCL has a big FP,
where FPSimCLR = TNMiCL. That means that SimCLR is better
at identifying non-math students, while MiCL is better at
identifying math students. However, the proposed MiCL is better
overall than SimCLR at classification.

Table 1 reports the overall evaluations in terms of the various
metrics. Since SimCLR prefers non-math students, SimCLR
achieves higher precision than MiCL. But MiCL obtains a higher
recall than SimCLR and furthermore results in a higher F1
score. On the other hand, the proposed MiCL gains significant
improvements on ACC and AUC by 5 and 3% with p < 0.01,
respectively. The AUC was obtained by the ROCs, shown in
Figure 5. ROCs were plotted by the true positive rate (TPR)
against the false positive rate (FPR), showing the classification
performance at various thresholds. As is shown, MiCL achieves
a higher TPR at a low FPR than SimCLR. Controlling FPR
is an important research topic in many fields, e.g., disease
diagnosis and drug discovery (Romano et al., 2020). While
SimCLR has higher performance at a high FPR, MiCL gains an
improvement at AUC that is calculated by the area under ROC in
comparisonwith SimCLR.Overall, the proposedMiCL achieves a
better classification performance than SimCLR, while FPR could
meanwhile be controlled.

3.3. Individual Evaluation
Figure 6 shows the classification probability for two classes
yielded by SimCLR and MiCL. The probability was calculated by
normalizing the two outputs to sum 1. That is to say, the sum of
the probability belonging to class 1 and the probability belong
to class 0 is 100%. In this study, we identified a student to be
a math student if the corresponding probability is less than 0.5;
otherwise, we identified the student to be a non-math student. As
is shown, SimCLR results in most of the probabilities in [0.2, 0.4)
for class 0 and most of the probabilities in [0.5, 0.7). And MiCL
yields the classification probability concentrated in [0.0, 0.3) for
class 0 and the classification probability concentrated in [0.6, 0.9)
for class 1. On the other hand, SimCLR leads to more students
having a probability of greater than 0.5 for class 0, while MiCL
gives rise to more students having a probability of less than
0.5 for class 1. The observation shows that MiCL could yield
a more convincing classification for the corrected predictions
than SimCLR. Besides, SimCLR leads to more stable predictions
for non-math students, and even the probability is concentrated
at near 0.5.

Table 2 summarizes the mean and the standard deviation of
the classification probability for SimCLR and MiCL, respectively.
As is shown, MiCL has a smaller mean with a smaller standard
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FIGURE 3 | Visualization of the learned representation in 2D subspaces. There are in total 123 students, including 51 students in class 1 and 72 students in class 0.

(A) SimCLR and (B) MiCL.

FIGURE 4 | Confusion matrix. The two matrixes show TN, FP, FN, and TP from the classification results of SimCLR and MiCL, respectively. We here considered

non-math students as the positive class. (A) SimCLR and (B) MiCL.

deviation than SimCLR on the tasks of identifying math students.
While MiCL has the same mean for non-math students, SimCLR
has a smaller standard deviation. However, MiCL yields more
confident predictions having benefited from multi-instance
joint learning.

4. CONCLUSION AND DISCUSSION

In this paper, we made an attempt to classify students that have
stopped studying mathematics and students that have continued
their mathematical education by using the popular deep learning
technique. To deal with the 3D images, we formulated this

problem into multi-instance learning and developed a classical
contrastive learning framework in a multi-instance setting.

The proposed MiCL learns the image representation by
sharing the weights between the 20 instances and then
concatenates 20 image representations, leading to the final
student representation. In the two versions of each student, the
contrastive loss is employed to encourage a minimal difference.
For 123 students, composed of 51 non-math students and 72
math students, MiCL achieves an accuracy of 90.24% that gains a
5% improvement in comparison with SimCLR. Benefitting from
the multi-instance joint learning, the same observation has also
been obtained for other metrics.
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The MRI data have the potential to be used in identifying
whether a student has stopped their mathematical education.
Both SimCLR and MiCL convey decent accuracy on the
classification task of math students or non-math students.
Moreover, SimCLR is capable of identifying non-math students

TABLE 1 | Evaluation results.

ACC Precision Recall F1 AUC

SimCLR 0.8455 0.8431 0.7963 0.8190 0.9289

MiCL 0.9024 0.7843 0.9756 0.8696 0.9578

Student classification results were calculated for all 123 students in terms of thementioned

metrics, where non-math students were used as positive samples.

FIGURE 5 | ROCs. The ROCs show the classification performance of SimCLR

and MiCL.

more stably, while MiCL prefers to identifying math students.
Since the math or non-math student could be separated with
a high accuracy using MRIs, mathematical education has a
potential impact on adolescent brain development from white
matter and gray matter in the IPS region. This conclusion has
also been investigated in the work of Karin (Kucian et al., 2006;
Zacharopoulos et al., 2021).

There are two points that should be noticed. (1)MiCL gains an
insubstantial improvement in accuracy in the 2,560-dimensional
subspace in comparison with the 2-dimensional subspace. It may
mean that feature selection could be utilized to discover the
brain atlas for mathematical studying. (2) Multi-instance joint
features maybe contribute more to math-student identification.
It potentially means the impact of mathematical studying is more
varied on multiple image slices.

Hence, we should uncover the brain atlas that is affected
by mathematical education and further discuss the impact on
future attainment for adolescents in future works. The attention
mechanism could provide more explanations to understand the
latent representation, which is our other future consideration
(Zhang et al., 2021a). Besides, we will investigate more brain
regions that are also related to math learning, e.g., the middle
front gyrus (Zacharopoulos et al., 2021), and conduct more
experiments to prob the associations between the MRI images

TABLE 2 | Means and standard deviations.

Math student Non-math student

Mean Standard deviation Mean Standard deviation

SimCLR 0.3215 0.1581 0.6500 0.1332

MiCL 0.2291 0.1469 0.6501 0.1703

The results were calculated for all 123 classification probabilities.

FIGURE 6 | The probability distribution. The distribution of the classification probability for math students and non-math students by SimCLR and MiCL. (A) Math

students and (B) Non-math students.
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and other problems, e.g., student psychology and math anxiety
(Barroso et al., 2021).
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