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Carbon nanomaterials with high electrical conductivity, good chemical, and mechanical

stability have attracted increasing attentions and shownwide applications in recent years.

In particularly, hollow carbon nanomaterials, which possess ultrahigh specific surface

area, large surface-to-volume ratios, and controllable pore size distribution, will benefit to

provide abundant active sites, andmass loading vacancy, accelerate electron/ion transfer

as well as contribute to the specific density of energy storage systems. In this mini-review,

we summarize the recent progresses of hollow carbon nanomaterials by focusing on

the synthesis approaches and corresponding nanostructures, including template-free

and hard-template carbon hollow structures, metal organic framework-based hollow

carbon structures, bowl-like and cage-like structures, as well as hollow fibers. The

design and synthesis strategies of these hollow carbon nanomaterials have been

systematically discussed. Finally, the emerging challenges and future prospective for

developing advanced hollow carbon structures were outlined.

Keywords: carbon materials, nanostructures, hollow morphology, synthesis strategies, structural information

INTRODUCTION

Carbon, one of the most important elements in nature, has been utilized in human civilization
for more than 3,000 years (Hu et al., 2010). In the past decades, three significant breakthroughs
mark that carbon based materials have entered the nano era: (1) In 1985, C60 namely fullerene was
exploited by Kroto et al. (1985); (2) Iijima (1991) reported carbon nanotube in 1991; (3) In 2004,
graphene was developed by Novoselov et al. (2004). Since then, carbon nanomaterials have become
a hotspot, hence, various novel nanostructures and synthesis approaches have been developed
(Wang Q. et al., 2017; Li et al., 2018; Zhang P. et al., 2018; Liu M. et al., 2019; Sun et al., 2019a;
Zhan et al., 2019; Shen et al., 2020; Yan et al., 2020; Yang et al., 2020).

Recently, carbon-based nanomaterials have been widely developed and been used in many
fields such as energy storage and conversion, photocatalysis, electrocatalysis, gas, and water
treatment systems and biomedicine (Liu et al., 2017a,b, 2018; Yang et al., 2018; Liu Y. Q. et al.,
2019; Sun et al., 2019b,c; Zhang and Lou, 2019; Guo et al., 2020; Wu C. et al., 2020; Yuan
et al., 2020a,c,d). Among various carbon nanomaterials, hollow carbon nanostructures (HCNs)
(Figure 1) have attracted considerable interests due to their high thermal stability, strong electron
transport ability, large specific surface area, plentiful exposed active sites, and flexible shape and
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structure (Wen et al., 2007; Guo et al., 2019; Chen et al., 2020; Gao
et al., 2020;Wang et al., 2020; Yuan et al., 2020b). A large number
of studies have shown that HCNs exhibit excellent performance
for energy, catalysis, electronics, biomedical, and so on in terms
of their unique hollow structures.

In this mini-review, we summarize the recent advances
of HCNs by focusing on the synthesis approaches and
corresponding nanostructures, including hollow carbon spheres
based on template-free and hard-template methods, metal
organic framework-derived HCNs, bowl-like, cage-like, and
fiber-shaped HCNs. The emerging challenges and future
prospective for developing advanced hollow carbon structures
were also outlined. We believe that this mini-review could offer
some new insights and inspire extensive interests to accelerate
and explore the innovations of HCNs.

HOLLOW CARBON BASED ON
TEMPLATE-FREE APPROACH

Template-free method, which also termed self-template method,
is regarded as a facile and one-step strategy for the synthesis of
HCNs. Usually, template-free method involves Kirkendall effect,
Ostwald ripening, ion exchange, and selective etching (Zhang and
Lou, 2019).

In 2001, Wang et al. first reported a facile hydrothermal
route to prepare monodispersed hard carbon spherules. Sugar
was selected as precursor, and hydrothermal treated for 5 h at
190◦C, and followed by a carbonizing process, the carbon spheres
were obtained (Wang et al., 2001). The as-prepared carbon
sphere exhibited a specific surface area of 400 m2/g and lithium
storage capacity up to 430 mAh/g, which undoubtedly opened
the door for practical application of carbon materials in energy
storage. After that, X. Sun and Y. Li studied the mechanism of
preparing carbon spheres from glucose by hydrothermal method,
and further developed a general synthesis strategy of hybrid,
hollow, or porous carbon spheres (Sun and Li, 2004). To date,
hydrothermal or solvothermal carbonization method has been
developed into a classical strategy, by which numerous hollow
carbon spheres were successfully synthesized (Han et al., 2011;
Liang et al., 2015; Chen et al., 2018; Wang et al., 2019).

In recent years, a great many of new strategies have been
developed. For instance, a facile one-step carbonization process
to prepare hollow carbon spheres with different sizes from
100 to 400 nm, was presented by Natarajan and co-workers.
Polypropylene (PP) and polyethylene (PE), which recovered
from spent lithium-ion batteries, were heated at 800◦C for
2 h. After cooling and washing with benzene, the product
with specific surface area and total pore volume of 402
m2/g and 0.30 cm3/g was obtained (Figure 2A) (Natarajan
et al., 2019). In addition, Sun and co-authors synthesized
N-doped hollow carbon spheres by stepwise polymerizing and
carbonizing procedure. Industrialized monomers, pyromellitic
dianhydride (PMDA) and 4, 4-oxydianiline (ODA), were
used as raw materials, and stepwise polymerized at ambient
temperature, the obtained homopolymer self-assembled
into poly (amic acid) (PAA) vesicles. After carbonizing at

FIGURE 1 | Schematic illustration of various carbon nanomaterials with hollow

structures.

800◦C for 3 h, PAA vesicles transformed into hollow carbon
spheres (Sun et al., 2016). Similarly, initiated by ammonium
sulfate, 2, 6-Diaminopyridine polymerized and then heated
at 950◦C for 1 h, N, S co-doped hollow carbon spheres were
prepared (Zhang X. et al., 2019).

HOLLOW CARBON WITH
HARD–TEMPLATE METHOD

As an effective strategy, hard-template method, in which
the materials with low price and easily controlled are used
as templates, followed by being removed with physical or
chemical procedure, is widely applied to synthesize HCNs.
In general, hard-template method involves four steps. Firstly,
a rigid solid template is prepared with specific morphology.
Then, the surface of as-prepared template was modified
or functionalized in order to increasing absorption ability.
Furthermore, carbon precursor (i.e., dopamine, PAN, PAA, P123,
P127) was coated on the surface of as-prepared template. Finally,
as-prepared template was removed by solution etching or high
temperature degradation.

Since hard-template method was discovered in 1999,
numerous nanostructures have been prepared. Yoon and co-
authors synthesized hollow core/mesoporous shell for the first
time by using silica spheres as templates (Yoon et al., 2002).
Subsequently Joo et al. developed a facile hydrothermal approach
to prepare hollow carbon sphere by using silica as template and
sucrose as carbon source. First, silica particles were prepared
by a classical Stöber approach and impregnated with AlCl3
aqueous solution. Next, sucrose was added as carbon precursor
and treated by a benign hydrothermal process. After annealing
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FIGURE 2 | (A) TEM image of template-free synthesized carbon hollow spheres (CHS). Natarajan et al. (2019) with permission from Royal Society of Chemistry. (B)

TEM image of hollow carbon nanospheres with latex templates. Tang et al. (2012) with permission from Wiley-VCH. (C) TEM image of bicontinuous hierarchical

porous carbon (BHPC-950) after hydrofluoric acid etching. Yang et al. (2017) with permission from Wiley-VCH. (D) SEM image of N-doped hollow porous carbon

bowls (N-HPCB). Pei et al. (2016) with permission from Wiley-VCH. (E) TEM image of carbon nanoboxes. Yu et al. (2015) with permission from Wiley-VCH. (F) SEM

image of N-doped hollow carbon nanofibers. Ramakrishnan et al. (2015) with permission from Royal Society of Chemistry.

(850◦C) and etching (HF) treatment, the hollow carbon spheres
were obtained (with specific surface of 788 cm2/g, pore volume of
1.15 cm3/g) (Joo et al., 2008). In addition, Tang and co-workers
demonstrated that hollow carbon spheres can be prepared via a
facile hydrothermal carbonization method. Polystyrene latexes
and glucose were mixed and hydrothermally treated at 180◦C for
20 h, and subsequently heated at 1000◦C (Figure 2B) (Tang et al.,
2012).

METAL ORGINIC FRAMEWORKS DERIVED
HOLLOW CARBON NANOMATERIALS

Since the metal organic frameworks (MOFs) were synthesized
in the 1990s, they have been widely used in adsorption,
separation, catalysis, energy storage, pharmaceutical, and other
fields due to their large specific surface area, porosity, convenient
synthesis, good thermal stability, variable skeleton size, and
chemical modification (Ren et al., 2018; Sun et al., 2020a,b).
Selecting the precursors and calcination conditions of MOFs
is an effective strategy to prepare new carbon nanomaterials
with controllable size, shape, and composition. In 2008, Liu
and co-authors reported that MOF was applied as template
to synthesize porous carbon nanomaterials (Liu et al., 2008).
MOF-5 and furfuryl alcohol were used as template and carbon
source, respectively, followed by dynamic vacuum (200◦C, 24 h)
and carbonizing process (1000◦C, 8 h, N2), porous carbon with
high specific surface area (2872 m2/g) was obtained. Since
then, various HCNs have been prepared and applied in many
fields. For instance, through a controlled etching approach,
novel nanosize monocrystalline hollow MOF nanobubbles with

a uniform size of <100 nm and a thin shell of around
10 nm were prepared (Zhang et al., 2017). Moreover, Yang
and co-workers reported a dual-template route to nitrogen-
rich porous carbon. Typically, 3D ordered SiO2 infiltrated into
ZIF-8, then heated at 800–1000◦C and etched by hydrofluoric
acid, the obtained product exhibited ultralarge surface area of
2546 m2/g and ultrahigh total pore volume of 13.42 cm3/g
(Figure 2C) (Yang et al., 2017).

On the other hand, combining MOFs with various functional
materials is also an effective and feasible strategy. In 2012,
Jahan and co-authors used reduced graphene oxide (rGO) sheets,
which were functionalized with pyridine ligands on either side
of the surface, acting as pillars connecting metalloporphyrin
nodes to form a hybrid grapheme-MOF framework. Their
excellent work demonstrated that the addition of functionalized
rGO can influence the crystallization process of MOF and
improve the electrocatalytic properties of the composites (Jahan
et al., 2012). Additionally, hybridizing with carbon nanotubes
is a widely adopted strategy in recent years. By dispersing
and penetrating carbon nanotubes with MOF precursors,
a large number of hybrid structures, such as multi-walled
carbon nanotube/zeolitic ZIF-8 composite (MWNT@ZIF) (Yue
et al., 2014), interpenetrated and self-standing conductive
framework (ISCF) were successfully prepared (Liu Y. et al.,
2017). In 2018, Zhang and co-authors reported a 3D porous
MOF@CNT hybrid structure through a facile impregnation
and solvothermal reaction approach. A carbon tube sponge
which used as template was produced first, and then immersed
into precursor solution. After solvothermal treatment, the
ZIF-8 was in situ synthesized and MOF@CNT hybrid was
obtained (Zhang H. et al., 2018).
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HOLLOW BOWL-LIKE CARBON
NANOMATERIALS

Hollow bowl-like carbon nanomaterials have attracted great
interests due to their excellent properties, such as large surface
area, tunable pore sizes, high pore volume, high packing density,
high electrical conduction (Liang et al., 2020). Just as their
hollow carbon spheres counterparts, hollow bowl-like carbon
nanomaterials can be prepared via template-assisted method or
template-free method as mentioned above.

In 2016, Pei used SiO2 and polybenzoxazine as hard template
and carbon precursor, respectively, and N-Doped hollow porous
carbon bowls (N-HPCB) were synthesized with the treatments of
carbonizing and etching (Figure 2D). The as-prepared N-HPCB
exhibited a high specific surface area up to 2161 m2/g and pore
volume of 1.5 m3/g (Pei et al., 2016). Without carbonization, Gao
and co-authors developed a generalized strategy for the synthesis
of “dual carbon”-protected bowl-like hollow particles. Similarly,
SiO2 and resorcinol formaldehyde (RF) were used as hard
template and carbon source, respectively. A low-temperature
refluxing procedure and a vapor-phase process were utilized
during the preparation process (Gao et al., 2019). Interestingly,
many facile strategies have been developed that hollow bowl-
like carbon can be obtained just by tuning mass ratio of RF and
tetraethyl orthosilicate (TEOS) (Fei et al., 2020; Yi et al., 2020).

As known, compared with its counterpart, template-free
method requires fewer steps and cause less waste. Hence,
scientists have focused their interests on synthesizing hollow
bowl-like carbon materials with template-free method. With a
facile sulfuric acid treatment and drying route, Liang and co-
workers prepared hollow bowl-like carbon with specific surface
area of 103.8 m2/g (Liang et al., 2014). In addition, Duan and
co-authors prepared hollow bowl-like carbon supported AuPd
with an average size of 175 nm by traditional hydrothermal
carbonization (Duan et al., 2020).

CARBON NANOCAGES

Unlike sphere-shaped carbon nanomaterials, mass production
of nanocages from carbon materials is still a great challenge.
Template-assistedmethod is an effective strategy for the synthesis
of carbon based nanocages. Xie et al. reported a facile route
to prepare carbon nanocages by using MgO and benzene as
template and carbon source, respectively (Xie et al., 2012).
Typically, basic magnesium carbonate was heated in a tubular
furnace, and then benzene was added into the tubular furnace,
followed by treated with hydrochloric acid solution, the carbon
nanocages with specific surface area up to 2053 m2/g were
obtained. Similarly, Zang and co-workers prepared carbon
nanocages by using SiO2 and resorcinol formaldehyde resin as
template and carbon source, respectively (Zang et al., 2020). In
addition, Fe3O4, TiO2, and CaO also were used as templates
to prepare carbon nanocages (Wu Q. et al., 2020). Such as,
novel N-doped carbon nanoboxes were synthesized with Fe2O3

nanocubes as the template, and a thin layer of polydopamine
(PDA) were coated on their surface, followed by carbonization

process (500◦C, 3 h) and being etched by hydrochloric acid,
which resulted in the preparation of N-doped carbon nanoboxes
(Figure 2E) (Yu et al., 2015).

More recently, pyrolysis has become a new strategy to prepare
carbon nanocages. In 2019, Zhang and co-workers successfully
synthesized carbon nanocages by the pyrolysis (600◦C, 3 h) of PE
and magnesium powder (Zhang Y. et al., 2019). Moreover, Wang
and co-workers prepared N-doped carbon nanocages by a spay
pyrolysis of pyridine (C5H5N) and pentacarbonyl [Fe(CO)5] at
700 and 1000◦C (Wang et al., 2014).

HOLLOW CARBON FIBERS

As early as 1997, by introducing alumina membrane as
template, Hulteen and co-authors prepared hollow carbon fibers
(Hulteen et al., 1997). Typically, porous alumina membrane
was immersed in acrylonitrile solution, then the polymerization
reaction was initiated by adding 1, 1′-azobis(cyclohexane
carbonitrile), resulting in the formation of PAN/alumina
composite. Similarly, in 2011, Zheng and co-workers reported a
hollow carbon nanofiber-encapsulated sulfur electrode structure
(Zheng et al., 2011). Anodic aluminum oxide (AAO) membrane
and polystyrene (PS) were chosen as template and carbon source,
respectively, through a carbonization process (750◦C,4 h), carbon
coated AAO membranes were prepared, followed by removing
the AAO templates, hollow carbon fibers of diameters range
between 200 and 300 nm were obtained. Interestingly, biomass
material, such as crab shell can also be used as template to prepare
hollow carbon fibers (Liu et al., 2010).

On the other hand, electrospinning is also widely used
for the synthesis of hollow carbon fibers. Larsen and co-
workers reported a facile coaxial route for the fabrication of
hollow nanofibers. TEOS and olive oil were used as outside
and inner nanojet liquid, respectively. And they were injected
into two coaxial capillaries with different diameters. After
co-electrospinning process, hollow nanofibers were obtained
(Loscertales et al., 2004). Similarly, Xia and Li fabricated
hollow nanofibers by using Poly(vinyl pyrrolidone) (PVP) and
Ti(OiPr)4 as the core and shell materials, followed by co-
electrospinning and carbonizing process (500◦C, 1 h) (Li and Xia,
2004). Since then, various materials such as, polyacrylonitrile
(PAN), poly(styrene-co-acrylonitrile) (SAN) (Le et al., 2016),
poly (methyl methacrylate) (PMMA) have been used to
synthesize hollow carbon fibers (Wang Y. et al., 2017). For
instance, Ramakrishnan and co-workers reported a facile coaxial
electrospinning approach to prepare hollow carbon fibers. PAN
and PVP were used as carbon source and sacrificial material,
respectively. After coaxial electrospinning and carbonization
process (800◦C,1 h), the as-prepared hollow carbon fibers
exhibited surface area of 557 m2/g and ultrahigh total pore
volume of 0.5681 cm3/g (Figure 2F) (Ramakrishnan et al.,
2015). In addition, with the development of nanotechnology,
combing electrospinning with other technologies has become
a new research hotspot in recent years. For example, by
combing electrospinning with template-assisted method, Sun
et al. prepared fantastic bamboo-like hollow carbon fibers
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(Sun et al., 2015). Firstly, PAN and TEOS were used as
precursors to prepare white nanofibers by electrospinning.
Then bamboo-like hollow carbon fibers were obtained after
carbonization treatment followed by removing SiO2 template in
hydrofluoric acid.

DISCUSSION

In summary, recent advances in synthesis of carbon
nanomaterials with hollow structures are reviewed and
discussed. The synthesis methods and applications of hollow
carbon spheres, metal organic framework-derived carbon
structures, bowl-like, cage-like, and carbon fibers hollow
structures are presented. Although great progress has been made
in this field, its synthesis, application and precise structural
adjusting of HCNs are still facing great challenges. (1) Although
template-free method is simple, the dynamics process of
structure formation is not clarified. (2) Hard-template method
is one of the most effective methods for synthesizing HCNs.
However, sodium hydroxide or hydrofluoric acids are inevitably
used in the process of template etching, especially for SiO2

template, which not only pollutes the environment, but also
increase the cost. Therefore, developing a novel template which
could be removed under mild conditions is becoming to be
the emphasis of research. (3) A large amount of metal organic
frameworks have been reported over the years. Nonetheless,
only few of them (i. e., MOF-5, ZIF-8, ZIF-67) could be derived
to hollow carbon nanomaterials, due to their poor thermal
structure stability. It is apparent that exploiting a series of
ligands for high stability MOF or developing new carbonization
approaches will broad their application on HCNs. (4) Compared
with single layer hollow carbon nanomaterials (i.e., bow-like
carbon nanomaterials, carbon nanocages, and hollow carbon

fiber), multilayer hollow structure, or hollow hierarchical
structure, which could increase the specific surface area, modify
properties of different layer, enhance the connection of each
hollow structure, will be the key point in the development of
hollow carbon nanomaterials.

Hollow carbon nanomaterials undoubtedly become a hot
spot of novel materials research due to their unique structures
with high specific area, rich exposed active sites, and mass
loading vacancies. It is believed that with the combined efforts in
traditionalmethods and in-depth kinetic analysis, more strategies
will be realized in building unified size, stable, environmentally
friendly, and low cost hollow carbon nanomaterials. These
insightful ideas, raised during the exploration, will eventually
benefit the understanding and development of conventional
hollow structure, as well as other nanomaterials based on
hollow structure.
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