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Abstract

Eagle is an R package for multi-locus association mapping on a genome-wide scale. It is unlike other multi-locus packages in that it is easy
to use for R users and non-users alike. It has two modes of use, command line and graphical user interface. Eagle is fully documented and
has its own supporting website, http://eagle.r-forge.r-project.org/index.html. Eagle is a significant improvement over the method-of-
choice, single-locus association mapping. It has greater power to detect SNP-trait associations. It is based on model selection, linear mixed
models, and a clever idea on how random effects can be used to identify SNP-trait associations. Through an example with real mouse
data, we demonstrate Eagle’s ability to bring clarity and increased insight to single-locus findings. Initially, we see Eagle complementing
single-locus analyses. However, over time, we hope the community will make, increasingly, multi-locus association mapping their method-
of-choice for the analysis of genome-wide association study data.
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The Eagle package was developed to meet a shared need in ani-
mal, plant, and human genetics. It was built to make multi-locus
association mapping easy. Multi-locus association mapping is
more powerful, statistically, than single-locus association map-
ping (Wang et al. 2016; Zhang et al. 2019). By being able to model
the association between multiple single-nucleotide polymor-
phisms (SNPs) and a trait simultaneously, multi-locus associa-
tion mapping better captures the hidden reality of heritable traits
with complex genetic architectures. Yet, multi-locus association
mapping is rarely used in practice. Many of the current multi-
locus software implementations are driven by high-level statisti-
cal theory making their inner statistical workings difficult to fol-
low for non-statisticians. Eagle does not suffer from this
limitation.

We created the Eagle package to be as fast as single-locus as-
sociation mapping, to be easy to use even for non-R users, and to
give easily interpretable results. It implements the Eagle method
for association mapping (George et al. 2020). It is based on linear
mixed models (LMMs) and model selection. Methodologically, it
is only a little more complicated than single-locus methods. The
“best” LMM is built iteratively. At each iteration, the SNP in stron-
gest association with a trait is identified from the random effects
part of the model and moved to the fixed effects part of the
model. This process is simple yet ingenious. It simultaneously
identifies those regions of the genome that house genes influenc-
ing a trait while also accounting for all other SNP-trait
associations.

R, by default, comes with single-threaded math libraries. By
replacing these libraries with their multi-threaded counterparts,
certain linear algebra operations become parallelized, implicitly.

The Eagle package has been structured, purposely, to make ex-
tensive use of these implicitly parallelized operations. In the
parts of Eagle where this has not been possible, we have instead
written Cþþ routines and parallelized the code explicitly through
openMP (Dagum and Menon 1998). Eagle differs most from com-
peting packages in its ease-of-use for non-R users. Considerable
effort has been invested into making Eagle equally usable to R
and non-R users. Eagle is available on CRAN (https://cran.r-proj
ect.org/). The package comes with a browser-based graphical
user interface (GUI). A user need only issue a single R command,
OpenGUI(), to harness the full functionality of Eagle. Eagle has its
own website (http://eagle.r-forge.r-project.org/index.html) with
instructions on how to install a multi-threaded version of R,
quick start guide, tutorials, videos, and answers to frequently
asked questions. Users can experiment with Eagle, prior to instal-
ling the package, by analyzing a test data set on our public server
(http://eagle.r-forge.r-project.org/demo.html).

Methods
Notation
Suppose genotypes are collected on L loci from ng individuals/
lines/strains. The genotypes are coded as �1, 0, and 1 corre-
sponding to SNP genotypes AA, AB, and BB, respectively. Ideally,
missing genotypes are imputed prior to analysis. If not, missing
genotypes are set to 0 by Eagle. Let Mðng�LÞ ¼ ½m1m2 . . . mL� be the
matrix of SNP genotype data where the vector mðng�1Þ

j contains
the genotypes �1, 0, and 1 for the jth SNP. Furthermore, let yðn�1Þ

contain the quantitative trait data. Examples of the quantitative
trait data include flowering time and grain yield in plants, weight
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gain and feed efficiency in animals, and blood pressure and cho-
lesterol levels in humans. Here, n can be larger than ng if multiple
measurements, as is common in plant studies, are recorded on
the same line/strain.

The model is built iteratively. At each iteration, an SNP is se-
lected and moved from the random effects to the fixed effects
part of the LMM. Suppose s iterations of the model building pro-
cess have been performed. Let S ¼ fS1; S2; . . . ; Ssg be a set of ordi-
nal numbers. The number Sk corresponds to the Skth SNP in the
marker map that was selected in the kth iteration of the model
building process. For example, if S ¼ f101; 12; 1143g, then the
101th, 12th, and 1143th SNPs in the marker map were selected in
the first, second, and third model selection iterations, respec-
tively.

Multi-locus model
The standard LMM for association mapping is

y ¼ Xsþ Zug þ e (1)

where Xðn�pÞ and Zðn�ngÞ are known design matrices, n is the num-
ber of observations, ng is the number of individuals/lines/strains/
with ng � n, sðp�1Þ is a vector with p fixed effects parameters in-
cluding the intercept, and uðng�1Þ

g is a vector containing the genetic
effects. The residuals, eðn�1Þ, are assumed to follow a normal dis-
tribution with mean 0 and covariance matrix r2

e Iðn�nÞ where r2
e is

an unknown residual variance.
In the standard LMM, the genetic effects, uðng�1Þ

g , are a random
polygenic term that accounts for the genetic background (Yu
et al. 2006; Zhao et al. 2007). It is assumed to follow a Nð0;r2

gGðn�nÞÞ
where G is a relationship matrix and r2

g is the unknown genetic
variance. The relationship matrix is calculated from pedigree
records or from SNP data. However, Eagle models ug differently
and this is where the innovation lies. Instead of relying on the re-
latedness between individuals to model the genetic background,
Eagle accounts for genetic background by modeling the associa-
tion between all the SNPs and trait simultaneously. A similar
idea exists in genomic selection (Goddard 2009).

For a detailed explanation of how ug is formed and its statisti-
cal justification, the interested reader is referred to Verbyla et al.
(2007, 2012). Briefly, the genetic effects are modeled as

ug ¼
Xs

k¼1

mSk aSk þM�Sa�S (2)

where mðng�1Þ
Sk

is the vector of genotypes for the kth selected SNP,
aSk is the additive effect of the kth selected SNP, Mðng�L�sÞ

�S is the
matrix of SNP genotypes with the data for the SNPs in S removed,
and aðL�s�1Þ

�S is a random effect whose distribution is
a�S � Nð0;r2

aIðL�s�L�sÞÞ. The first term on the left-hand side is the
fixed effects. The second term is the random effects. The fixed
effects measure the additive effect of the S already-selected SNPs
on the trait. The random effects measure the association be-
tween all other L–s SNPs and trait, simultaneously. Here, SNPs
are assumed to be uncorrelated to reduce model complexity,
making the analysis more manageable. Also, for a working
model, it is not uncommon to assume SNP effects are pairwise
uncorrelated. Such an assumption has long been made for
marker-assisted selection with ridge regression (Whittaker et al.
2000).

There will be situations where the standard LMM is not appro-
priate such as when additional random effects are needed or, as

occurs in multi-environment trials in plants, the assumption of
uncorrelated errors is violated. A partial solution is a stage analy-
sis (George et al. 2020) but Eagle’s reliance on uncorrelated errors
is a limitation. Any analysis by Eagle where the residuals are in
fact correlated would be approximate. Further testing is needed
to measure the impact of such a violation.

Dimension reduction
In modern genome-wide association studies, the number of loci,
L, can be very large, sometimes in the tens of millions. This cre-
ates a problem, computationally, when fitting (2) as the vector
a�S contains a large number of elements. Fortunately, the dimen-
sionality of (2) can be reduced by orders of magnitude.

The goal is to form an equivalent model for (2) of lower dimen-
sion but where the equivalent model has the same variance. The
variance structure of uðng�1Þ

g is the ng � ng matrix r2
aM�SMT

�S. Here,
the only unknown is the variance r2

a. By taking the matrix square
root,

Ze ¼ ðM�SMT
�SÞ

1=2

an equivalent, dimension-reduced, model for ug is

ug ¼
Xs

k¼1

mSk aSk þ Zea� (3)

where a� is a random effect with only ng elements and distributed
as Nð0;r2

aIðng�ngÞÞ.
The Eagle algorithm requires estimates of a�S and its variance

to identify the SNP in strongest association with the trait. These
can be recovered from the fitting of the dimension-reduced
model (Verbyla et al. 2012, 2014) since

~a ¼ ½MT
�SðM�SMT

�SÞ
�1=2�~a� (4)

and its variance matrix is

varð~aÞ ¼ MT
�SðM�SMT

�SÞ
�1=2varð~a�ÞðM�SMT

�SÞ
�1=2M�S (5)

Only the diagonal elements of the variance matrix are needed
which simplifies its calculation.

The Eagle algorithm
Eagle treats association mapping as a model selection problem.
The model is built iteratively, via forward selection. At each itera-
tion, from the current model, a new model is formed. This is
done by selecting an SNP from the random effects and moving it
to the fixed effects. The SNP is selected based on a score statistic.
The reasoning behind moving effects from random to fixed is if
there are major SNP-trait associations, then at first, they are con-
tained in the genetic background of the model. This gives oppor-
tunity for the genetic background, which is being modeled by the
random term in (2), to act as an SNP selection mechanism. Major
SNP–trait associations are identifiable as outliers (or unusually
large random effects in (2)) when compared to background effects
(or the other random effects in (2)).

Suppose s iterations of the model building process have been
performed. The current model is of the forms (1) and (3). The vec-
tor of genetic effects ug has s fixed effects for the s discovered
SNP–trait associations. The model has been fitted and parameter
estimates obtained via maximum likelihood (ML). The vector of
random effects ~a� and its variance varð~a�Þ are then computed.
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The following steps are performed for the ðsþ 1Þth iteration of
the model building process.

Step 1: SNP selection. An SNP is selected from the random
effects based on the maximum score statistic

t2
j ¼

~a2
j

varð~ajÞ

where j refers to the jth SNP in the marker map, the j index is
over all SNPs except the s SNPs already selected, ~a2

j is a scalar
value formed from the square of the best linear unbiased predic-
tor of the jth SNP’s random effect, and varð~ajÞ is its variance.
These values are recovered from ~a� and varð~a�Þ, which were
obtained from the fitting of the current model and (4) and (5). By
choosing the SNP with the maximum score statistic, we are
selecting the SNP, which is in strongest association with the trait,
from amongst those SNPs whose association is being modeled by
the random effects.

Step 2: model building and fitting. A new dimension-reduced
model is built, according to (1) and (3), from the trait data y, and
known matrices X, Z, and M�S. Here, S is the set of indexes of the
s previously selected SNP and the additional SNP found in the
previous step. The model is fitted to the data and parameters es-
timated via maximum likelihood.

Step 3: model selection. The importance of the ðsþ 1Þth se-
lected SNP is determined via the extended Bayes information cri-
teria (extBIC, Chen and Chen 2008). The extBIC is a model
selection measure that takes into account the number of param-
eters and the complexity of the model space. If the extBIC
increases, then the new model is accepted and the iterative
model building process continues.

Upon completion, S is the set of indexes of the SNP in stron-
gest and measurable association with the trait. Each SNP identi-
fies a different part of the genome housing genes that are
influencing the trait.

Basing the above algorithm on ML is a departure from what
was first proposed in George et al. (2020), which was residual
maximum likelihood (REML). REML’s advantage over ML is that it
yields unbiased estimates of the variance components. However,
it is not appropriate, statistically, to then use its maximized log-
likelihood value in a model selection statistic such as the extBIC.
This necessitated an extra ML calculation for every iteration of
the model building process. By replacing REML with ML, we re-
duced the amount of computation needed per iteration, improv-
ing the speed of the algorithm considerably. Also, in the context
of genome-wide association studies, the sample size is much
larger than the number of fixed effects. This results in minimal
bias when using ML. For the data sets we have analyzed, we have
found no discernible difference between the variance component
estimates under ML and REML.

The Eagle package
Overview
Eagle is an R package for the genome-wide analysis of association
data. It can handle data collected from inbred or outbred study
populations. The populations can be of arbitrary and unknown
complexity. The data can be larger than the memory capacity of
the computer. Since Eagle is framed within a LMM paradigm, it is
best suited to the analysis of data on continuous normally dis-
tributed traits. However, LMMs can also tolerate non-normal
data (Schielzeth et al. 2020). A flow chart of the analysis pipeline
for Eagle is shown in Figure 1. The package contains functions for

opening the GUI, inputting the data, performing genome-wide
analyses, and for summarizing and visualizing the results. Non-R
users need only be familiar with a single function OpenGUI that
opens the GUI.

Installation
Eagle is available on CRAN. As such, it can be installed in the
usual way. However, Eagle has been designed to make extensive
use of implicit parallelization. Many of the vector, matrix, and
linear algebra operations in R link directly to the API’s of BLAS
(Basic Linear Algebra Subroutines, see Blackford et al. 2002) and
LAPACK (Linear Algebra Package, see Anderson et al. 1999). R, by
default, comes with single-threaded versions of these libraries. If
these libraries are replaced by their multi-threaded counterparts,
such as MKL and openBLAS, parts of R become multi-threaded,
implicitly. Detailed instructions for converting R to multi-
threaded computation are available on the Eagle website (http://
eagle.r-forge.r-project.org/instruction.html).

We have also developed an alternate approach for running
Eagle. Docker is an open platform that packages an application
and its dependencies inside virtual containers. Here, we have cre-
ated two Eagle containers, a container for running the GUI
(geo047/eagle: 2.4.5_app) and a different container for running
RStudio with Eagle pre-installed (geo047/eagle: 2.4.5_rstudio).
Both containers come with multi-threaded R. For a user, once
Docker is installed on their system, a container can be run with
the “docker run” command. This then allows the user to access
either the GUI or RStudio via their web-browser. Instructions for
running the Eagle containers are available at https://hub.docker.
com/r/geo047/eagle.

Data input
There are, potentially, four different types of data required by
Eagle for input. These are the phenotypic data, the genotypic
data, the marker map, and the Z matrix. Whether all four are
needed is dependent upon the study design and format of the ge-
notypic data. Each input data type is discussed below.

The phenotypic data consist of observations on one or more
traits and any explanatory variables. A trait may have a single
observation per individual/line/strain or, as is common in plant
studies, may have repeat observations. The data are arranged
into columns. The first row contains the column headings. The
observations can be space or comma separated. Missing trait
and/or explanatory variable values are allowed. The data are
read into Eagle with the function ReadPheno.

The genotypic data are the genotypes observed on the individ-
uals/lines/strains from the SNPs. Since association studies can
collect genotypes on thousands of individuals across millions of
SNPS, these data can be extremely large. Fortunately, Eagle can
handle data beyond a computer’s memory capacity. Eagle will ac-
cept genotypic data that are in variant call format, space delim-
ited ASCII format (the default), or PLINK ped format. The data are
read with the function ReadMarker. The argument type, which
has the value “vcf”, “text”, or “PLINK”, specifies the type of data
being read. The argument availmemGb tells Eagle how much
memory, in gigabytes, is available. The order of the SNPs in the
input file must correspond to their map order. Ideally, missing
genotypes are imputed prior to input but some missing genotypic
data can be tolerated.

The marker map consists of the names and locations of the
SNPs. The map is specified via three columns of data. The first
column contains the SNP labels. The second has the names of
the chromosomes upon which the SNPs residue. The third
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column has their chromosomal positions. The data are space
separated with the first row being the column names. The SNPs

are in map order. Missing values are not allowed. The data are
read with the function ReadMap. If the genotypic data are in vari-
ant call format, a separate marker map file is not needed. A vari-
ant call format file contains not only the SNP genotypes but also
marker map information.

The Z matrix is needed only if a trait has repeat observations.
It is an incidence matrix. As such, it contains zeroes and ones
only. The number of rows in the matrix equals the number of
rows of phenotypic data. The number of columns equals the

number of rows of genotypic data. The data are space separated.
The function ReadZmat reads the data.

Controlling the type 1 error rate
All association mapping methods commit type 1 errors. For
some, the type 1 error rate is controlled explicitly. For others, it is

implicit to the internal workings of the methodology. In Eagle,
the conservativeness of the model building process is managed
explicitly via the parameter k. The parameter k is part of the
extBIC. It ranges from zero to one. The conservativeness of the
extBIC increases with increasing k. Although it is possible to set k

analytically, the desired type 1 error rate is not part of the calcu-
lation. Instead, an empirical approach is adopted in Eagle.

A permutation approach is implemented in the function
FPR4AM. It finds the type 1 error rate for discrete values of k.

Suppose the number of permutations performed is nperm and their
are nk discrete values of k being considered, potentially this
means nperm � nk genome-wide analyses are required. For large
data sets, this quickly becomes computationally intractable.
Fortunately, even though the trait data y change across repli-
cates, the SNP and explanatory variable data remain the same.
This means, for a permutation, only those parts of the Eagle algo-
rithm impacted by a change in y need recalculation. Also,
through vectorization, the type 1 error rates corresponding to all

nk discrete values of k can be calculated simultaneously, for each

permutation.
In the example below, the run time for FPR4AM was 1.36 min

and for the analysis it was 53 s but the run times are situation

specific. Having to run FPR4AM can more than double the com-

putational cost of an analysis but being able to control the type 1

error more than compensates for this cost.

Association mapping analysis
One of the most important functions in the package, from a

user’s perspective, is AM. This function implements the method-

ology presented above. It is the function that performs associa-

tion mapping. The function has 12 arguments. The important

arguments are as follows. The trait and fixed effects are specified

via the arguments trait and fformula, respectively. The data are

passed to AM through the arguments pheno, geno, map, and if re-

quired, Zmat. The number of threads, for parallel computation,

is set with ncpu. The type 1 error rate is controlled with lambda.

Its value is found by running FPR4AM.
As an example, suppose the phenotypic data, SNP data, and

marker map have been read with the functions described above

and stored in data objects phenoObj, genoObj, and mapObj, re-

spectively. The trait name is “y”. The explanatory variables of in-

terest are “cov1” and “cov2”. These explanatory variables can be

continuous such as weight and height, ordinal such as day and

education level, or categorical such as race and sex. The fixed

effects part of (1) has the form cov1þ cov2þ cov1*cov2 where

cov1*cov2 is an interaction term. Let the k value that gives a type

1 error rate of 0.05 be 0.78 and it was found with FPR4AM. Then,

the function call that performs the analysis is

R> AM(trait¼“y”,fformula¼“cov1þcov2þcov1*cov2”,

þ geno¼genoObj, pheno¼phenoObj, map¼mapObj,

þ ncpu¼ 8, lambda¼ 0.78)

Figure 1 A flow chart of the analysis pipeline for Eagle. Each green box corresponds to a separate page of the GUI.
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The number of threads for parallel computation has been set
to 8. After running the function, the SNPs closest to the genes un-
derlying “y” are reported. Each SNP identifies a different region of
interest on the genome.

Results
Additional analysis information is obtained with the function
SummaryAM. Three tables are generated. They are a table of
summary information, a findings table, and an effects table. The
summary table contains information on items such as the num-
ber of cpu that were available, number of samples, the fixed
effects formula, number of significant SNP–trait associations,
and the k value at which the analysis was performed. The find-
ings table lists the names, chromosomes, and positions of those
SNPs that were found to be in association with the trait. The
effects table has the effect sizes, degrees of freedom, Wald statis-
tic values, and P-values of the fixed effects in the model, includ-
ing the SNPs that were identified as being in association with the
trait.

Visualization
PlotAM is an interactive function for viewing the strength of asso-
ciation along a chromosome or genome. This is done on an
iteration-by-iteration basis. It is useful for better understanding
how a model is built, how SNP–trait association varies within a
region, and how the strength of association for SNPs changes
over the model building process.

The function has the form

PlotAM(AMobj¼NULL, itnum¼ 1, chr¼“All”,type¼“Manhattan”).

An example of its use is given in the Example section.

Browser-based GUI
To release users from the requirement of having to know R, a GUI
was built. Here, a user only needs to know how to load the pack-
age with library(Eagle) and start the GUI with OpenGUI(). After
running OpenGUI(), a browser automatically opens to the GUI’s
home page. By clicking on the tabs in the navigation bar at the
top of a page, a user can access pages for reading the input data,
for performing analyses, and for summarizing/visualizing
results.

Help
Detailed help files are available for each of the functions in the
package. These help files include many worked examples. Help
on a function is accessed in the usual way, with the library func-
tion. With the GUI, every page contains a help banner that gives a
summary of the functionality contained within the page. Single
sentence help descriptions also appear as the mouse cursor hov-
ers over different parts of a page. External to the package, an
email address eaglehelp@csiro.au has been set up to answer any
queries. Also, help is available via the website http://eagle.r-
forge.r-project.org/index.html.

Improvements to Eagle
The Eagle package has undergone continued development since
it was first introduced in George et al. (2020). There have been sig-
nificant improvements to its performance and utility. Eagle can
analyze marker data larger than a computer’s memory capacity.
Previously, it was doing this by converting the raw SNP data into
a packed binary file and storing it on disk. The packed file would
then be unpacked and read into memory when needed. However,
this unpacking process, when repeated many times, incurs a

significant computational cost. Unpacking can be avoided by in-
stead converting the raw marker data into a simple ASCII file
containing the snp genotypes 0, 1, and 2. We have been able to re-
duce the run time of AM by 50% and FPR4AM by an order of mag-
nitude. The latest version of Eagle can handle vcf data and comes
with an interactive plotting facility (see Results). Also, the internal
handling of missing data has been improved, the reporting of fi-
nal results has been refined, and the type of errors that can be
caught by Eagle has been broadened. Users of the old version of
Eagle are encouraged to update to the latest version (Version
2.4.4 at the time of submission).

Results
Here, the steps for performing association mapping with Eagle
are presented. Both modes of use are given. That is, via function
statements issued at the R command line and via the GUI. For
each function statement, a screenshot of its matching GUI page
is shown where applicable. The example is for the analysis of a
mouse data set. As stated previously, the goal of association
mapping is to find the SNPs in strongest association with the
genes underlying a heritable trait. The data are real. They were
collected from a large GWAS in outbred mice (Nicod et al. 2016).
Many different traits were measured but our focus is on high-
density lipoprotein (Bioch.HDL). We chose this trait because from
previous analyses, a number of genomic regions of interest across
multiple chromosomes have been reported. In the original study
(Nicod et al. 2016), this trait was found to be influenced by the ex-
planatory variables for sex (Sex), batch number (Batch), and aver-
age weight (Weight.Average). These same variables are treated as
explanatory variables in our analysis. Even though large data
sets are not a problem for Eagle, we wanted the example data to
be easily accessible to R. A way of doing this is to host the data on
GitHub (https://github.com/geo047/Example_Data). GitHub has a
file size limit of 10 megabytes, which made it necessary to base
the example on a subset of the original data.

Creating the input files
Three input files were created. These are the files phenoex.dat
with the phenotypic data, genoex.dat with the genotypic data,
and mapex.dat with the maker map. In the original study, data
were collected from 1887 outbred mice on a large number of
traits and SNPs. As such, this data set was too large to house on
GitHub. So the study size was reduced to 800 randomly selected
mice. Our focus was restricted to the analysis of a single trait,
Bioch.HDL. The genotypic data were reduced to the genotypes
from 70,484 SNPs. The SNPs were selected from every 5th locus
of the original set where loci with a minor allele frequency of less
than 1% have been removed along with loci on the sex chromo-
some.

The phenotypic data in phenoex.dat are space separated and
arranged into 801 rows and four columns. The rows correspond
to data on different mice. The columns contain data on
Bioch.HDL and the explanatory variables Sex, Batch, and
Weight.Average. The first row has the column names.

The genotypic data in genoex.dat has 800 rows and 70,484 col-
umns. The data are space separated. The columns are not
named, nor are there missing values. Each row contains the
genome-wide data for a mouse. Each column contains the geno-
types for an SNP. Rows in the two files are assumed to be ordered
such that the same row in each file corresponds to data collected
on the same mouse. The columns are in marker map order. A
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numeric coding of 0, 1, and 2 was used for the SNP genotypes,
AA, AB, and BB, respectively.

The marker map in mapex.dat is space separated and has
70,485 rows and three columns. The first row is the column
names. The rows contain map information on the SNPs. The
rows are ordered according to the SNPs map order. The first col-
umn has the names of the SNPs. The second column contains
the chromosome names upon which the SNPs reside. The third
column has the chromosome positions of the SNPs. It is assumed
that the row order of the SNPs in this file matches the column or-
der in genoex.dat.

The input files are downloaded and uncompressed from
GitHub with the R commands

R> DIR <- “https://raw.githubusercontent.com/

þ geo047/Example_Data/master/”

R> download.file(paste0(DIR, “mapex.dat”))

R> download.file(paste0(DIR, “phenoex.dat”))

R> download.file(paste0(DIR, “genoex.dat.zip”))

R> unzip(“genoex.dat.zip”)

Single-locus association mapping
We begin by analyzing these data in the “usual” way, with
single-locus association mapping. As stated previously, for a
single-locus analysis, a separate LMM is fitted to the data for
each SNP. The statistical significance of an SNP, when treated
as a fixed effect, is a measure of the strength of association
between the SNP and trait. The data were analyzed with the R
package gaston (Wang and Zhang 2018). The process was to
read in the phenotypic and genotypic information with fread
from the R package data.table. Scale the marker data. Convert
the explanatory variables into a usable form with
covObj¡-model.matrix(SexþBatchþWeight.Average, phenoObj).
Calculate the genetic relationship matrix with the gaston
function GRM and its eigenvalues/eigenvectors with the base
function eigen. Perform the analysis with the gaston function
association.test with the arguments method¼“lmm” and
test¼“wald” along with arguments for the trait data, the
eigenvalues/eigenvectors of the scaled marker data, and
covariate matrix. The R script for performing the analysis is
available upon request.

The single-locus analysis results are shown in the Manhattan
plot in Figure 2. The positions of the SNPs on the genome are on
the x-axis and the significance scores ð� log 10ðp� valueÞÞ of the
SNPs are on the y-axis. We would conclude from this analysis
that there is a single region of interest on chromosome 5. In fact,
from our Eagle analysis (see below), we know that there are five
regions of interest for this trait. These are on chromosomes 1, 5,
6, and 10. The region on chromosome 5 is obvious. The regions
on 1 and 6 we might have suspected but lacked the power under
a single-locus analysis to confirm. However, the region on chro-
mosome 10 is only revealed after the effects of the other regions
have been accounted for. Also, it is not at all obvious from a
single-locus analysis that we are dealing with two closely linked
regions on chromosome 5.

Reading the data into Eagle
The function statements for reading the phenotype and map in-
put files are simple. Only the file names need specifying. This is
also true if using the GUI. By default, the two input files are as-
sumed space separated. If comma or tab separated, an additional
argument is needed in the function statement. For comma sepa-
rated files, sep¼“,”. For tab separated files, sep¼“\t”. The GUI has
a checkbox for choosing if the file is space or comma separated.
A tab separated option is not yet available.

The function statements for reading the two input files are

R> phenoObj <- ReadPheno(“phenoex.dat”)

R> mapObj <- ReadMap(“mapex.dat”)

Both the phenoObj and mapObj are data frame objects.

Screenshots of the corresponding GUI pages are shown in
Figure 3. They were taken after the relevant information had
been entered via the selections made in the left-half of the GUI
page and the files uploaded. The output from uploading a file is
printed in the right-half of the page. These are the same outputs
that appear when running the function statements from the
command line.

The function statement for reading the SNP data differs from
the two previous input statements. Besides the file name, addi-
tional arguments are required. The file type needs specifying.
Here, since the marker data are in a space delimited text file, the
type¼“text” argument is included in the function statement.
Other allowable formats are variant call format (type¼“vcf”) and
PLINK ped (type¼“PLINK”). Text files give the user the freedom to
select their own coding scheme but how these codes map to the
SNP genotypes need specifying. In this example, the file contains
codes 0, 1, and 2 for SNP genotypes AA, AB, and BB, respectively.
This means that the function statement includes the arguments
AA¼ 0, AB¼ 1, and BB¼ 2. Also, it is good practice to set the
amount of available memory, in gigabytes, with the availmemGb
argument. The default is to assume 16 GB of memory.

The ReadMarker function statement for this example is

R> genoObj<- ReadMarker(“genoex.dat”,type¼“text”,

þ AA¼ 0, AB¼ 1, BB¼ 2, availmemGb¼ 8)

A screenshot of the corresponding GUI page after uploading
the file is shown in Figure 4. The output from running the state-
ment is the same as the output shown in the right-half of the GUI
page. Unlike the other input functions, ReadMarker does not read
the data into memory. Instead, the marker data, and its trans-
pose, are stored on disk in a binary form. By not holding the geno-
type data in memory, it gives Eagle the ability to analyze marker
data larger than the memory capacity of a computer. The object
returned by ReadMarker is a list object that holds elements

Figure 2 Manhattan plot for the single-locus analysis of the example
data. Each point is the strength of association between an SNP and trait.
Results are shown for the entire genome. The red horizontal line is the
5% genome-wide significance threshold, calculated via a Bonferroni
correction. The blue dashed horizontal lines are the locations of the
findings from Eagle. The order in which Eagle found these findings is
given below the blue line. Where single-locus association mapping found
only a single region of interest, because of Eagle’s increased statistical
power, Eagle found five regions of interest.
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Figure 3 Screenshots of the GUI pages after the phenotypic data (left) and marker map (right) have been uploaded. Any output from the underlying
functions is shown in the right-half of a page.

Figure 4 Screenshots of the GUI pages after the genotypic data (left) have been uploaded and the multi-locus association mapping analysis (right)
performed. Output is shown in the right-half of the page.
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containing information on the dimensions of the marker data,
the name and location of the reformatted marker data, and the
number of phenotypic samples.

Controlling the type 1 error and performing the
Eagle analysis
To find the value of lambda that will give a 5% type 1 error rate
for the analysis, we ran the function FPR4AM. For its arguments,
we specified the desired type 1 error rate (falseposrate¼ 0.05), the
number of permutations (numreps¼ 100), the trait name
(trait¼“Bioch.HDL”), the fixed effects part of the model
(fformula¼“SexþBatchþWeight.Average”), the phenotypic data
(pheno¼phenoObj), the genotypic data (geno¼genoObj), the
marker map (map¼mapObj), and the number of processes
(ncpu¼ 8).

The function statement is

R> fdr <- FPR4AM(falseposrate¼ 0.05,

þ numreps¼ 100, trait¼“Bioch.HDL”,

þ fformula¼“SexþBatchþWeight.Average”,

þ pheno¼phenoObj, geno¼genoObj, map¼mapObj, ncpu¼ 8)

Once run, a lambda value of 0.53 (rounded to two significant
digits) is reported. This value is used in AM to set the type 1 error
rate to 5%.

To perform multi-locus association mapping of the example
data, the function statement is

R> res <- AM(trait¼ “Bioch.HDL”,

þ fformula¼“SexþBatchþWeight.Average”,

þ pheno¼phenoObj, geno¼genoObj, map¼mapObj,

þ ncpu¼ 8, lambda¼0.53)

As the function is run, a user can see how the model is being
built. For each iteration, the selected SNPs, their chromosome,
their map position, the column number of the SNP locus in the
marker data file, and the extBIC value are printed. The final
results are shown below (Table 1).

In Figure 4, a screenshot of the Analysis page is shown of how
the same analysis can be performed via the GUI. Here, a user
chooses a trait for analysis, selects any fixed effects, lets Eagle
find lambda by selecting the Set automatically option or specifies
their own lambda value by selecting Set manually, and performs
the analysis. The same output from the above two functions is
printed in the right-half of the Analysis page.

Summarizing the results
A summary of the results is produced with

R> SummaryAM(AMobj¼res)
where res is the list object obtained from AM. Three tables are

printed (Table 2–4). These same three tables are available within
the GUI by going to the Summary page (page not shown). The first
table (Table 2) contains summary information such as the num-
ber of cpu, trait name, and number of significant snp-trait

associations found. The second table (Table 3) gives the names
and locations of the SNPs. The third table (Table 4) contains the
effect sizes and statistical significances of the explanatory varia-
bles and the selected SNPs.

Visualizing the findings
Suppose we are interested in viewing how the pattern of signifi-
cance varies throughout the model building process. Here, we fo-
cus on chromosome 5. This chromosome is interesting because it
has two closely linked regions housing genes underlying the trait.

Using the function statement

R> PlotAM(AMobj¼res, itnum¼ 1, chr ¼ “5”,

þ type ¼ “Manhattan”)

the resulting plot, for chromosome 5 and iteration 1, is shown in
Figure 5A. Each point is a measure of the strength of association
between a SNP and trait. The measure is calculated as the �log10

of the p-value of the score statistic (see The Eagle Algorithm) for
the SNP, since type¼“Manhattan”. There is a clear spike toward
the middle of the chromosome. In fact, the SNP in strongest asso-
ciation across the entire genome, at iteration 1, was on chromo-
some 5. Its position is given by the red vertical line.

By the end of the second iteration of the model building pro-
cess, the SNP, which was identified in the first iteration, has been
found to be significant. Its effect has been moved from the ran-
dom to the fixed effects part of the model. This change impacts
the significance of the other SNPs. By using the above command
but with itnum set to 2, the plot in Figure 5B is generated. Here,
the SNPs that have increased (decreased) in significance are
denoted by green (purple) points. The size of the point is propor-
tional to the size of the change in significance from the previous
iteration. Unsurprisingly, the largest changes have occurred
around the SNP whose effect is now being treated as a fixed ef-
fect. We can see this more clearly by using the zoom feature in
PlotAM to focus on the region around the SNP of interest (Figure
5C).

What is interesting about Figure 5C is that there are still sev-
eral SNPs in strong association with the trait. This suggests that
there may be other statistically significant SNP–trait associations
here. This is in fact the case, because by the fifth iteration, a sec-
ond SNP has been found and fitted as a fixed effect. The pattern
of association is shown in Figure 5D with the same zoomed region

Table 1 Final results

SNP Chrm Map Pos Col Num extBIC

Null model 1700.22
M12008C5 5 124,991,768 22,264 1659.56
M1530C6 6 17,541,026 23,521 1652.16
M26336C1 1 171,730,395 5254 1644.45
M12020C5 5 125,044,979 22,267 1643.63
M11706C10 10 125,357,987 41,402 1643.24

Gamma value for model selection was set to 0.53.

Table 2 Summary information

Number cpu 8
Max memory (Gb) 8
Number of samples 800
Number of snp 70,484
Trait name Bioch.HDL
Fixed model Sex þ Batch þWeight.Average
Number samples missing obs 0
Number significant snp-trait assocs 5
Lambda value for extBIC 0.53

Table 3 Findings

SNP Chrm Position Col Num

M12008C5 5 124,991,768 22,264
M1530C6 6 17,541,026 23,521
M26336C1 1 171,730,395 5254
M12020C5 5 125,044,979 22,267
M11706C10 10 125,357,987 41,402
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as before shown in Figure 5E. The drop in significance between

fitting a single SNP in this region as a fixed effect to fitting two

closely linked SNPs as fixed effects is apparent when you com-

pare Figure 5C and E, noting the change in scales of the y-axes.

Multi-locus analysis via Blink
We thought that it would be informative to compare the perfor-

mance of Eagle to another state-of-the-art multi-locus associa-

tion mapping package. We chose Blink (Huang et al. 2019) as

implemented in the R package GAPIT3 (Wang and Zhang 2020).

Blink improves on the multi-locus method FarmCPU (Liu et al.

2016). It is faster and more powerful (Huang et al. 2019). An analy-

sis was performed by reading in the phenotypic, genotypic, and

map data into R. A covariate matrix was formed with covObj¡-
model.matrix(SexþBatchþWeight.Average, phenoObj). An analy-
sis was then performed with the GAPIT3 function GAPIT with the
argument model set to “Blink”. Blink found four of the five SNPs
found by Eagle. It found one of the two SNPs on chromosome 5
and the same SNPs as Eagle on chromosomes 1, 6, and 10.
Further testing would be needed to discover if, in general, Eagle
has greater power than Blink for uncovering association between
tightly linked SNP.

Computing speed
In terms of run times for the single-locus and multiple-locus
analyses, gaston took 1.67 min, Eagle took 2.25 min, and Blink
took 2.16 min. There is a C-based version of Blink that is an order
of magnitude faster than the version tested here. However, due
to R’s ever expanding ecosystem, our preference is for the R ver-
sion of Blink.

Discussion
The Eagle package has been created to make genome-wide multi-
locus association mapping easy. The package accepts marker
data in different formats, has easy-to-use functions, comes with
a user-friendly GUI, and has an interactive plotting function for
visualizing the model building process. We welcome feedback via
eaglehelp@csiro.au from users on how the functionality and us-
ability of the package could be even further improved. As we saw
in the example, Eagle brings clarity to situations where there are
tightly linked SNPs in association with a trait. It can also uncover
significant SNP–trait associations that are otherwise hidden to

Table 4 Size and significance of effects in final model

Effect size Df Wald statistic Pr(Chisq)

(Intercept) �2.31 1 35.98 1.995E�09
SexM 1.13 1 507.16 0.000Eþ00
BatchOBT02 0.00 1 0.00 9.869E�01
BatchOBT03 �0.28 1 1.29 2.561E�01
BatchOBT63 �0.16 1 0.43 5.117E�01
BatchOBT64 �0.11 1 0.21 6.448E�01
BatchOBT65 �0.12 1 0.21 6.491E�01
BatchOBT66 �0.20 1 0.85 3.570E�01
Weight.Average 0.05 1 148.30 0.000Eþ00
M12008C5 0.35 1 23.30 1.387E�06
M1530C6 0.15 1 29.76 4.878E�08
M26336C1 0.15 1 26.03 3.363E�07
M12020C5 �0.20 1 18.98 1.324E�05
M11706C10 �0.23 1 17.89 2.346E�05

Figure 5 Screenshots of the plots from running the Eagle function PlotAM. All plots are Manhattan plots and are of chromosome 5. These plots show
how the significance of the SNPs changes throughout the model building process. The red vertical line is the position of the SNP that has the largest
score statistic and strongest association with the trait at that iteration. The orange vertical lines are the positions of SNPs found in previous iterations to
be in strongest association with the trait. Green (purple) points denote SNPs that have increased (decreased) in significance from the previous iteration.
The size of the point is proportional to the size of the change in significance. Images (A), (B), and (D) are plots of the first, second, and fifth iterations,
respectively, of the model building process. Images (C) and (E) were created from (B) and (D), respectively, by using PlotAM’s interactive zoom feature.
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single-locus association mapping. At the very least, Eagle com-
plements single-locus association mapping. However, ultimately,
with the aid of Eagle, our hope is that the genetics community
will shift to multi-locus association mapping as the method-of-
choice for the genome-wide analysis of association data.

Data availability
The Eagle package is implemented in R and is freely available
from https://CRAN.R-project.org/package¼Eagle. An R script for
performing the analyses presented in Results is available upon re-
quest. The input files used in the analysis are available from
https://github.com/geo047/Example_Data.
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