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Abstract

The entropy profiles of cortical activity have become novel perspectives to investigate individual differences in behavior.
However, previous studies have neglected foundational aspects of individual entropy profiles, that is, the test–retest
reliability, the predictive power for cognitive ability in out-of-sample data, and the underlying neuroanatomical basis. We
explored these issues in a large young healthy adult dataset (Human Connectome Project, N = 998). We showed the whole
cortical entropy profile from resting-state functional magnetic resonance imaging is a robust personalized measure, while
subsystem profiles exhibited heterogeneous reliabilities. The limbic network exhibited lowest reliability. We tested the
out-of-sample predictive power for general and specific cognitive abilities based on reliable cortical entropy profiles. The
default mode and visual networks are most crucial when predicting general cognitive ability. We investigated the anatomical
features underlying cross-region and cross-individual variations in cortical entropy profiles. Cortical thickness and structural
connectivity explained spatial variations in the group-averaged entropy profile. Cortical folding and myelination in the
attention and frontoparietal networks determined predominantly individual cortical entropy profile. This study lays
foundations for brain-entropy-based studies on individual differences to understand cognitive ability and related
pathologies. These findings broaden our understanding of the associations between neural structures, functional dynamics,
and cognitive ability.
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Introduction

Spontaneous neural activity is often characterized by persistent
and highly irregular fluctuations. According to the prevalent
theoretical view, this irregularity can be explained by a bal-
ance between excitatory and inhibitory interneuron currents,
which is underpinned by local neural circuits and networks (Van
Vreeswijk and Sompolinsky 1996; Shu et al. 2003). Studies on
brain systems have associated the variability or complexity of
ongoing neural fluctuations with the information capacity (Shew
et al. 2011), the dynamic range of responses to stimuli (Shew
et al. 2009), and the observed flexible phase synchrony (Yang
et al. 2012) of brain systems. The generality of the underlying
neurological mechanisms and functional implications suggests
that the complexity of spatiotemporal patterns in brain activity
serves as suitable biomarkers of brain functions and disorders
(Faisal et al. 2008; McIntosh et al. 2008, 2010; Garrett et al. 2010,
2011, 2013a, 2013b, 2014; Takahashi 2013; Guitart-Masip et al.
2016).

Studies on cognitive neuroscience have widely applied
entropy as a representative and quantitative measure of
complexity in brain dynamics. When resting-state signals cap-
tured by electroencephalography (EEG) or functional magnetic
resonance imaging (fMRI) were investigated, group comparisons
with respect to the cortical entropy profile (spatial complex
pattern) were applied to reveal substantial differences between
typically and atypically functioning populations, such as people
under development (McIntosh et al. 2008, 2010; Lippé et al. 2009;
Mišić et al. 2010; Vakorin et al. 2011), aging (Takahashi et al.
2009; O’Hora et al. 2013; McIntosh et al. 2014; Jia et al. 2017),
traumatic brain injury (Raja Beharelle et al. 2012), schizophrenia
(Takahashi et al. 2010; Xue et al. 2019), depression (Okazaki et al.
2013; Lin et al. 2019), autism (Bosl et al. 2011; Okazaki et al. 2015;
Takahashi et al. 2016; Liu et al. 2017; Bosl et al. 2018; Easson
and McIntosh 2019; Kang et al. 2019) and Alzheimer’s disease
(Mizuno et al. 2010; Yang et al. 2013; Azami et al. 2017; Wang
et al. 2017).

Recently, the investigation of brain-wide activity in terms
of individual deviations from the group average has become a
crucial endeavor in the context of individualized predictions and
precision medicine. Compared with group contrast, individual
differences within group are more difficult to detect but more
essential to the characterization of brain function in health
and disease (Dubois and Adolphs 2016). Majority of researchers
used functional connectivity (FC) and have attempted to exam-
ine individual brain functions related to healthy aging (Dosen-
bach et al. 2010; Geerligset al. 2015), personality (Adelstein et al.
2011; Dubois et al. 2018a), intelligence (Finn et al. 2015; Dubois
et al. 2018b), and disease (Arbabshirani et al. 2013; Yahata et al.
2016; Easson et al. 2019). The application of entropy measure in
the field of individual difference is just emerging. Early work
recorded resting-state EEG from healthy elderly subjects and
found higher individual creativity was linked to the increased
entropy especially in lower frequencies (Ueno et al. 2015). A very
recent study in young healthy adults further explored the asso-
ciation between the voxel-level-resolution whole-brain resting-
state fMRI (rfMRI) entropy profiles and individual differences in
creativity (Shi et al. 2019). Consistently, the study revealed that
high entropy in the control and semantic associative networks
was associated with superior creative ability across individu-
als. Another work in rfMRI of young healthy subjects observed
positive correlation between individual scores from vocabulary
and reasoning tasks and brain entropy in prefrontal cortex, infe-
rior temporal lobes, and cerebellum (Saxe et al. 2018). These

studies gave first evidences about the sensitivity of entropy pro-
file as novel marker to capture individual difference in cognitive
processing.

However, several crucial aspects should be elucidated before
further exploration of individual difference using entropy profile.
First, the existing literature (Zuo and Xing 2014; Zuo et al. 2014,
2019a; Dubois and Adolphs 2016; Xing and Zuo 2018; Zuo et al.,
2019b) emphasizes the status of reliability (i.e., reproducibility in
test–retest trials) and validity (i.e., the accurate measurement of
functionally relevant information) as foundations of the brain
science of individual differences. The low reliability is known
to potentially cause false positives, false negatives, and/or arti-
ficially inflated effect sizes (Zuo et al., 2019a). In addition, the
restricted reliability could bias the evaluation of functional sig-
nificance of different brain subsystems, since the reliability sets
the upper bound of measurements’ validity (Zuo et al., 2019b).
Previous studies on the entropy-based measures of whole-brain
dynamics have lacked these aspects, and it is not known if the
reliability of entropy in different subsystems is heterogeneous.
Furthermore, an out-of-sample prediction should be favored over
a correlation analysis, as the latter derives conclusions based on
inferences from the in-sample population and does not directly
test generalizability (predictive validity) of entropy measure in
out-of-sample population (Linden 2012; Whelan and Garavan
2014; Gabrieli et al. 2015; Lo et al. 2015). As with group average
comparisons, simple correlation-based analyses are performed
separately for spatial sites. Thus, previous research did not con-
sider the cortical entropy profile as an integrative measure of
dynamic activity in the brain and did not include out-of-sample
predictions of cognitive ability. Moreover, an understanding of
the anatomical basis underlying spatial heterogeneity and indi-
vidual differences in cortical entropy profiles remains lacking,
despite the critical nature of this information to the future devel-
opment of clinical diagnosis and treatment.

In summary, studies on entropy-based individual differences
must urgently address 3 fundamental questions: (1) Are the
individual cortical entropy profiles in the whole cortex and func-
tional subsystems reliable and person-specific trait indicators?
(2) When the profile is reliable, is the cortical entropy profile
predictive of the cognitive ability of an out-of-sample individual?
(3) Which anatomical features determine spatial heterogeneity
and individual differences in cortical entropy profiles?

In this study, we used a large dataset from the Human Con-
nectome Project (HCP) (Van Essen et al. 2013) to address these
questions. First, we aimed to investigate whether individual
profiles of cortical entropy can be measured reliably and are
sufficiently unique to serve as a reliable individual “fingerprint.”
Second, we aimed to use integrated information from whole-
cortex entropy profiles in a predictive modelling framework to
predict individual general and specific cognitive abilities. Third,
we aimed to quantify the anatomical basis of the spatial hetero-
geneity observed in group-averaged entropy profiles. Finally, we
searched for the anatomical features that influence the predic-
tion of individual entropy profiles.

Materials and Methods
The HCP Database

We examined the data of 998 healthy young adults (age range: 22–
35 years), including 466 males, from the HCP S1200 data release
(Van Essen et al. 2013). Participants with missing data from any
imaging modality were excluded. The HCP provides data for pub-
lic use, including scans obtained using different MRI modalities
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in a large population. The database includes property maps from
structural MRI [T1-weighted (T1w) and T2-weighted (T2w) imag-
ing], diffusion MRI (dMRI), rfMRI, and outside scanner cognitive
performance data. Detailed protocols used to acquire MRI data
for the HCP are provided at https://www.humanconnectome.org
and have been described extensively in the literature (Van Essen
et al. 2013).

Structural MRI

Structural MRI data comprises T1w and T2w images. T1w
images were obtained using the T1w_MPR1 sequence with the
following parameters: repetition time (TR) = 2400 ms, echo time
(TE) = 2.14 ms, flip angle = 8, field of view = 224 × 224 (RO × PE),
and isotropic voxels = 0.7 mm. T2w images were obtained
using the T2w_SPC1 sequence with the following parameters:
TR = 3200 ms, TE = 565 ms, field of view = 224 × 224 (RO × PE),
and voxel size = 0.7 mm. All structural data were preprocessed
through the HCP minimal preprocessing pipeline (Glasser
et al. 2013), specifically, surface-based “CIFTI” format data,
which comprised 91 282 cortical and subcortical “grayordinates”
(Glasser et al. 2013).

Surface-based morphometry measurements, including the
cortical thickness, mean cortical curvature (curv), and sulcus
depth (sulc), were determined based on the structural MRI data.
Thickness was defined as the distance between the gray and
white matter border and the pial surface. Curv represented the
curvature of each vertex on the cortical surface. A higher curv
value indicated sharper bending, and a positive value corre-
sponded to curvatures in sulci (i.e., upward curving). Sulc was
defined as the linear distance from the midsurface between
the gyri (negative value) and sulci (positive value). A previous
empirical study determined that the ratio of T1w to T2w (T1/T2)
could be considered as a proxy of the myelin content (Glasser
and Van Essen 2011). The HCP dataset provides these measures at
both individual and group levels and can be downloaded directly
from the official HCP website.

Diffusion MRI

The dMRI data were acquired using a spin-echo EPI sequence
with the following parameters: TR = 5520 ms, TE = 89.5 ms, flip
angle = 78, field of view = 210 × 180 (RO × PE), matrix = 168 × 144
(RO × PE), slice thickness = 1.25 mm, slice number = 111, isotropic
voxels = 1.25 mm, echo spacing = 0.78 ms, BW = 1488 Hz/Px and
b-values = 1000, 2000, and 3000 s/mm2. The sampled data were
preprocessed using the minimal preprocessing pipeline (Glasser
et al. 2013).

Resting-State fMRI

Four rfMRI scans were sampled, and each run duration was
approximately 15 min. The runs were recorded over two sessions
on different days (REST1 and REST2). Each session included
a right-to-left (RL) scan during 1 run and a left-to-right (LR)
scan during the other run. The following scanner parameters
were used: gradient-echo EPI sequence, TR = 720 ms, TE = 33.1 ms,
flip angle = 52, field of view = 208 × 180 (RO × PE), matrix = 104 × 90
(RO × PE), slice thickness = 2 mm, slice number = 72, isotropic vox-
els = 2.0 mm, multiband factor = 8, echo spacing = 0.58 ms, and
bandwidth = 2290 Hz/Px.

As with the other imaging modalities, the HCP provides
preprocessed rfMRI data that have been subjected to a minimal
preprocessing pipeline (Glasser et al. 2013). The data were
denoised further using the ICA (independent component

Figure 1. Depiction of the MMP atlas and mapping of MMP regions to Thomas

Yeo’s 7 RSNs. (A) An MMP atlas of the left hemisphere is displayed. (B) The MMP

atlas is overlaid on the corresponding 7 functional networks from Thomas Yeo

et al.’s atlas. SAL, salience network (49 ROIs in 2 hemispheres); SM, somatomotor

network (52 ROIs); LIM, limbic network (28 ROIs); VIS: visual network (59 ROIs);

DMN: default mode network (83 ROIs); FP, frontoparietal network (45 ROIs);

ATT, attention network (44 ROIs). According to the cortical hierarchy hypothesis,

the SM and VIS networks are lower-order sensory systems, whereas the other

networks are higher-order association systems (Huntenburg et al. 2018).

analysis)-based Xnoiseifier (FIX) (Griffanti et al. 2014; Salimi-
Khorshidi et al. 2014). CIFTI format data were used to match the
structural MRI data with the rfMRI data. The signals were further
filtered through a 0.01-Hz high-pass filter to remove slow drifts
induced by the scanner.

Brain Parcellation

We combined two brain parcellation atlases for our analyses. The
Multi-modal Parcellation (MMP) atlas (Glasser et al. 2016) defines
180 brain areas in each hemisphere. These areas can be used as
seed regions to extract fMRI time series and structural properties.
To describe the functional specificity, these 180 MMP regions
were further matched to a classical brain functional parcellation
based on the resting-state network (RSN) (Thomas Yeo et al.
2011). This analysis considered the parcellation of 7 RSNs. We
assigned each MMP region to the corresponding region among
the 7 functional networks in Thomas Yeo et al.’s (2011) atlas
by identifying the highest overlapping rate between the atlases.
The regional matches between the two atlases are depicted in
Figure 1.

Brain Structural Connectivity

For each individual, fiber tractography was used to construct
a 360 × 360 structural connectivity matrix based on the dMRI
data. First, the Connectome Workbench (Van Essen et al. 2013)
was used to back project all MMP areas defined in the standard
space to individual cortical surfaces in the diffusion space. FSL
software (version 5.0.9, Behrens et al. 2003, 2007) was then used
to perform probabilistic tractography between every pair of ROIs.
During pair-wise fiber tracing, 1 region was used as the seed
area and the other as the target and vice versa. A total of 5000
streamlines were sent from each vertex of the seed ROI. Two
thousand steps of streamline propagation were performed with a
step length of 0.5 mm and a curvature threshold of 0.2. Individual
fractional anisotropy (FA) maps based on preprocessed dMRI data
were generated using FSL. Fiber streamline propagation would
cease when a voxel with an FA value of <0.1 or the brain pial
surface was encountered. The directional connective probability
pij from a seed ROI i to a target ROI j was calculated by dividing
the number of streamlines that reached the target ROI by the
total number of streamlines initiated from the seed ROI (5000
multiplied by the number of vertices in the seed ROI) (Behrens

https://www.humanconnectome.org
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et al. 2007). A higher probability indicated stronger structural
connectivity between the ROIs. Based on the calculated direc-
tional connective probability, we further defined the structural
network weight wij, by calculating the reciprocal averages of the
connective probabilities (i.e., wij = (pij+ pji)/2) (Cao et al. 2013).
Next, the matrix was thresholded using values maintained above
wij = 0.001, which led to the retention of approximately 10% of the
links in the individual structural networks (Cao et al. 2013) (see
Supplementary Fig S1A). Additional details about the influence
of thresholding are illustrated in Supplementary Figure S1.

Based on the structural connectivity matrices, we investi-
gated two network measures being indicative of node centrality:
(1) The connectivity strength Si was defined by summing all link
weights (wij) from 1 node to all others: Si = ∑

jwij. However,
this calculation did not sufficiently reflect the contributions of
links with relatively small wij values (i.e., weak links). (2) The
connectivity degree Ki was equal to the number of existing links
to 1 node after thresholding. This definition balanced the effects
of weak and strong links above the threshold.

Complexity of Neuronal Activity

In our previous work (Liu et al. 2019), we used a measure called
“dispersion entropy” to characterize the complexity of neuronal
signals (Azami et al. 2017; Rostaghi and Azami 2016). Compared
with other measures of complexity, dispersion entropy was rel-
atively robust under the presence of noise in the analyzed time
series and yielded a high computation efficiency (O(N)). Besides,
when applied to neuron time series data, dispersion entropy
and sample entropy yielded similar results (Kuntzelman et al.,
2018). And the single scale dispersion entropy can more reliably
assess the underlying neuronal spatiotemporal variability than
the multiscale dispersion entropy at high temporal scales (Liu
et al. 2019).

Dispersion entropy (Azami et al. 2017; Rostaghi and Azami
2016) aims to reveal the dispersion patterns (i.e., symbolic
dynamics) embedded in the signal and to use Shannon entropy
to quantify the complexity of the appearances of these patterns.
The input signal is denoted as S. First, when referring to the
normal cumulative distribution function (NCDF), the value at
every time point in the fMRI signal is converted to the class
variable label zi (c classes, and thus zi values, range from 1 to c)
through 2 steps of mapping:

θi = 1/D
√

2π

∫ si

−∞
exp

(− (s − M) /2D2) ds,

followed by:

zi = round (c ∗ θi + 0.5) .

The mean M and standard derivation D of the NCDF are
given by the mean and the standard deviation of the signalS,
respectively. Next, a sliding window of length m (i.e., embedding
dimension) is used to bin the sequence z into dispersion patterns
[zi,.., zi+m], and the step length of the sliding window is defined
by τ (i.e., time delay). After the window has scanned the whole
signal, the probability p of each detected dispersion pattern is
used to calculate the entropy:

EN = −
∑

i

pi log
(
pi

)
.

Theoretically, the upper bound of dispersion entropy could
be defined as the point where the signal behaves as completely
random noise and all dispersion patterns can coexist with iden-
tical probability. The lower bound could be achieved if the signal

is periodic. While the choice of the parameters c, τ , and m will
differently scale the entropy estimates for a given time series, we
found that parameter setting will not alter the estimation of the
individual entropy profile (see Supplementary Fig. S2, the rank
order of entropy estimates across ROIs remained same). For all
subsequent analyses, we fixed the parameters to the following
values: c = 3, τ = 1, and m = 2.

The codes for computing dispersion entropy can be found in
https://datashare.is.ed.ac.uk/handle/10283/2637.

Fingerprint Identification

“Fingerprint” identification (Finn et al. 2015) was first performed
to prove the existence of substantial individual differences in
cortical entropy profiles (Fig. 2A). Here, we denoted the vector of

the individual entropy profile of participant i on day d as
−→
EN

d

i ,
where 1 ≤ i ≤ N and d = 1 or 2. Next, we defined an identification
procedure. Of the 2-day measurements, the entropy profile from
1 day was assigned as the “target set” for which the participant
ID was supposed to remain unknown. The profile measured on a
different day was selected as the “database set.” The identifica-
tion process aimed to predict the ID of a participant in the target
group based on information from the database set. The predicted
ID of the target was obtained by searching the database set for the
participant with the most similar entropy profile characteristics.

Formally, by setting the input entropy profile as
−→
EN

d1

i and the data

in database set as
−→
EN

d2

j , we computed the correlation as:

r
(
i, j

) = corr
(−→

EN
d1

i ,
−→
EN

d2

j

)
, d1 �= d2,

where i is the enquired participant and j is the database set
participant. The predicted ID is defined for j with the maximal
similarity to i in the database set, namely maxj r

(
i, j

)
.As Finn

et al. (2015), we used a nonparametric approach to assess the
significance of the identification accuracy, more specifically with
a permutation test. After obtaining the predicted ID based on pro-
file matching, the participant ID in the target set was permuted
such that the original prediction was compared with a set of not-
paired observations. We first randomly chose data from 1 of the
measurement days as the database and the other day as the tar-
get set, and conducted permutations 500 times. The roles of the
datasets were then reversed, and another 500 permutations were
performed. The final P-value was computed as the probability of
achieving an accurate result that was greater than or equal to
the original accuracy over the 1000 total permutations. However,
we observed a maximum accuracy of only 0.60% across all real-
izations of the permutation test (only 6 participants matched;
please refer to Supplementary Fig. S3 for an example), which
is not acceptable. Thus, significance does not guarantee a high
accuracy. According to the psychometric literature on reliability
(Coaley 2014), we applied a tighter criterion besides significance,
namely that the accuracy needs to be larger than 60% to be
considered satisfactory. If the identification was successful (i.e.,
accuracy was above 60%), we concluded that the entropy profiles
were stable within individuals, but varied across individuals, and
could thus be considered an individual “fingerprint.”

Differentiation Power

Different ROIs may contribute differently to the identification
process. Finn et al. (2015) proposed a metric called differen-
tiation power (DP) to quantify the elementary contributors to
identification. The Pearson correlation coefficient is the sum
of the element-wise products of 2 z-scored vectors. Therefore,

https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa015#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa015#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa015#supplementary-data
https://datashare.is.ed.ac.uk/handle/10283/2637
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa015#supplementary-data
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Figure 2. The individual cortical entropy profile as a fingerprint. (A) Depiction of the identification procedure. We used the entropy profile measured on 1 day (REST1) to

compute the correlations between this profile and all other individuals’ profiles generated by measurements on the other day (REST2). The predicted ID was defined as the

participant’s ID that yielded the highest correlation coefficient. (B) The correlation matrix of a group of 200 randomly selected participants used to illustrate fingerprint

identification based on whole-cortex entropy profiles. (C) A scatter plot of the enquired participant IDs versus the difference between enquired and predicted IDs using

REST2 (database set) and REST1 data (target set), namely “R2 → R1”, based on whole-cortex entropy profiles. (D) A bar plot of accuracy when REST1 was used to predict

REST2 and vice versa. Entropy profiles from the whole cortex (ALL), and each of the 7 RSNs was used to compute identification accuracy. The RSNs are ranked by the

accuracy of “R1 → R2”. ∗ and ∗∗ above the bars denote the corresponding significance levels of P < 0.05 and P < 0.01 obtained by the permutation test, respectively, after

applying the correction of FDR < 0.05. The error bars indicate the upper and lower boundary of the 95% CI provided by bootstrapping. (E) A violin plot of the distribution

of differentiation power (DP) across cortical areas in each of the 7 RSNs. The RSNs are ranked by the DP distribution median values.
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given
−−→
zEN

d1

i , z
−→
EN

d2

i after normalization, the element-wise prod-
ucts could be represented as

ϕij(n) = zENd1
i (n) ∗ zENd2

j (n), n = 1, 2, .., 360

where zENd
i (n) represents the entropy value in the nth ROI of

participant i on day d after z-score normalization and the sum∑
e ϕij(n) represents the Pearson correlation between

−→
EN

d1

i and
−→
EN

d2

j . An effective identification requires the intraparticipant
correlation be larger than the interparticipant correlation. There-
fore, for ROIs that contribute to identification, the following
property must remain true:

ϕii(n) > ϕij(n) or ϕii(n) > ϕji(n), i �= j.

Under this condition, a given ROI contributes to the differ-
ence between the intraparticipant correlation and the cross-
participant correlation. We can then compute the empirical prob-
ability as

Pi(e) = P
(
ϕij(n) > ϕii(n) or ϕji(n) > ϕii(n)

) =(∣∣ϕij(n) > ϕii(n)
∣∣ + ∣∣ϕji(n) > ϕii(n)

∣∣)
2 (N − 1)

, N = 998.

A smaller Pi(n) enhances the identification power of the ROI
n for participant i and can be interpreted similarly as the P value
in standard statistical testing. The overall DP for the ROI n can be
obtained by averaging the Pi(n) across individuals and calculating
its negative logarithm:

DP(n) = − ln

(∑
i

Pi(n)

)
.

A high or low DP value suggests that a given ROI has a greater
or lesser contribution to identification, respectively.

Regional Test–Retest Reliability

Test–retest reliability for each ROI was tested via the correlation
of entropy at the same ROI between REST1 and REST2 across the
998 participants.

Empirical Entropy Distribution of Random Signals

To identify noise contaminated ROIs, we constructed the empiri-
cal entropy distribution of random signals. The signals from each
ROI of each subject in the first scan were temporally permutated.
Then, entropy was calculated from such randomized time series
for all the ROIs and all subjects, and these entropy values were
investigated with respect to their deviation, forming the empir-
ical entropy distribution of random signals. Entropy of the real
data can thus be compared with this distribution to assess if the
measured signal is distinguishable from random signals.

Estimation of Cognitive Ability Scores

A comprehensive psychometric test battery that covered
several dimensions of cognitive ability was applied to the HCP
sample (Van Essen et al. 2013). Previous studies have used
factor analyses to demonstrate that the performance scores

generated by the measures included in the battery yield a
reliable estimate of general cognitive ability (e.g., Dubois et al.
2018b). In this study, we adopted the established cognitive
ability structure model proposed by Dubois et al. (2018b) to
derive ability scores for use in subsequent predictive modelling.
The model estimated a general cognitive ability factor that
included the loadings from all task scores and 4 nested factors
representing specific abilities (Fig. 4A). To better identify each
cognitive task indicator in the model, we used the original
abbreviated task names released by the HCP dataset (see Barch
et al. 2013 for task descriptions). The specific factors were
(1) vis (visuospatial ability), indicated by PMAT24_A_CR and
VSPLOT_TC; (2) cry (crystallized intelligence), which included
PicVocab_Unadj and ReadEng_Unadj; (3) mem (memory), indi-
cated by IWRD_TOT, PicSeq_Unadj, and ListSort_Unadjfactor;
and (4) spd (processing speed), indicated by CardSort_Unadj,
Flanker_Unadj, and ProcSpeed_Unadj. The model fitted using
confirmatory factor analysis (CFA) in the lavaan package (version
0.6-5, Rosseel 2012) for the R Software for Statistical Computing
platform (version 3.6.1, R Development Core Team 2011). This
nested factor model requires orthogonality among all factors.
Missing behavioral task data were addressed using the full
information maximum likelihood method as implemented in
lavaan. Model fit was quantified using the χ2-goodness of fit test,
the comparative fit index (CFI), the root mean squared error of
approximation (RMSEA), and the standardized root mean square
residual (SRMR). The CFI value of an acceptable model should
exceed 0.95, whereas both the SRMR and RMSEA values should
be <0.08 (Hu and Bentler 1999).

After constructing a well-fitting confirmatory factor model,
we derived individual factor scores from the latent space for
subsequent predictive modelling. Factor scores are indetermi-
nate and therefore can be estimated from the latent space
using different methods (Grice 2001). We applied the “Thurstone”
regression-based method (using the lavPredict function in lavaan)
and validated this estimation by evaluating the correlations (1)
between the factors and the generated factor scores and (2)
between the generated factor scores themselves. The analysis
revealed strong correlations between the factors and their
derived scores (see Supplementary Fig. S4A), suggesting that
the scores were sufficiently consistent with the factors in terms
of interindividual variations. However, the factor scores were
not completely orthogonal to each other as required by the CFA
model (see Supplementary Fig. S4B), because of indeterminacy.

Prediction of Cognitive Ability Scores by Cortical Entropy
Profiles

We performed a multivariate linear regression to predict the cog-
nitive performance scores of participants based on the estimated
individual differences in cortical entropy profiles.

We first trained a linear model based on the individual
entropy profile:

Y = bX + k,

where Y is the column vector containing all individual factor
scores and X represents a matrix of individual entropy profiles
in which the columns represent the ROIs. All columns were z-
scored. To accommodate the large number of predictors and
potential multicollinearity between these predictors, we used
ridge regression regularization to estimate the model coefficients
b and k. Mathematically, potential multicollinearity could lead to
ill-conditioned covariance matrix when estimating b using the

https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa015#supplementary-data
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following equation:

∼
b = (

XTX
)−1 (

XTY
)

.

The ridge regression is an extension of the ordinary least
square regression, which minimizes both the deviation between
the observed and predicted values (i.e., error) and the regulariza-
tion term:

min
b,k

∑
i

(
bixi − yi

)2 + λ
∑

i

(
bi

)2.

Consequently, the ill-condition problem can be relieved
because the estimation is revised as

∼
b = (

XTX + λI
)−1 (

XTY
)

,

where I is the identity matrix.
Leave-one-family-out cross-validation (LOFOV) was used to

avoid coupling between the training and test sets due to the
family structure of the HCP sample (Dubois et al. 2018b). Lit-
erally, participants belonging to the same family were selected
as the test dataset, and a model was constructed for partici-
pants belonging to other families. Each family was left out once
throughout the iterations. After yielding estimations for all sub-
jects, we assessed the accuracy of the predictions by correlating
the observed and predicted scores of all participants. A negative
correlation between the observed and predicted values might
present due to noise or bad fitting and was thus fixed at zero. The
results are provided for the ridge coefficient λ that maximized
the correlation in the LOFOV.

In previous studies based on FC profile, a feature selection
phase was applied prior to training the multivariate model.
In this phase, correlations between predictors (e.g., entropy in
each ROI) and cognitive performance score across participants
were calculated in the training set. Subsequently, a significance
threshold, pth, was used to select informative predictors. How-
ever, we determined that feature selection would have nonlinear
effects on the predictive performance (see Supplementary Fig. S5;
accuracy may either increase or decrease after feature selection).
Therefore, we omitted the feature selection from our analysis.

Prediction of Entropy Profiles Based on Individual Structural
Profiles

To investigate the associations between the brain structure and
complexity, we constructed an additional predictive model based
on the interindividual variability in structural property profiles
(Fig. 6D). For each ROI, an ordinary least-square regression was
used to train a linear regression model to map the individual
regional structural properties to the corresponding regional
entropy value (REST1 and REST2 averaged). Furthermore, the
predicted entropy values of individual subjects in each ROI
were listed together to generate a final estimated prediction
of the individual entropy profile based on structural properties.
The above-described LOFOV approach was also applied to this
prediction.

We assessed the accuracies of prediction for observed entropy
profile from 2 aspects. First, we computed the correlation sim-
ilarities between the paired prediction and observation in the
same participant. Second, we quantified the specificity of the
prediction by subjecting all participants to fingerprint identifi-
cation. Here, the predicted entropy profile was considered the

database set, and correlation similarities were used to inquire the
observed entropy profiles. A high level of identification accuracy
(>60%) would suggest that participant’s structural properties
could predict the participant’s own entropy profile to a much
better degree than the structural properties of any other indi-
vidual. The corresponding P value was yielded by 1000 times
permutation on the predicted ID to randomize the paired rela-
tionship between observations and predictions. This specificity
would indicate that an individual’s entropy profile resulted from
individual variations in structural profiles.

Statistical Analysis

Pearson correlation analyses were performed using the corr func-
tion in the MATLAB software (MATLAB 2016a), which simulta-
neously generated the correlation and P value. The P value is
computed by transforming the correlation to create a t-statistic,
having degrees of freedom equal to the number of observations
minus 2. The 95% confidence interval (CI) was obtained by 1000
bootstrap samples for correlation and identification accuracy.
In cases of multiple testing, we used the Benjamini–Hochberg
method to control the false discovery rate (FDR) by correcting the
P values at an FDR of <0.05.

Results
The Test–Retest Reliability of Individual Cortical Entropy
Profiles

We demonstrated the crucial influence of test–retest reliability
on detecting individual differences in entropy based studies with
fingerprint identification (Finn et al. 2015) applied to whole-
cortex entropy profiles (Fig. 2A). Briefly, we correlated the indi-
vidual entropy profile of 1 participant, i, sampled on 1 day with
those of all participants j (j = 1–998) sampled on the other day.
Only if the entropy profile was considered reliable within the
participant and exclusive between participants, this correlation
can peak at j = i and the identification can success. In the depicted
correlation matrix (only 200 participants included for a clear
illustration), most of the pronounced correlation values lie on
the diagonal line i = j (Fig. 2B). When the participant ID j at the
peak of each row was used as the predicted participant ID, we
found that the predictions based on REST1 matched the targets
from REST2 with accuracy levels as high as 85.67% [855 of 998
participants matched in the whole dataset (Fig. 2C)], P = 0.000,
95% CI = [83.47%, 87.88%], which fits our criteria of successful
identification (accuracy > 60.00%, described in Materials and
Methods). These results suggest that the whole-cortex entropy
profile can be considered a reliable fingerprint. Note, however,
that the achieved accuracy was slightly lower than that of FC
profile-based identification in previous studies (Finn et al., 2015),
which was applied to the same dataset (see Supplementary Fig.
S6A).

However, we found the identification accuracy dropped
when the scope was narrowed to specific functional systems.
We repeated the identification procedure using the entropy
profiles within each of the 7 RSNs (Fig. 2D). DMN, ATT, FP,
and VIS succeeded the identification when considering 60%
as a criterion. Notably, 3 networks, DMN, ATT, and FP, yielded
the highest predictive accuracies, and these levels were only
slightly lower than the results obtained from the whole-cortex
analyses. The LIM network yielded the lowest levels of accuracy
(Fig. 2D). These observations are consistent with our analysis
of DP in ROI level (Fig. 2E), which assesses the contributions of

https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa015#supplementary-data
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different functional systems to the identification. The cortical
DP distribution (see brain map in Supplementary Fig. S7A) was
sorted into RSNs and is displayed as a violin plot in Figure 2E.
The ROIs belonging to the ATT, FP, and DMN networks exhibited
a high DP, and again LIM ranked in the last place.

The heterogeneity with respect to identification accuracy and
DP might have originated from either spatially heterogeneous
individual differences or measurement precision (reliability). We
computed and visualized the regional test–retest reliability in
form of brain maps (Fig 3A) and violin plots representing dif-
ferent functional systems (Fig. 3B). The low reliability regions
appear between the hemispheres, most of which belong to the
LIM network. This suggests the low identification accuracy and
low DP in LIM are a consequence of low retest reliability. This
is to say that individual differences in neuronal activity can-
not be properly captured in these regions with noisy signal. In
addition, we plotted the whole-data averaged entropy profile
(Fig. 3C) since the entropy measure is also sensitive to identify
low signal-to-noise ratio. The figure illustrates that entropy in
ROIs located between hemispheres appears higher as compared
with other ROIs. When categorizing the ROIs into functional
networks (Fig. 3D), the LIM network exhibits the highest median
entropy, and most entropy estimates were at ceiling, similarly
to random noise. Combining the 2 dimensions, we depicted
the regional reliability against the regional entropy (Fig. 3E). The
figure illustrates how the mean reliability starts to drop with
increasing entropy, when entropy approaches to its maximum
given by temporally permutated random signal. We conserva-
tively evaluate noisy and thus unreliable ROIs as those regions
with reliability below threlia = 0.4574 and entropy larger than
then = 2.1906. The 2 thresholds, threlia and then, are respec-
tively the fifth quantile from the empirical reliability distribution
and the permuted signal entropy distribution. As illustrated in
Figure 3F, the identified ROIs were observed to have limited DP.
This plot is in line with our understanding according to which
part of the observed low DP, such as in LIM in Figure 2F, is mainly
caused by noise-induced unreliability.

Since the validity of the ROIs is fundamentally restricted by
their reliability, we excluded the detected ROIs with the lowest
reliability/highest entropy from the following analyses. We thus
compare the validity of subsystems with similar and satisfac-
tory reliability only. This exclusion removed a total of 17 ROIs,
including 1 ROI in FP, 1 ROI in DMN, 1 ROI in VIS, 11 ROIs in
LIM, and 3 ROIs in SAL. After eliminating unreliable ROIs, we
recalculated fingerprint identification accuracy and DP distribu-
tion (Fig. 3G,H), which are used for inference about the degree
of individual differences in each RSN. This rather conservative
data exclusion did not remarkably change the rankings among
RSNs, compared to Figure 2E,F. The entropy profiles from DMN,
ATT, and FP networks turned out to be the RSNs with the highest
degree of individual differences. However, the retained number
of ROIs belonging to LIM was very low (Fig. 3H). Note that using
an even more conservative thresholding could further improve
reliability while reducing the numbers of included ROIs in LIM,
SAL, and VIS according to Figure 3B.

Individual Cortical Entropy Profile as a Predictor
of Cognitive Ability

The reliability guaranteed the upper bound of functional validity
of individual entropy profile. Next, we will assess the validity
of entropy profile through the prediction of cognitive abilities.
We obtained two-section-averaged individual entropy profiles
with deletion of unreliable ROIs and applied these profiles in an
attempt to predict individual cognitive abilities. First, we adopted

a confirmatory factor analysis (CFA) model based on several
behavioral tasks (Dubois et al. 2018b) to estimate the cognitive
ability scores of each individual, as described in the Materials
and Methods. Figure 4A displays the model structure along with
the factor loading estimates. The depicted model yielded an
acceptable fit of our data: χ2

(30)
= 124.260, P = 0.000, CFI = 0.959,

RMSEA = 0.054, and SRMR = 0.037. Note that the χ2-goodness of fit
test is highly sensitive for large samples and the model fit is thus
evaluated based on the alternative fit indices (CFI, RMSEA, and
SRMR). Next, we used this model to compute the factor scores
for individual participants. The estimated factor scores were
perfectly correlated with the corresponding latent factors across
participants (see Supplementary Fig. S4). We then performed
predictions based on a multivariate regularized regression, using
the individual entropy profiles as predictors and the cognitive
ability factor scores as the outcome. Figure 4B illustrates the sig-
nificant correlations of the predicted scores with the measured
g scores across individuals (r(996) = 0.319, P = 0.000, 95% CI = [0.265,
0.377]). These results suggest that an individual’s unique entropy
profile can effectively reflect his/her cognitive ability. Similar to
the identification results, we obtained a lower prediction effect
size for the complexity measure when compared with previously
reported predictions based on FC profiles (r(882) = 0.457, P = 0.000
as reported in Dubois et al. (2018b) and r(996) = 0.443, P = 0.000, 95%
CI = [0.396, 0.489] as reproduced in our dataset; see Supplemen-
tary Fig. S6B).

We further explored the distribution of the predictive power
of each RSN. First, we observed natural variations in regression
weights across iterations because of the LOFOV scheme. How-
ever, because the entropy in the ROIs was z-transformed before
the regression analyses, the weights were comparable across the
ROIs. An ROI with a consistently high weight across iterations
was considered highly important. Therefore, we computed the
mean absolute weight of each ROI across the LOFOV iterations.
As illustrated in the violin plots in Figure 4C (and as a brain map
in Supplementary Fig. S7B), the median distributions reflect the
ROIs within the DMN, FP, and VIS networks that are highly likely
to contribute to the prediction power.

Second, we applied ROIs corresponding to a given RSN to sep-
arate predictions of cognitive ability. The correlations between
the predicted and observed g values in each subnetwork are
provided in Figure 4D. The DMN and VIS networks exhibited
strongest prediction powers, and the predictions were signif-
icant in every RSN except LIM, which may be caused of the
removal of many ROIs with low reliability. The prediction pro-
cess was then repeated for each specific cognitive ability factor
(vis, cry, mem, and spd in Fig. 4A). As illustrated in Figure 4D,
only vis, cry, and mem could be predicted successfully from the
entropy profile when using ROIs belonging to all networks. The
best predictive performance was achieved for cry. In addition,
only some RSNs were predictive for specific cognitive ability
scores, and the most predictive network differed with respect
to different abilities. The ATT and DMN networks were ranked
as the best predictors for vis and mem, respectively, whereas
the SAL network was the best predictor for both cry and spd.
The SAL and DMN networks appeared to yield significant pre-
dictive power for most of the specific cognitive abilities (SAL,
4 abilities at a P < 0.05 level; SAL and DMN, 3 abilities at a
P < 0.01 level).

Neuroanatomical Basis of the Individual Entropy Profile

Next, we performed a two-step exploration of the neuroanatom-
ical (structural) basis of the individual entropy profile. First, we
aimed to understand the apparent spatial heterogeneity in the

https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa015#supplementary-data
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Reliability, Predictive Power, and Anatomical Foundation of Individual Cortical Entropy Profile Liu et al. 9

Figure 3. The noise induced unreliability in entropy profiles. (A) Brain map of regional test–retest reliability. (B) Violin plots for distribution of retest reliability in the 7

RSNs. (C) Brain map of group entropy profile averaged over all data (2 days and all participants). (D) Violin plots for distribution of group averaged entropy profile in the 7

RSNs. (E) Scatter plot of regional retest reliability against the regional group averaged entropy. The narrow distribution of entropy obtained from permutated signal of the

first scan was given for comparison. (F) Scatter plot of regional retest reliability against DP. The unreliable ROIs identified in (E) are colored as gray. (G) The recomputed

identification accuracy using entropy profile from whole cortical (ALL) and each RSNs after the removal of the unreliable ROIs. The legends are the same as Figure 2D.

(H) The recomputed DP distribution of each RSNs after the unreliable ROIs is removed. The legends are the same as Figure 2E.

entropy profile in reliable ROIs (17 ROIs with low test–retest
reliability have been removed from the analysis). Here, we relied
on the reliable entropy profile shared by the population, known
as the entropy profile blueprint. The blueprint can also be con-

sidered a common coordinate for the comparison of groups and
individuals. Second, we investigated which structural features
determined individual differences in entropy profiles (i.e., fin-
gerprints). A joint interpretation of the results of these 2 steps
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Figure 4. Prediction of the facets of cognitive ability using individual cortical entropy profiles. (A) The CFA model used to estimate cognitive ability scores, along with

standardized factor loading estimates. (B) A scatter plot of the observed general cognitive ability factor scores g vs. predicted g, based on entropy profiles across the

whole cortex. (C) Violin plots of the distributions of averaged absolute regression weights achieved across the LOFOV for each reliable ROI in a given RSN. The RSNs are

ranked by medians. (D) A bar plot depicting correlations between the observed and predicted factor scores of different facets of cognitive ability, using ROIs from all

networks and each separate RSN as predictors. The RSNs were ranked according to the correlations between the observed and predicted g scores (left to right). (E) The

same as (D) but using entropy profile after deleting the unreliable ROIs. ∗ and ∗∗ above the bars denote the corresponding significance levels of P < 0.05 and P < 0.01,

respectively, after applying the correction of FDR < 0.05. The error bars indicate the 95% CI.
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should facilitate a better understanding of individual entropy
profiles as deviations from the blueprint. The unreliable ROIs
were deleted to yield unbiased conclusions.

The Blueprint

After obtaining the reliable entropy profile blueprint, we
associated the entropy profile blueprint with the blueprints
of multiple structural properties, including cortical thickness,
myelin content (T1/T2), cortical curvature (curv), sulci depth
(sulc), connectivity strength, and degree. Notably, the regional
cortical thickness was positively associated with the entropy
across cortical regions (Fig. 5A, r(358) = 0.559, P = 0.000, 95%
CI = [0.480, 0.631]), whereas entropy was negatively associated
with the structural connectivity strength (Fig. 5B, r(358) = −0.259,
P = 0.000, 95% CI = [−0.376, −0.153]). This latter association
strengthened further when degree measure was used (Fig. 5C,
r(358) = −0.487, P = 0.000, 95% CI = [−0.587, −0.382]). A summary
of the group-level entropy-structure correlations in a bar plot
depicted in Figure 5D demonstrates that all associations were
significant at the P < 0.05 level, even after correcting for multiple
testing. However, only the association with cortical thickness
was positive, and all other associations were negative. The
results in Figure 5C,D were derived from structural networks
after thresholding at wij = 0.001, as described for other analyses.
Note that quantitatively similar results were derived using other
threshold values (see Supplementary Fig. S1B).

The Fingerprint

Next, we investigated whether interparticipant variations in
the entropy profiles were determined by individual differences
in brain structural profiles. Here, we considered the same
set of structural properties used in the blueprint analysis,
as all the properties were proven previously to vary across
individuals (Rauch et al. 2005; Wright et al. 2006; Holmes et al.
2012; Bjørnebekk et al. 2013; Riccelli et al. 2017; Toschi and
Passamonti 2019; Liu et al. 2020). We first examined the cross-
individual structure–entropy correlation in each ROI (Fig. 6A).
These correlations differed widely across the ROIs (Fig. 6B). The
estimated relationships associated with T1/T2, curv and sulc
were distributed relatively broadly in the range of approximately
−0.50 to 0.30. However, the distributions of correlations with
cortical thickness, structural connectivity strength, and degree
were relatively narrow, with ranges of −0.20 to 0.20. Next,
we decomposed the global distributions into the 7 RSNs. The
network-wise averaged values are displayed in Figure 6C. Among
the considered structural features, T1/T2, curv and sulc exhibited
the strongest correlations with entropy in the ATT, FP, and
DMN networks. Importantly, our earlier analysis identified these
networks as having the highest contribution in fingerprint
identification based on reliable entropy profiles (Fig. 3G,H), which
can be roughly interpreted as these RSNs have most degree
of individual difference. This observation suggests that the
individual entropy profiles are more strongly associated with
individual differences in myelin, curv, and sulc profiles within
the indicated subnetworks.

We then estimated a predictive model to further substantiate
our findings (Fig. 6D). After training regression models for
each ROI, the regional predictions were combined to generate
predicted entropy profiles across ROIs. When we compared the
similarity between the observed and predicted entropy profiles
within the same participant, we observed that all structural
properties predicted the profiles with similarly high levels of

precision across the participants (Fig. 6E). Therefore, we further
examined the cross-individual specificities of the predictions.
We expected that the predicted structural brain property-
based profile of 1 participant would be highly similar to the
observed profile of the same participant but different from the
observed profiles of other participants. Therefore, we subjected
the observed and predicted entropy profiles to fingerprint
identification and repeated this test for all structural properties
(Fig. 6F). We only achieved the high level of identification
accuracy (accuracy = 69.31%, P = 0.000, 95% CI = [66.55%, 72.02%])
with respect to the sulc-predicted entropy profile, suggesting
that individual differences in sulc profiles largely explain the
differences in observed entropy profiles between participants.
The tests based on sulc, curv, and T1/T2 yielded relatively high
levels of accuracy among all predications and were ranked
similarly with respect to the network-wise mean correlations
in the ATT and FP networks (Fig. 6C). Note that predictions based
on the cortical thickness, structural connectivity strength, and
degree yielded extremely poor accurate identifications. The
results based on connectivity measures with other thresholds
showed similarly low levels of accuracy (see Supplementary Fig.
S1C). These results support the understanding of correlative
analysis in Figure 6C, wherein changes in individual entropy
profiles were influenced predominantly by sulc, curv, and myelin
in individual brains.

Discussion
In this work, we systematically investigated whether individ-
ual differences in cortical entropy profiles can be considered
a stable trait and a predictor of cognitive ability. Additionally,
we examined the specific anatomical features underlying spa-
tial heterogeneity and individual differences in entropy profiles.
Using established entropy profiles to identify specific individuals
in a large dataset, we demonstrated the test–retest reliability
and uniqueness of the individual whole cortical entropy profile.
However, the test–retest reliability differs among the entropy
profiles of 7 RSNs, highlighted by the LIM showing the low-
est reliability. Furthermore, the predictive modelling framework
demonstrated that the information from reliable cortical entropy
profiles could effectively predict diverse facets of cognitive ability
in individuals. We further determined that spatial variations in
the entropy profile could be explained by the cortical thickness
and structural connectivity, whereas interindividual variations
between individual entropy profiles were determined by the sulc,
curv, and myelin content. To the best of our knowledge, this study
is the first to reveal the test–retest reliability, predictive power
for cognitive ability, and neuroanatomical basis of the individual
cortical entropy profile.

Our work addresses a crucial problem concerning the
reproducibility and generalizability of results from entropy-
based studies of individual differences. First of all, entropy is
a measure of randomness and thus is sensitive to noise. The
high noise level and low retest reliability shown in the central
portions of the brain in the HCP preprocessed data is induced
by limitations of fMRI technology, because of the far distance
from the receiver coil (Glasser 2020). The noise-induced low
retest reliability severely influenced the differentiation power
of entropy profiles in the LIM network and impact on SAL
networks, introducing a bias in the evaluation of individual
differences among RSNs. In the present work, we aimed to
achieve a balanced reliability among RSNs by a conservative
removal of the low reliability ROIs from the analysis. However,
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Figure 5. The cortical entropy profile as a blueprint and the corresponding structural foundation. (A) A scatter plot of the regional complexity versus the regional cortical

thickness value (blueprint). (B) A scatter plot of the complexity blueprint versus the structural connectivity strength blueprint. The structural network data are displayed

at a connectivity threshold of wij = 0.001. The same threshold was applied to the following subfigures. (C) A scatter plot of the complexity blueprint versus the structural

connectivity degree blueprint. (D) A bar plot of the correlations between the complexity blueprint and structural property blueprints. ∗ and ∗∗ indicate P < 0.05 and

P < 0.01, respectively, after correction at an FDR of < 0.05. The error bars indicate the upper and lower bound of 95% CI.

a careful selection of the cutoff threshold, the balance among
RSNs for the upper bound of the reliability, and ways to improve
the signal-to-noise ratio to achieve more reliable signals in the
LIM network and other affected networks should be investigated
in future studies, in order to obtain a more convincing estimation
of individual differences for these networks.

On the other hand, our findings validate the concept of the
whole entropy profile based on rfMRI as a more stable marker
and more informative predictor of the cognitive ability of an
out-of-sample individual than profiles of any subsystems. A
methodological framework to utilize the whole cortical entropy
profile could ease the issue of imbalanced test–retest reliability
showed in smaller scopes, i.e., RSN and ROI. In addition,
whole cortical profile-based method offers advantageous
in terms of integrating information when compared with
previous correlation-based methods that considered spatial sites
separately. In another area of research, previously proposed
whole-brain analysis approaches used FC as a fingerprint and
predictor of cognitive abilities (Finn et al. 2015; Dubois et al.
2018b). In a comparison of these FC-based methods with our
entropy-based method, we observed some advantages of the
former. Although entropy and FC profiles yielded comparable

identification rates, the latter yielded a slightly more accurate
prediction of cognitive performance. This slight superiority
can be explained by 2 factors. First, it should be noted that
the captured information is shared, to some extent, by the
entropy- and FC-based characterizations of spatiotemporal
brain activities. Several studies that analyzed fMRI data and
optical voltage images have demonstrated a strong negative
correlation between temporal signal complexity and FC strength
(McDonough and Nashiro 2014; Wang et al. 2018; Liu et al. 2019).
Second, FC profiles are advantageous because these can capture
a much larger feature space (O

(
N2

)
) relative to that captured

by entropy (O(N)). The increased features of FC approach could
provide more reliable dimensions to compensate the noise-
induced unreliability. Also a high-dimensional space can more
sensitively distinguish between participants and predict their
cognitive abilities. In this sense, the reliability and predictability
of the entropy profile are likely to be limited by the exanimated
feature dimension (i.e., number of ROIs or electrodes) and should
be carefully checked when conducting a localized fMRI or EEG
study.

In the relatively reliable part of cortical entropy profile, we
revealed heterogeneity with respect to the degree of individual
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Figure 6. The structural basis of the individual entropy profile. (A) A schematic overview of the computation approach used to estimate the association between

the brain structure and complexity across individuals in each ROI. (B) The distributions of regional structure–entropy associations across individuals with respect to

different structural properties. The network connectivity (strength and degree) results are illustrated using a connectivity threshold of wij= 0.001. The same threshold

was applied in the following panels. (C) A bar plot of the network-averaged regional structure–entropy correlations derived using different structural properties. (D) The

model used to predict cortical entropy profiles using individual structural properties, together with the examination of specificity across individuals. (E) Violin plots

depicting the correlations between the observed and predicted entropy profiles for the same participant according to different structural properties. (F) The accuracies

of identification based on observed and predicted individual cortical entropy profiles when using different structural properties. ∗ and ∗∗ above the bars denote the

corresponding significance levels of P < 0.05 and P < 0.01 obtained by the permutation test, respectively, after applying the correction of FDR < 0.05. The error bars indicate

the 95% CI.
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difference and predictive powers of different functional subsys-
tems with identification and prediction of their cognitive abili-
ties. Notably, the FP, ATT, and DMN networks were the greatest
contributors to the reconducted identification of individuals.
Previous studies have reported high levels of intertrial and inter-
participant functional connectivity variability in these networks
(Mueller et al. 2013). In our subsequent analysis, the FP and ATT
networks were associated with the strongest structure-entropy
associations, whereas the DMN appeared to have the highest pre-
dictive power for general cognitive ability. Overall, these findings
demonstrate that the dynamic activities of these functional sys-
tems play a unique role in associations with the brain structure
or cognitive ability. These observations are consistent with the
“cortical hierarchy” hypothesis (Felleman and Van Essen 1991;
Markov et al. 2014; Huntenburg et al. 2018), which proposed
that higher-order systems (e.g., FP, ATT and DMN) control mul-
timodal cognition and must be variable to support flexibility in
functional processing. In contrast, lower-order systems (e.g., VIS
and SM) are specialized to perform unimodal primary functions
and require greater stability. However, we observed that the
higher-order DMN network and lower-order VIS network were
most predictive of general cognitive ability. Other subsystems
were also identified as significant predictors of general cognitive
ability. This observation suggests that general cognitive ability
requires integration across the cortical hierarchy. This suggestion
is plausible as the qualities of information processing in both
the lower- and higher-order systems could be intuitively consid-
ered important for successful functional processing. Our findings
thus provide further empirical support for the view that whole-
brain approaches could better elucidate individual differences
in general cognition. Additionally, the successful RSNs differed
with respect to the predictions of different specific abilities. For
example, the ATT network was a powerful predictor (evident
by significance) of visuospatial and crystalized abilities but not
of memory and processing speed. In addition, the DMN and
SAL networks appeared to be the best predictors for memory
and crystallized ability, respectively. Overall, our results sug-
gest the involvement of different functional subsystems in the
implementation of specific abilities, which is consistent with the
perspective of functional specificity. Taken together, our observa-
tions reveal that information processing in the brain exceeds the
constraints suggested by the hierarchical view. This revelation
is consistent with the distributed information-processing theory
(Colom et al. 2006; Gläscher et al. 2010) of general intelligence, as
well as with flexible information routing when realizing specific
abilities (Palmigiano et al. 2017; Wang and Yang 2018).

According to our results, the unique cortical entropy profiles
of individuals could be attributable to interparticipant variations
in cortical folding properties (sulc and curv) and myelination.
In contrast, the individual cortical thickness and structural con-
nectivity did not contribute to specific predictions. These find-
ings regarding the anatomical determinants of entropy might
improve our neurological understanding of brain pathologies
and associated cognitive losses. Furthermore, the outcomes of
this study can be used to more fully integrate the previous
knowledge from several entropy-based and brain anatomy-based
studies. For example, we might postulate that the previously
observed loss of brain entropy in patients with Alzheimer’s dis-
ease (Mizuno et al. 2010; Yang et al. 2013; Azami et al. 2017; Wang
et al. 2017) could be attributable to reductions in curv and sulc
(Im et al. 2008; Liu et al. 2011, 2012).

In contrast to the above-described findings, the whole-brain
entropy profile blueprint was based largely on spatial hetero-
geneity in cortical thickness and structural connectivity, con-
sistent with recent studies that used spatial variation gradients
of structural blueprints to explain inter-region differences in
dynamics properties. For example, variations in neuronal oscil-
lation time scales were linked to the spine densities of local
neuronal circuits (Chaudhuri et al. 2015). Moreover, differences
in outgoing regional FC patterns were associated with hetero-
geneity in myelination (Demirtaş et al. 2019). However, our study
revealed discrepancies in the structure–dynamics relationship
between the blueprint- and fingerprint-level analyses, as indi-
cated by the functional consequences of differences in the brain
structure between brain regions versus those across participants.
For example, inter-regional changes in structural connectivity
(e.g., strength and degree) were consistently and negatively cou-
pled with complexity in the functional resting-state complexity.
However, the interparticipant differences in connectivity formed
both positive and negative associations with different regions.
The observed discrepancies in the correlation patterns between
blueprint and fingerprint analyses could be explained from the
perspective of the complex systems theory. Entropy across the
spatial region is the result of network integration based on differ-
ent anatomical and connectivity measures. Consequently, there
may be significant correlations between each measure, although
some measures may not have a causal effect on the measured
dynamical complexity (e.g., thickness, despite the lack of effect of
this measure on the individual fingerprint). Our findings clearly
demonstrate that blueprint-based neuroscience studies do not
fully elucidate the structure–dynamics relationship and that the
determination of additional information at the individual level is
warranted. Our analyses also suggest that future studies should
implement more complex structure–dynamics interactions in
the high-dimensional system and consequently derive a unified
principle that can explain the observations from both blueprint-
and fingerprint-based studies.
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