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In this study, we aimed to establish themitochondrial etiology of the proband’s progressive
neurodegenerative disease suggestive of an atypical Leigh syndrome, by determining the
proband’s pathogenic variants. Brain MRI showed a constellation of multifocal temporally
disparate lesions in the cerebral deep gray nuclei, brainstem, cerebellum, spinal cord along
with rhombencephalic atrophy, and optic nerve atrophy. Single voxel 1H MRS performed
concurrently over the left cerebral deep gray nuclei showed a small lactate peak, increased
glutamate and citrate elevation, elevating suspicion of a mitochondrial etiology. Whole
exome sequencing revealed three heterozygous nuclear variants mapping in three distinct
genes known to cause Leigh syndrome. Our mitochondrial bioenergetic investigations
revealed an impaired mitochondrial energy metabolism. The proband’s overall ATP deficit
is further intensified by an ineffective metabolic reprogramming between oxidative
phosphorylation and glycolysis. The deficient metabolic adaptability and global energy
deficit correlate with the proband’s neurological symptoms congruent with an atypical
Leigh syndrome. In conclusion, our study provides much needed insights to support the
development of molecular diagnostic and therapeutic strategies for atypical Leigh
syndrome.
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INTRODUCTION

Leigh syndrome (LS; OMIM No. 256000), originally described in
1951 by the British neuropathologist Dr. Dennis Leigh, is a
subacute necrotizing encephalomyelopathy with a frequency
gliosis in several brain regions (Leigh, 1951). It affects about 1
in 40,000 live births and can caused by more than 75 distinct genes
(Lake et al., 2016). Onset of symptoms usually begins between
3 months and 2 years of age and rarely during adolescence or early
adulthood. The diagnostic criteria for this intractable progressive
neurodegenerative disease includes symmetrical brain lesions in
the brainstem or cerebral deep gray nuclei, elevated lactate in the
cerebrospinal fluid or brain, and clinical findings suggestive of a
mitochondrial disease (Ruhoy and Saneto, 2014; Whitehead et al.,
2016). Therefore, MRI and MRS are important for diagnosis and
disease monitoring. LS patients exhibit an extensive clinical
heterogeneity that makes the clinical diagnosis of LS
challenging. The most frequent clinical symptoms include
developmental delay and regression, seizures, ataxia, dystonia,
ophthalmoparesis, optic atrophy, sensorineural hearing loss,
dysphasia, failure to thrive, and respiratory problems (Finsterer,
2008; Chang et al., 2020). LS clinical heterogeneity can result in
Leigh-like syndrome or atypical Leigh syndrome in patients with
atypical neuropathology and clinical presentation with symptoms
affecting the peripheral nervous system, including polyneuropathy
and myopathy, and non-neurological symptoms, such as
cardiomyopathy, renal failure, short stature, anemia, diabetes,
and gastrointestinal dysfunctions (Finsterer, 2008).

Most patients with LS suffer from a neurometabolic crisis
during childhood that is often associated with a febrile illness.
This impaired energy generation is caused by a dysfunctional
oxidative phosphorylation (OXPHOS) pathway, which makes
mitochondrial ATP via four respiratory complexes, Complex I
to IV, and ATP synthase (also called Complex V). LS is
predominantly monogenic with more than 75 identified
pathogenic nuclear and mitochondrial variants relevant to its
molecular pathogenesis (Lake et al., 2016). Most of them map in
mitochondrial or nuclear genes encoding subunits of the
respiratory complexes or proteins required for their assembly,
stability and activity. These pathogenic variants result in
dysfunctional Complexes I, III, IV, or V, as well as coenzyme
Q10 deficiency or pyruvate dehydrogenase complex deficiencies
(Finsterer, 2008). Despite the recent remarkable genetic advances
with the advent of next-generation sequencing (NGS), the
pathogenic mechanisms of LS remain elusive given its highly
heterogenous genetic etiology that obscures the genotype-
phenotype correlation. Currently, many patients clinically
diagnosed with LS or Leigh-like syndrome remain without a
genetic diagnosis, suggesting that additional pathogenic causative
variants or a combination of pathogenic variants remain to be
discovered.

Here, we report the case of 6-year-old proband with
neurological manifestations suggestive of an atypical form of
LS harboring three heterozygous variants mapping in three
distinct genes known to cause LS. Our comprehensive
functional investigations of the proband’s mitochondrial
energy metabolism confirm the suspected mitochondrial etiology.

METHODS

Ethical Issues
This study was approved by the Institutional Review Board of the
George Washington University and Children’s National Medical
Center and was conducted in accordance with the ethical
principles of the Declaration of Helsinki of 1975 (revised
1983). Patient skin biopsy was performed after receiving
written informed consent from the legally authorized
representatives (parents of the proband) with permission to
study the derived dermal fibroblasts.

Skin Biopsy
A 3 mm skin biopsy was performed on the 5-year-old proband,
from which dermal fibroblasts were derived as described
(Uittenbogaard et al., 2018a). Derived fibroblasts were frozen
at passage two and never used beyond passage 10. Human
primary dermal fibroblasts from a healthy subject (Cat#
GM03377E) were obtained from the Coriell Cell Repositories
(Camden, NJ).

Transmission Electron Microscopy
Fibroblasts from the proband and a control subject were fixed in
2.5% glutaraldehyde, 1% paraformaldehyde in 0.12 M sodium
cacodylate buffer as described (Uittenbogaard et al., 2018b).
Samples were imaged with a FEI Talos F200X-transmission
electron microscope (Thermo Fisher).

Genetic Testing
Total genomic DNA was isolated from blood samples from the
proband to performWES and LR-PCR-MPS of themitochondrial
genome by theMedical Genetics Laboratories at Baylor College of
Medicine, as described (Cui et al., 2013; Uittenbogaard et al.,
2019). Reads were aligned to the human reference genome
(UCSC hg19) using the NextGEN software (SoftGenetics; State
College, PA). Variants were identified and annotated using an in-
house bioinformatic pipeline with our filtering strategy
summarized in Figure 2 of Uittenbogaard et al. (2019). The
pathogenicity of variants was evaluated using the American
College of Medical Genetics and Genomics guidelines by
board-certified molecular geneticists. Computational analysis
of nuclear variant’s pathogenicity was performed using
PolyPhen-2 and SIFT.

Live-Cell Measurements of Mitochondrial
Respiratory and Glycolytic Activity
The bioenergetic status of the proband’s fibroblasts was measured
using the Seahorse Extracellular Flux XFp Analyzer (Agilent
Technologies; Santa Clara, CA), as described (Gropman et al.,
2020). Optimal cell density (5,000/well) and the concentration of
FCCP (fluoro 3-carbonyl cyanide-methoxyphenyl hydrazine;
2 µM) were determined using the Cell Energy Phenotype Test
kit. Using the XFp Mito Stress Test kit, oxygen consumption rate
(OCR) and extracellular acidification rate (ECAR) were measured
under basal conditions and after sequential injections of
oligomycin (1 µM), FCCP (2 µM), and a mix of rotenone and
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antimycin A (1 µM). Using the Seahorse XFp real-time ATP Rate
assay, we simultaneously quantified the rate of ATP produced by
OXPHOS and glycolysis according to the manufacturer’s
recommendations. OCR and ECAR were measured under
basal conditions and after sequential injections of oligomycin
(1.5 µM) and a mix of rotenone and antimycin A (0.5 µM). Using
the XFp Glycolytic Rate Assay, we analyzed the glycolytic rate by
quantifying the total proton efflux and the glycolytic proton efflux
as described (Uittenbogaard et al., 2018a).

All the data from three independent experiments, each
including three technical replicates, were normalized to cell
numbers after the assay and plotted as OCR (pmol/min/cell ±
S.E.M.), and ECAR (mpH/min/cell ± S.E.M.) using the
Seahorse MultiReport Generator software. Statistical analyses
were performed using the unpaired student t-test with p-value
of less than 0.05 considered statistically significant.

RESULTS

Clinical History
The 6-year-old male proband has an unclear clinical diagnosis
exhibiting developmental delay, hypotonia, spasticity, ptosis,
bilateral cataracts and sensorineural hearing loss. His global
symptomatology is consistent with a suspected inborn error of
metabolism of uncertain etiology. The proband’s parents, a 46-
year-old father and a 39-year-old mother, are of African-
American descent and nonconsanguineous. Maternal history
was significant with five miscarriages in the setting of
hypercoagulability due to a factor 2 mutation for which she is
treated with Lovenox. She had gestational diabetes that was
treated with diet.

The proband was born at 35 weeks’ gestation by C-section
due to fetal deceleration and weighed 2.4 kg. During the
neonatal period, he had hypoglycemia, requiring admission
to the intensive care unit. He passed his newborn hearing
screen and was discharged 1 week after delivery. At 5 months,
a brain CT was performed to investigate anterior fontanelle
bulging, which showed enlarged subarachnoid spaces, an
absent thalamic massa intermedia, and a residual cavum
septum pellucidum/vergae, but otherwise, normal brain
density, texture, and volume. At 6 months, the proband had
his first ophthalmology evaluation due to concerns for corneal
opacities. He was diagnosed with bilateral infantile cataracts
and congenital ptosis of the right upper lid. He underwent a
surgical procedure for extraction of his right cataract and a
sling for his right upper lid. He was diagnosed with
plagiocephaly and hospitalized due to a bulging fontanelle
and irritability. Due to his staring episodes, an
electroencephalogram was performed, which failed to show
any epileptiform discharges.

At 16 months, he showed signs of developmental delay with
mild hypotonia and delayed walking. He was referred to physical
and speech therapists and diagnosed with sensorineural hearing
loss. A temporal bone CT performed at 30 months showed
normal appearing inner ear structures, but disclosed interval
cerebellar atrophy. A brain MRI at 32 months confirmed

cerebellar atrophy and absent massa intermedia (Figures
1A–G). It also revealed brainstem atrophy, hypoplasia of the
anterior commissure, optic pathway, and olfactory system as well
as cerebral malformations including abnormal parietoinsular
gyration, a thick-walled cavum septum pellucidum/vergae, and
deficiency of the anterior limb of the internal capsule.
Furthermore, multifocal lesions of varying ages were present
with diffusion abnormalities ranging from reduced to
facilitated, involving the globi pallidi, midbrain (including but
not limited to the periaqueductal gray matter, colliculi, and
substantia nigra), pontine tegmentum, medulla, cerebellar gray
and white matter, and imaged cervical spinal cord consistent with
acute on chronic metabolic injury. Many of the small vessels
within and along the brain surface were prominent and consistent
with hypervascularity, especially in the basal ganglia. These
findings were again demonstrated when MRIs were done at
the age of five and six. Single voxel 1H MRS performed
concurrently over the left cerebral deep gray nuclei showed a
small lactate peak, increased glutamate, and citrate elevation,
elevating suspicion of a mitochondrial etiology. The proband was
referred to our Neurogenetics clinic upon suspicion of a
neurometabolic disease with a mitochondrial etiology based on
his significant developmental regression and several lactic
acidosis episodes.

At 5 years, he had a facial droop and underwent another brain
MRI that showed recurrent small vessel hypervascularity and
additional acute on chronic lesions in similar anatomic regions of
the basal ganglia, brainstem, and cerebellum, consistent with
metabolic disease progression. A single voxel 1H MRS over the
left cerebral deep gray nuclei confirmed mild lactate, increased
glutamate, and citrate elevation (Figure 1H). The proband was
treated with intravenous dextrose during episodes of metabolic
decompensation and started on levocarnitine at three doses of
330 mg. Although the proband’s levels of alpha-aminoadipate
and cystathionine were elevated, his acylcarnitine and very long
chain fatty acid levels were normal. His screen for congenital
disorder of glycosylation was negative. EKG showed normal sinus
rhythm, and echocardiography showed no structural
abnormalities. Following several episodes of choking, the
proband underwent a swallow evaluation, which revealed
prolonged oral phase of the swallow with no aspiration of
solid food.

At 6 years, examination revealed dysmorphic features
including bilateral ptosis, pendulous lips, small chin, and
myopathic facies. His bilateral cataracts reduces his visual
acuity. He only perceives movements. He has some axial
hypotonia with bilateral spasticity in lower extremity. His
walking is severely limited, being able to only take a few steps
in his gait trainer without assistance.

The constellation of clinical features and brainMRI findings of
the proband are consistent with an LS-like phenotype. He exhibits
additional atypical features, including the clinical findings of
dysmorphism, the neuroimaging findings of absent thalamic
massa intermedia, residual cavum septum pellucidum/vergae,
hypoplasia of the anterior commissure, optic pathway and
olfactory system, as well as cerebral malformations including
abnormal parietoinsular gyration, a thick-walled cavum septum
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FIGURE 1 | Brain MRI and MRS of the proband. Sagittal midline T1WI (A) shows atrophy of the cerebellum and brainstem, hypoplasia of the anterior commissure
(thin arrow), absence of the thalamic massa intermedia, and multiple hypointense lesions in the brainstem, cerebellum, and cervical spinal cord (thick arrow). Coronal
T2WI (B) reveals optic pathway hypoplasia (black arrowhead), deficiency of the anterior limbs of the internal capsules (white arrows), and a thick-walled cavum septum
pellucidum/vergae (star). Axial susceptibility-weighted angiography image (C) depicts pronounced small vessel hypervascularity (circles). Axial diffusion weighted
images through the globus pallidus (D,E) and midbrain (F,G) show multifocal varying aged lesions with mixed facilitated and reduced diffusion consistent with acute on
chronic metabolic injury (arrows). Single voxel 1H MRS over the left cerebral deep gray nuclei (H) shows a small lactate peak (lac), increased glutamate (glu), and citrate
(cit) elevation.
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pellucidum/vergae, and deficiency of the anterior limb of the
internal capsule.

Genetic Diagnosis
The proband’s mitochondrial genome, which was sequenced by
LR-PCR-MPS, does not harbor any pathogenic mitochondrial
variants. WES was performed using blood sample from the
proband applying the filering strategy as described in Figure 2
of Uittenbogaard et al. (2019). After filtering steps were applied to
30,000 variants, we removed artifacts and false positive variants,
and performed our analysis on the 25,000 remaining variants that
revealed the presence of three heterozygous nuclear variants in
the EARS2, MTFMT, and NARS2 genes, all linked to combined
oxidative phosphorylation deficiency (COXPD) (Table 1). The
EARS2 c.368T > A (p.L123Q) variant maps in the exon three of
the EARS2 protein, which regulates mitochondrial protein
translation by attaching glutamate to the cognate
mitochondrial t-RNA (Mai et al., 2017). It is reported at a low
allele frequency in the population databases dbSNP (www.ncbi.
nlm.nih.gov/snp/) and gnomAD (http://gnomad.broadinstitute.
org/variant). Both the SIFT and PolyPhen2 algorithms predicted
the p. L123Q variant to be deleterious. Exon 3, which encodes the
one of the four catalytic domains of mitochondrial glutamyl-
tRNA synthetase, is a hotspot for nuclear variants (Steenweg et al.
, 2012). Pathogenic EARS2 variants are associated with the rare
mitochondrial disease COXPD 12 (OMIM No. 614924) (Talim
et al., 2013). The novel MTFMT variant c.20G > A (p.R7H) is
predicted pathogenic and maps in exon 1 of the mitochondrial
methionyl-tRNA formyltransferase (MTFMT) protein (Table 1).

Several pathogenicMTFMT variants are associated with COXPD
15 (OMIM No 614947) (Neeve et al., 2013). The pathogenic
NARS2 variant c.791C > G (p.S264C) maps in the exon 7 that in
part encodes the catalytic domain of the mitochondrial
asparaginyl-tRNA synthetase 2 (Table 1). Several NARS2
variants are linked to COXPD 24 (OMIM No. 616239) (Simon
et al., 2015; Valander et al., 2015; Seaver et al., 2018).

Functional Studies of the ATP Metabolism
Based on the presence of these variants, we investigated the ATP
metabolism using the proband’s fibroblasts from a skin biopsy
performed at the age of five. As a control subject, we used
commercially available dermal fibroblasts from a healthy subject of
similar age range whose metabolic profile has already been
characterized and comparable to two other healthy subjects
(Uittenbogaard et al., 2018b). We measured OCR, a key functional
indicator of themitochondrial energymetabolism, to accurately assess
OXPHOS parameters using the Mitochondrial Stress Test assay. The
proband’s OXPHOS parameters were greatly reduced, when
compared to those of a healthy subject (Figure 2). We found a
65% decline of the basal respiration and a 69% reduction of ATP-
linked respiration (Figure 2C). The maximal respiratory capacity
evoked by the protonophore FCCP dropped by 62% (Figure 2C).
Finally, the spare respiratory capacity decreased by 55%, hindering the
ability to sustain an energy crisis (Figure 2C).

We next examined the rate of ATP production in the
proband’s fibroblasts from glycolysis and OXPHOS using the
XFp Real-Time ATP rate assay. Both OCR and ECAR were
simultaneously measured upon injection of oligomycin

FIGURE 2 | The proband’s fibroblasts exhibit a deficient mitochondrial bioenergetic capacity. (A) Profile of the oxygen consumption rate (OCR) adapted from the
Agilent Technologies brochure of theMitochondrial Stress Test. (B)OCR profiles of the proband (red) and healthy subject (blue). (C)Quantitative data of basal respiration,
ATP-linked respiration, maximal respiration, and spare respiratory capacity. The healthy subject is shown in blue while the proband is illustrated in red. Data are
represented as means ± S.E.M., n � 3 of independent experiments, each with three technical replicates. * indicates statistically significant differences with a p value
of 0.0001.
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followed by injection of rotenone and antimycin A to fully inhibit
mitochondrial ATP production (Figure 3A). The proband’s
mitochondrial rate of ATP production decreased by 63%
(Figure 3B), corrobating the overall OXPHOS decline. The
16% increase in glycolysis-mediated ATP production rate was
not enough to offset the 31% decrease in total ATP rate
production.

We next investigated the glycolytic metabolism of the proband
using the Glycolysis Rate assay, which accurately assesses
glycolytic activity by correlating one-to-one with lactate
accumulation. The total Proton Efflux Rate (PER) and the
Glycolytic Proton Efflux Rate (GlycoPER) were measured
using both OCR and ECAR values to account for
mitochondrial (CO2) acidification from the mitochondrial
TCA cycle (Figures 4A,B) (Mookerjee et al., 2017). Basal
glycolysis increased by 34%, which was confirmed by an
increased PER to 94%, compared to 79% in healthy fibroblasts
(Figure 4C). We measured the compensatory glycolysis response
as an indication of metabolic reprogramming toward glycolysis
following a provoked energy crisis by rotenone and antimycin A.
The proband’s fibroblasts failed to increase glycolysis as a mean to
compensate for this acute mitochondrial ATP crisis (Figure 4C).

Mitochondrial Morphometric Analysis
We then conducted a mitochondrial morphometric analysis
using transmission electron microscopy to investigate whether

the proband’s mitochondria showed ultrastructural defects. The
proband’s fibroblasts contained a decreased mitochondrial
population, when compared to that of healthy fibroblasts
(Figure 5). The proband’s mitochondria were small with rare
and swollen cristae (Figure 5). These morphometric results
confirm the proband’s dysfunctional mitochondrial energy
metabolism (Figures 2–4).

DISCUSSION

Our study reports a young proband with a constellation of
multifocal temporally disparate lesions in the cerebral deep
gray nuclei, brainstem, cerebellum, and spinal cord along with
rhombencephalic atrophy, optic nerve atrophy, and brain lactate
that is highly suggestive of LS (Gonçalves et al., 2020). Bilateral
lesions in the basal ganglia, thalamus (mostly medially),
brainstem (substantia nigra, oculomotor nuclei, periaqueductal
gray matter), pontine tegmentum, and inferior olivary nuclei are
the most common imaging findings in LS (Gonçalves et al., 2020).
Cerebellar and spinal cord lesions may also be found. Leigh
syndrome–related neuropathologic changes include varying
aged vasculonecrotic lesions in the deep gray nuclei and
brainstem. Acute edematous lesions evolve to gliosis with
hypervascularity, and ultimately, chronic infarcts with necrosis
and gliosis (Gonçalves et al., 2020). Active brain lesions

TABLE 1 | Nuclear variants of the proband’s fibroblasts revealed by whole exome sequencing.

Gene Inheritance
pattern

OMIM Disease Nucleotide Variant Location Zygosity Reference Classification

EARS2 AR 612799 coxpd12 c.368T > A p.L123Q Exon 3 Het rs968976447 VUS
MTFMT AR 611766 coxpd15 c.20G > A p.R7H Exon 1 Het Not reported VUS
NARS2 AR 612803 coxpd24 c.791C > G p.S264C Exon 7 Het rs141507678 Pathogenic

Abbreviations: AR, autosomal recessive; Coxpd, combined oxidative phosphorylation deficiency; Het, heterozygous; VUS, variant of unknown significance.

FIGURE 3 | The proband’s fibroblasts display a deficit in total ATP rate production. (A) Schematic representation of the Agilent Seahorse XFp Real-Time ATP rate
assay during which both OCR and ECAR are simultaneously measured upon compound injections of mitochondrial inhibitors as indicated on the graph. (B)
Quantification of ATP basal rate from glycolysis (blue for the healthy subject and red for the proband) and mitochondrial OXPHOS (blue hatched column for the healthy
subject and red hatched column for the proband). Data are represented as means ± S. EM., n � 3 of independent experiments, each with three technical replicates.
* and ** indicate a p value of 0.001 and 0.05, respectively.
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demonstrate hyperperfusion, possibly from lactic acidemia-
induced vasodilation and lesional perfusion superimposed on
small-vessel proliferation, which accounts for the
hypervascularity seen in the proband4. Such hyperperfusion
may herald disease progression (Whitehead et al., 2016).
Structural brain abnormalities are unusual in patients with
inborn metabolic errors. Energetic disorders, such as inherited
mitochondrial diseases, are an exception, since neuronal
formation, proliferation, migration, and organization require
adequate energy production (Whitehead et al., 2015). This is
congruent with the patient’s cerebral malformations.

Our WES analysis reveals three heterozygous nuclear variants,
MTFMT, NARS2, and EARS2, mapping in genes known to cause
COXPD associated with Leigh syndrome (Eichers et al., 2004;
Tucker et al., 2011; Neeve et al., 2013; Simon et al., 2015; Lake
et al., 2016). The novel MTFMT variant with a predicted
pathogenicity revealed by our WES analysis adds further
genetic heterogeneity to LS (Hayhurst et al., 2019). The most
common MTFMT pathogenic variant, c.626C > T, was first
reported to cause LS (Tucker et al., 2011) given its role during
initiation of mitochondrial protein translation (Haack et al.,
2014). The pathogenic NARS2 variant (p.S264C) maps in the
catalytic domain of the mitochondrial asparaginyl-tRNA
synthase protein, which catalyzes the binding of asparagine to
its cognate mt-tRNA (Bonnefond et al., 2005). Several studies
reported NARS2 variants in LS patients (Simon et al., 2015; Sofou
et al., 2015; Mizuguchi et al., 2017; Lee et al., 2020; Sofou et al.,

2021). More relevant is the sensorineural hearing impairment, as
a hallmark of NARS2-associated LS phenotype, which is
consistent with the proband’s symptoms (Sofou et al., 2021).
Additional NARS2-linked phenotype includes intellectual
disability, epilepsy, and severe myopathy, all exhibited by the
proband (Simon et al., 2015). The proband harbors the EARS2
c.368T > A (p.L123Q) variant, predicted to be pathogenic by
computer-based algorithms, expands the genotyping spectrum of
LS-like syndrome. It maps in the exon 3, a hot spot for variants
causing severe infantile neurological disorders affecting the white
matter with high lactate levels (Steenweg et al., 2012; Talim et al.,
2013). Talim et al., 2013 reported an EARS2-driven clinical
spectrum overlapping with the proband’s symptoms: mother
with gestational diabetes, incomplete cleft palate, myopathy,
hypotonia, and lactic acidosis in the neonatal period.

Our bioenergetic analysis confirms dysregulated OXPHOS
pathway and deficient mitochondrial ATP rate. The decrease
in basal and ComplexV-driven respiration is congruent with the
reported COXPD caused by pathogenic MTFMT, NARS2, and
EARS2 variants (Boczonadi et al., 2018). More notably, is the
proband’s deficit in the spare respiratory capacity that hinders the
ability to avert bioenergetic exhaustion (Brand and Nicholls,
2011; Nielsen et al., 2017). A deficient spare respiratory
capacity in skeletal muscle cells leads to reduced physical
activities, exercise intolerance, eventually to sarcopenia (Hiona
et al., 2010). Since firing neurons require 80% of the spare
respiratory capacity (Nicholls, 2002), such deficit results in

FIGURE 4 | The proband’s fibroblasts do not possess an increased compensatory glycolysis to compensate for the OXPHOS deficit. (A) Schematic representation
of the Agilent Seahorse XFp Glycolytic Rate assay adapted from the Agilent Technologies brochure. (B) Profiles of the proton efflux rate (PER) of the proband (red) and a
healthy subject (blue). (C) Quantitative analysis of three key bioenergetic markers for glycolysis: basal glycolysis, %PER from basal glycolysis, and compensatory
glycolysis (healthy subject in blue and proband in red). Data are represented as means ± S.E.M., n � 3 of independent experiments, each with three technical
replicates. * indicates statistically significant differences with a p value of 0.0001.
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mental exhaustion and developmental regression. Dysregulated
spare respiratory capacity has been reported in patients with
other neurodevelopmental mitochondrial diseases (Oláhová
et al., 2015; Uittenbogaard et al., 2018a; Uittenbogaard et al.,
2018b; Uittenbogaard et al., 2019; Gropman et al., 2020). The
proband’s ATP deficit is further intensified by an ineffective
metabolic reprogramming from OXPHOS to glycolysis.

Our results on the patient-derived fibroblasts’ mitochondrial
energy deficit intersect with our TEM-based mitochondrial
morphometric analyses revealing decreased mitochondrial
population and altered ultrastructural morphology of cristae.
The patient’s cristae are poorly developed and swollen,
congruent with the deficient OXPHOS pathway demonstrated
by mitochondrial live-cell respiratory assays. Several studies have
provided evidence that the cristae shape determines the assembly
and stability of respiratory chain complexes, as the cristae house
the OXPHOSmachinery (Cogliati and Frezza 2013; Cogliati et al.,
2016; Aflzal et al., 2021). Our TEM findings of decreased
mitochondrial population suggest altered mitochondrial

biogenesis and/or mitochondrial dynamics, both processes
requiring bioenergetically competent mitochondria (Baxter
et al., 2012; Uittenbogaard and Chiaramello, 2014).

In sum, the deficient metabolic adaptability and global energy
deficit correlate with the proband’s neurological symptoms and
confirm the suspectedmitochondrial etiology. Ourmitochondrial
metabolic and morphometric analyses lend credence to the three
heterozygous variants,MTFMT, NARS2, and EARS2, mapping in
genes linked to COXPD associated with Leigh syndrome, as a
probable cause of the proband’s neurological manifestations and
mitochondrial etiology. Recently, oligogenic inheritance of
heterozygous variants has increasingly been recognized as a
pathogenic mechanism underlying complex phenotypes of
metabolic myopathies and mitochondrial neurodegenerative
diseases with a deficit in energy metabolism (Khoda and
Tokuzawa 2016; Pang and Teo 2017; Sambuughin et al., 2018;
Stenton and Prokisch, 2020; Costantini et al., 2021). Thus, our
study extends the traditional approach of a single-gene disorder
linked to mitochondrial inborn errors of metabolism diseases

FIGURE 5 | Mitochondrial morphometric analysis by transmission electron microscopy. Representative electron micrographs of healthy dermal fibroblasts (top)
and the proband’s dermal fibroblasts (bottom) are shown. The left panels illustrate the decreasedmitochondrial population in the proband (bottom) compared to that of
a healthy subject (top) (scale bar � 2 µm). The right panels show high magnification of mitochondria from a healthy subject (top) or proband (bottom), highlighting the
difference in length, and cristae morphology (scale bar � 500 nm).
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with the concept of multiple heterozygous variants mapping in
genes known to cause monogenic metabolic disorders. The
advent of next-generation sequencing-based diagnostics and
the burgeoning era of personalized medicine will most likely
contribute to the pathogenic complexity of mitochondrial
disorders, thereby improving the public genotype-phenotype
databases.
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