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Abstract
New approaches to predicting ligand similarity and protein 
interactions can explain unexpected observations of drug 
inefficacy or side-effects.

Drug-related adverse events affect approximately 2 million 
patients in the United States each year, resulting in about 
100,000 deaths [1]. For example, highly publicized cases of 
severe adverse reactions recently resulted in a US Food 
and Drug Administration advisory panel suggesting that 
the popular pain relievers Percocet and Vicodin be banned 
[2]. Some adverse events are predictable consequences of 
the known mechanism of a drug, but others are not 
predicted and seem to result from ‘off-target’ pathways.

When developing novel chemical entities (NCEs) for a 
therapeutic application, knowledge of binding partners 
and affected biological pathways is useful for predicting 
both efficacy and side-effects. Traditional drug design has 
relied heavily on the one drug-one target paradigm [3], but 
this may overlook system-wide effects that cause the drug 
to be unsuccessful. Adverse side-effects and lack of efficacy 
are the two most important reasons a drug will fail clinical 
trials, each accounting for around 30% of failures [3]. The 
development of tools that can predict adverse events and 
system-wide effects might thus reduce the attrition rate. 
Such tools will most certainly include emerging informa
tion about protein-protein interactions, signaling path
ways, and pathways of drug action and metabolism. A 
systems view of the body’s responses to a drug threatens 
the simplicity of the one drug-one target paradigm, but 
could provide a framework for considering all effects, and 
not just those that are targeted.

The laboratory assays currently used to evaluate potential 
adverse drug effects can be costly and time-consuming. For 
example, an expensive two-year rodent bioassay is the 
current gold standard for determining the carcinogenicity 
of a NCE [4]. Some assays are also of doubtful utility - only 
around 15% of gene knockouts in the standard pharma
ceutical model organisms show any fitness defect [3]. 
Therefore, drugs designed with a single target in mind may 

prove ineffective, not because they do not interact with the 
target in the expected way, but because of natural 
redundancies in pharmacological networks. To compound 
the problem, protein-ligand studies have found that a 
single drug can bind targets with vastly different pharma
cology and that about 35% of known drugs have two or 
more targets [5]. It is not surprising that evolutionary 
relationships might lead to shared drug-binding capa
bilities in protein paralogs found across a wide range of cell 
types and biological pathways. These complexities, 
however, create new opportunities for therapeutic strate
gies involving the concerted use of drugs with multiple 
targets to achieve an increased specificity in effect. A recent 
review by Giordano and Petrelli, for example, describes 
their approach to developing multi-target drugs for cancer 
therapy while avoiding drug resistance by targeting 
multiple tyrosine kinase receptors [6].

Chemical systems biology, or the application of system-
wide tools to the analysis of pharmacological responses, 
can help address the lack of efficacy and undesired off- 
target effects [3]. Understanding each of these requires the 
ability to characterize off-target side-effects in silico. In a 
recent study, Philip Bourne and colleagues (Xie et al. [7]) 
have used a chemical systems biology approach to explain 
the serious side-effects of a drug that was being trialed for 
prevention of cardiovascular disease.

Systems biology meets chemical biology
For our purposes here, systems biology means an approach 
to biology that looks at networks of molecular interactions 
(including gene products, endogenous small molecules and 
drugs) and processes these using qualitative graphical 
models or quantitative mathematical modeling [8]. Exam
ples of implementations of quantitative methods include 
Flux Balance Analysis [9], differential equations [10], and 
Petri Nets [11]. Implementations of qualitative methods 
include Cytoscape [12], a graphical network representation, 
and Genoscape [13], a network-based knowledge integra
tion extension tool. When the principles of systems biology 
are extended to medications, we get a network of inter
actions between drugs and the naturally occurring meta
bolic and signaling networks (Figure 1). These drugs may 
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connect otherwise disconnected and independent sub-net
works, and this may cause both expected and unexpected 
effects. Pharmacological systems biology must combine the 
biological and chemical characteristics of small and large 
molecules to develop an understanding of drug action. 
These protein-drug joint networks provide two oppor
tunities. First, they can provide more detailed descriptions 
(even signatures) of drug effects, and second, they can 
provide a framework for the design of novel therapeutic 
strategies [4].

The intersection of systems biology and chemical biology 
opens new avenues of research. In particular, there are 
opportunities to combine data from genomics, three-dimen
sional structure, large chemical screens, protein-protein 
interactions, protein-drug binding interactions, and cellular 
imaging and localization to assemble a high-fidelity model 
of how and where small molecules interact with cellular 
components. A harbinger of the opportunities that exist is 
the work by Apsel et al. [14], who have integrated chemical 
biology and systems biology techniques to design drugs that 
act as dual inhibitors of two families of oncogenes.

The recent work of Xie et al. [7] is another excellent 
example of the use of networks combining proteins and 

drugs. They investigated the reasons for the serious side-
effects of torcetrapib, an inhibitor of cholesteryl ester 
transfer protein (CETP) that was in clinical trials as a 
preventive treatment for cardiovascular disease. The aim 
of torcetrapib was to raise the levels of the desirable high-
density lipoprotein cholesterol (HDL-C), but torcetrapib 
turned out to have the side-effect of raising blood pressure, 
with potentially fatal effects in high-risk patients, and was 
withdrawn from development in 2006.

Xie et al. [7] generated off-target binding networks by 
comparing the structure of ligand-binding sites in all 
known protein structures. The proteins identified as 
having similar binding domains were ranked by a 
normalized docking score and clustered by their structural 
and functional characteristics into a gene network that 
includes metabolic and regulation pathways. Using this 
analysis, the authors identified possible off-targets for 
torcetrapib even though the binding site of CETP itself is 
not fully described. Perhaps most interestingly, they 
incorporated biological pathways into their off-target 
networks and found a potential explanation for the poorly 
understood effects of torcetrapib on blood pressure. By 
combining a simple gene regulation model with the 
predicted binding affinities to activators and inhibitors of 

Figure 1

Meta-networks allow novel inferences. Systems approaches allow the generation of networks of genes based on common pathways or 
common evolutionary history, networks of drugs based on chemical similarity or similarity in biological effects, and networks of effects based 
on similar biological pathways and cellular compartments. The ability to link these three networks allows novel inferences.
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the renin-angiotensin-aldosterone system (RAAS), they 
showed that torcetrapib caused more severe effects since it 
has a higher affinity for more RAAS activators.

To validate this approach, the investigators compared the 
off-target networks for drugs with different side-effect 
profiles, and show that the networks are quite different 
and consistent with the different effects of the drugs on 
blood pressure [7]. Their method can, however, only use 
proteins with known structures - a small fraction of the 
human proteome. As a result, pharmacologists may become 
fans of high-throughput structural biology!

An alternative approach to discovering off-target effects 
relies on identifying common chemical features among 
drugs with the same set of adverse reactions [15]. This 
approach links chemical sub-structures to specific 
toxicities and can be used to determine the potential side-
effects of a drug with a novel chemical structure. An imple
mentation of this technique is described by Scheiber et al. 
[15] to relate chemical substructures to side-effects and by 
Campillos et al. [16] to combine drug chemical similarity to 
side effect similarity to predict shared drug targets. Recent 
work by Shoichet and colleagues (Hert et al. [17]) in this 
field uses the similarity ensemble approach with a Bayesian 
method to build chemoinformatics networks based on 
chemical similarities between drugs, instead of on struc
tural or sequence similarities between drug targets. 
Comparisons between the ligand-based network of Hert et 
al. [17] and the target-based network of Xie et al. [7] might 
provide interesting insights. If the networks’ information 
content is complementary, as opposed to redundant, then 
a method that utilized both network may outperform either 
one alone.

Other investigators have taken a complementary approach. 
Instead of looking for common chemical sub-structures, 
they focus on common adverse reactions. Scheiber et al. [1] 
have incorporated data from a variety of databases and 
identified drugs with shared toxicities. They then apply an 
understanding of the molecular pathways underlying these 
toxicities to predict drug targets. In this way, they can 
develop data-driven hypotheses about the mechanisms of a 
particular side-effect. This approach is particularly useful 
when chemicals with very different structures (not likely to 
be recognized using measures of chemical similarity) 
interact with the same biological pathway. The toxicities 
are effectively used as a proxy for the biological pathways 
that the drug is involved with.

The success of network-based methods relies heavily on 
the development and curation of high-quality biological 
and pharmacological databases. The new high-throughput 
technologies have provided a huge amount of data on 
protein-protein and gene-gene interaction networks. The 
meta-database pathguide.org [18] currently lists more than 

70 such databases that are freely available. However, as 
Blow points out in a recent review [19], no one database is 
complete, and combining datasets will yield more informa
tion. The study by Xie et al. [7], for example, incorporates 
data from eight different sources. The availability of these 
databases will fuel the next generation of chemical systems 
biology tools and lead to major advances in drug discovery 
and repositioning. Databases that attempt to integrate 
these different sources of data are becoming available. One 
such, STITCH, tries to consolidate knowledge about 
interactions between proteins and small molecules [20]. 
Although undoubtedly useful, these huge databases do 
raise the issue of false discovery. Incorporating domain 
knowledge to rank genes by their propensity to cause a 
modulated drug response may be one way of addressing 
this issue [21].

The ability to predict and even design the effects of new 
drugs is critical for the future pharmaceutical industry. By 
integrating biological and chemical knowledge, the 
pharmacological effects of drugs can be more completely 
understood and used to create predictive models. Recent 
work has focused on relating drugs to targets by chemical 
similarity, target structural similarity and even side-effect 
similarity. In each case, the results have illustrated the 
power of thinking about drug responses in the context of a 
network of interactions, and from a systems perspective.
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