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SUMMARY

CRISPR-Cas systems provide bacteria and archaea with sequence-specific protection against 

invading mobile genetic elements. In the presence of divalent metal ions, Cas9 and Cas12a 

(formerly Cpf1) proteins target and cleave DNA that is complementary to a cognate guide RNA. 

The recognition of a protospacer adjacent motif (PAM) sequence in the target DNA by Cas9 and 

Cas12a is essential for cleavage. This RNA-guided DNA targeting is widely used for gene-editing 

methods. Here, we show that Francisella tularensis novicida (Fno) Cas12a, FnoCas9, and 

Streptococcus pyogenes Cas9 (SpyCas9) cleave DNA without a guide RNA in the presence of 

Mn2+ ions. Substrate requirements for the RNA-independent activity vary. FnoCas9 preferentially 

nicks double-stranded plasmid, SpyCas9 degrades single-stranded plasmid, and FnoCas12a 

cleaves both substrates. These observations suggest that the identities and levels of intracellular 

metals, along with the Cas9/Cas12a ortholog employed, could have significant impacts in genome 

editing applications
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CRISPR-mediated gene editing involves DNA targeting using complementary guide RNAs 

(gRNAs). Sundaresan et al. find that Cas9/Cas12a orthologs cause RNA-independent, non-

sequence-specific DNA cleavage in the presence of Mn2+ ions. These observations suggest that the 

type of Cas9/Cas12a and levels of intracellular metal ions may affect CRISPR-based genome 

editing.

INTRODUCTION

CRISPR and Cas constitute an RNA-based immune system present in bacteria and archaea. 

CRISPR systems render sequence-specific inactivation of foreign nucleic acid (DNA and/or 

RNA) entering the cell (Barrangou et al., 2007; Brouns et al., 2008; Hale et al., 2009; Jansen 

et al., 2002; Marraffini and Sontheimer, 2008). The CRISPR-Cas defense mechanism 

records a cell’s encounters with foreign DNA and/or RNA and provides adaptive immunity 

against future attacks by the same material (Barrangou et al., 2007; Gasiunas et al., 2012).

The CRISPR locus consists of a cas operon and a CRISPR array, coding for the Cas proteins 

and CRISPR RNA (crRNA), respectively. The CRISPR array consists of unique non-

repetitive sequences derived from foreign genetic elements, spacers, that are interspersed 

between short repetitive sequences, repeats (Brouns et al., 2008; Ishino et al., 1987; Jansen 

et al., 2002; Mojica et al., 2005). The CRISPR defense mechanism includes three stages: (1) 

adaptation, in which spacers are acquired; (2) crRNA biogenesis that produces a guide RNA; 

and (3) target interference, in which a Cas protein catalyzes site-specific cleavage of the 

foreign nucleic acid complementary to the crRNA (Jinek et al., 2012; Wright et al., 2016). 

Many CRISPR systems require a short 2- to 7-nucleotides (nt)-long protospacer adjacent 

motif (PAM) (Mojica et al., 2005, 2009) in the intruder DNA to distinguish between self and 

non-self targets (Jinek et al., 2012), while other systems distinguish through crRNA-target 

base-pairing patterns (Marraffini and Sontheimer, 2010).
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The CRISPR-Cas systems are grouped into two classes that are further divided into several 

types (I–VI) and sub-types based on the architecture of the CRISPR-Cas locus (Koonin et 

al., 2017). Cas9, the signature protein of the type II CRISPR system, requires crRNA, along 

with a trans-activating crRNA (tracrRNA), to achieve DNA interference (Garneau et al., 

2010; Gasiunas et al., 2012; Jinek et al., 2012). Type II-A (a sub-type of type II) 

Streptococcus pyogenes Cas9 (SpyCas9) is the most functionally and structurally 

characterized ortholog (Jiang et al., 2015, 2016; Jinek et al., 2012, 2014; Nishimasu et al., 

2014), and it has been widely used for gene-editing applications since its initial success in 

mammalian cells (Cong et al., 2013; Jinek et al., 2013; Mali et al., 2013; Wang et al., 2013). 

The crystal structures of other Cas9-nucleic acid complexes from Francisella tularensis 
novicida (Fno) (Hirano et al., 2016), Staphylococcus aureus (Nishimasu et al., 2015), and 

Campylobacter jejuni (Cje) (Yamada et al., 2017) also provide insights into the similarities 

and divergences of CRISPR-Cas9 systems. Cas12a (formerly called Cpf1), the signature 

protein for the type V-A CRISPR system, cleaves DNA guided by crRNA without an 

accompanying tracrRNA (Zetsche et al., 2015). Unlike Cas9, Cas12a is also known to cleave 

precursor crRNA during crRNA biogenesis (Fonfara et al., 2016). The crystal structures of 

Cas12a in complex with crRNA and/or DNA have provided structural insights into the 

mechanism of DNA cleavage (Dong et al., 2016; Gao et al., 2016; Swarts et al., 2017; 

Yamano et al., 2016).

Cas9 and Cas12a possess similarities and differences in their DNA cleavage mechanisms. 

Cas9 uses the HNH domain to cleave the DNA strand complementary to the crRNA 

sequence and the RuvC domain to cleave the DNA strand that is non-complementary to 

crRNA (Gasiunas et al., 2012; Jinek et al., 2012). Cas12a possesses a RuvC domain and a 

Nuclease (Nuc) domain (Gao et al., 2016; Yamano et al., 2016). The RuvC domain of 

Cas12a cleaves both the non-complementary and the complementary strands of the double-

stranded DNA (dsDNA), while the Nuc domain assists in the cleavage process (Swarts et al., 

2017; Yamano et al., 2016). Active site mutations in the RuvC and HNH domains convert 

the Cas9-crRNA complex into a strand-specific nicking endonuclease (Gasiunas et al., 2012; 

Jinek et al., 2012), whereas mutations in the RuvC domain of Cas12a abolish cleavage of 

both DNA strands (Yamano et al., 2016).

Even though dual RNAs (crRNA and tracrRNA) and a PAM region are essential for Cas9-

mediated dsDNA cleavage, several type II-C Cas9 proteins cleave single-stranded DNA 

(ssDNA) that lacks a PAM using only crRNA as a guide (Ma et al., 2015; Zhang et al., 

2015). Cas9 was shown to cut ssDNA bound to the crRNA using its HNH active site. A 

study reported that unexpected mutations were observed in the genomes of mice that were 

edited using CRISPR-Cas9 compared to a non-edited control mouse (Schaefer et al., 2017), 

though further studies are necessary to corroborate this conclusion. Nonetheless, these 

results emphasize the need for further characterization of the DNA cleavage mechanisms of 

CRISPR-Cas systems, particularly in understanding their potential activities and effects 

within the complex cellular environment.

Here, our studies demonstrate that FnoCas9, SpyCas9, and FnoCas12a possess RNA-

independent, non-sequence-specific cleavage activities on dsDNA and ssDNA targets in the 

presence of Mn2+. While FnoCas12a and FnoCas9 possess an RNA-independent double-
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stranded (ds) plasmid nicking activity, FnoCas12a and SpyCas9 catalyze ssDNA 

degradation. In FnoCas9, the HNH domain is responsible for the nicking activity, while in 

SpyCas9, the RuvC domain degrades the ssDNA. In FnoCas12a, the coordinated activity of 

the RuvC and the Nuc domains are essential for both DNA cleavage activities. These 

observations emphasize the need for caution in genome editing depending on the type of 

Cas9/Cas12a ortholog that is being used.

RESULTS

Cas9 Orthologs and Cas12a Possess RNA-Independent DNA Cleavage Activities

Our sequence analyses of Cas12a showed similarities to SbcC, a protein that belongs to the 

structural maintenance of chromosomes (SMC) family of proteins essential for DNA break 

repair, cell division, and other pathways. It associates with SbcD, an enzyme that possesses 

ATP-dependent nuclease activity in the presence of Mn2+ (Kamble and Misra, 2010). We 

tested the ability of purified, recombinant FnoCas12a to cleave ds plasmid (pUC19) in the 

presence of Mn2+ and ATP, without the addition of exogenous RNA. We observed plasmid 

cleavage with ATP-Mn2+, and this cleavage was not detectable with ATP-Mg2+ (Figure 

S1A). Further experiments showed that the plasmid cleavage requires only Mn2+, not ATP 

(Figure 1). To determine the nature of the DNA cleavage, the plasmid was linearized with 

EcoRI (one site) or nicked with Nt.BspQI (one site) to generate mobility standards. The 

FnoCas12a produced a band that migrated similarly to the nicked plasmid, indicating that 

FnoCas12a can nick dsDNA in the presence of Mn2+ without an added guide RNA (Figure 

1A). With this observation, we tested the ability of FnoCas9 and SpyCas9 for similar Mn2+-

dependent dsDNA cleavage activity in the absence of a guide RNA. We found that FnoCas9 

nicks ds plasmid (Figure 1B), while SpyCas9 does not (Figure 1C). A cleavage assay 

conducted using pET28m plasmid showed similar results (Figures S1B and S1C).

We proceeded to analyze whether the RNA-independent, Mn2+-dependent dsDNA cleavage 

extends to ssDNA. While FnoCas12a and SpyCas9 degraded circular ssDNA (M13mp18) in 

an RNA-independent manner, FnoCas9 showed minimal activity (Figures 1D and 1E). To 

further ensure that the RNA-independent DNA cleavage activity observed was not an artifact 

of our protein preparation, we performed our activity assays with a commercially available 

SpyCas9 from New England Biolabs (NEB-SpyCas9) (Figure S1D). NEB-SpyCas9 also 

possesses RNA-independent ssDNA degradation in the presence of Mn2+, similar to what 

was observed using the SpyCas9 purified in our laboratory (Figures 1D and S1D). NEB-

SpyCas9 did not nick ds plasmid, similar to the laboratory-purified SpyCas9.

Kinetics of RNA-Independent DNA Cleavage

To determine the robustness of the RNA-independent activity, we performed time course 

assays with the different substrates (Figure 2). The RNA-independent activity ranged from 

50% to 80% of ds plasmid nicking and >90%of circular ssDNA degradation within a 30-min 

incubation period, depending on the protein preparation. FnoCas12a produces some linear 

DNA, along with the nicked DNA (Figure 2A). Linearization is incomplete after an 

overnight reaction, indicating that linearization likely results from the plasmid being nicked 

multiple times at nearby sites. We also observe that linearization increases when the amount 
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of protein in the reaction is increased (data not shown). FnoCas9 produces little or no linear 

product (Figure 2B). FnoCas12a and SpyCas9 are robust in degrading circular ssDNA, 

because around 80% of the substrate is degraded within the first 5 min of incubation 

(Figures 2C–2E). There is no accumulation of intermediate products during the circular 

ssDNA cleavage within the time points that were analyzed.

RNA-Independent DNA Cleavage Activities Are Not Due to Co-purified Cellular RNAs

To rule out the contribution of fortuitously co-purified RNA in the Mn2+-dependent plasmid 

cleavage, we analyzed our protein preparations for RNA. A representative gel showing the 

purity of the recombinant proteins is presented in Figure S2A. Protein, RNA, and 

ribonucleoprotein (RNP) samples were passed through a size-exclusion column with 

simultaneous detection of absorbance at 254, 260, and 280 nm (Figures S2B and S2C). The 

same amount of protein was used in both protein and RNP samples to differentiate 

absorbance changes coming from RNA. The absorbance pattern for protein standards and 

RNA is shown for comparison (Figure S2B). The 260:280 nm ratio for the protein shows no 

detectable nucleic acid contamination (Figure S2D). There is a basal level of absorbance at 

254 nm in the protein sample that increases significantly in the presence of added RNA 

(Figures S2C and S2E). A peak of around 40 mAU is observed for all samples around the 7 

kDa molecular weight range. We do not expect this to be a co-purifying RNA based on the 

absorbance at 260 and 254 nm. To further exclude the possibility of fortuitous RNA 

contamination, we performed 32P-labeling experiments to label any co-purified RNA (Figure 

S3). As shown in Figure S3A, the 32P signal is only detectable when external RNA is added 

to the protein. A gel to show the minimal amount of RNA that can be detected by this 

method demonstrates that 5 ng RNA is detectable (Figure S3B). A molarity calculation 

based on the protein (1 mM) used in the labeling experiment, as well as the limit of RNA 

detection (1 ng), yielded an ~500:1 protein-to-RNA ratio, i.e., >99.8% of the protein 

molecules in our preparation are free of contaminating RNA. This is likely an overestimate 

of contamination by RNAs that could conceivably act as nuclease guides, because we are 

considering all RNAs regardless of their complementarity with the DNAs that we use as 

cleavage substrates. Therefore, we conclude that fortuitously contaminating RNAs, acting as 

conventional Cas9 or Cas12a guides, do not account for the Mn2+-dependent DNA cleavage 

activities observed.

Active Site Requirements Vary for RNA-Independent DNA Cleavage Activities

To identify the active site contributions for RNA-independent DNA cleavage by SpyCas9, 

FnoCas9, and FnoCas12a, we performed the cleavage assays with wild-type and active site 

mutants of the respective proteins. Previous studies have shown that active site mutants fold 

similarly to wild-type and perform RNA-dependent DNA cleavage activity (Hirano et al., 

2016; Jinek et al., 2012, 2014; Yamano et al., 2016). In the case of FnoCas9, the RNA-

independent activity is abolished in the HNH-inactive single mutant and the HNH- and 

RuvC-inactive double mutant (Figure 3A). This implicates the FnoCas9 HNH domain in 

RNA-independent ds plasmid cleavage. SpyCas9 ssDNA degradation depends on the RuvC 

domain, because a RuvC-inactive mutant did not degrade circular ssDNA (Figure 3B). In the 

case of FnoCas12a, both the RuvC and the Nuc domains are essential for RNA-independent 

DNA cleavage, because mutations in either of the active sites failed to cleave the DNA (both 
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ssDNA and dsDNA) (Figures 3C and 3D). Our results recapitulate previous studies that 

showed that Cas9 RNA-dependent DNA cleavage is carried out by the independent activities 

of the endonuclease domains, while Cas12a requires a functional RuvC domain for its 

activity (Jinek et al., 2012; Swarts et al., 2017). Our mutational experiments also 

demonstrate that DNA cleavage activity is not attributable to a co-purified cellular nuclease, 

because one amino acid change may not abolish co-purification of a cellular nuclease.

RNA-Independent DNA Nickase Activity Is Non-sequence Specific

To analyze the sequence specificity of RNA-independent DNA cleavage, the products of 

RNA-dependent and RNA-independent cleavage by Cas proteins were subjected to 

restriction enzyme digestion. The rationale was that plasmids subjected to sequence-specific 

cleavage will lead to a definitive banding pattern after restriction digestion, whereas 

plasmids with nonspecific cleavage will not show specific banding patterns (Figure 4). 

Products were analyzed on native and alkaline (denaturing) agarose gels. The nicked 

products (two bands on alkaline gel: linear and closed circular) from RNA-independent 

cleavage are converted to linear bands upon restriction digestion, without accumulation of 

products of any specific size. For a comparison, specific bands are observable when an 

RNA-dependent product (linear) is treated with restriction enzymes.

RNA-Independent Activity Varies with Substrate Type

To determine the substrate selectivity and further analyze the DNA-sequence specificity of 

RNA-independent DNA cleavage activity, EcoRI-linearized pUC19 and EcoRI-linearized 

M13mp18 were used as substrates (Figures 5 and S4). While there is no prominent cleavage 

of linear dsDNA (Figures S4A and S4B), linear ssDNA is easily degraded by FnoCas12a 

and SpyCas9 and to a lesser extent by FnoCas9 (Figures 5A and 5B). A comparison with 

alkaline gel shows that both closed circular and linear single-stranded (ss) M13mp18 (due to 

incomplete linearization of M13mp18) are degraded by FnoCas12a and SpyCas9. Following 

this, we used a 32P-labeled ss 60-mer-long oligonucleotide (oligo) as a substrate. Only 

FnoCas12a cleaved this DNA, showing that DNA modifications are not driving the DNA 

cleavage (Figures 5C and S4C). In the case of FnoCas12a, the cleavage product size does 

not correspond to that expected for PAM-dependent cleavage (Cas12a cleaves ~20 nt 

downstream of the PAM sequence) (Figure S4D) (Zetsche et al., 2015). SpyCas9 does not 

cleave the ss oligo despite the presence of PAM sequences in the oligo (Figure S4E). It is 

most likely that features other than PAM sequences contribute to defining sites of DNA 

cleavage. A ds 60-mer oligo does not produce visible products with any of the Cas proteins 

analyzed (Figure S4F). Our experiments do not rule out the possibility of DNA sequence- or 

structure-specific hotspots for the RNA-independent DNA cleavage. Further experiments 

involving deep sequencing approaches may reveal such hotspots. However, while 

informative, such evidence would support a sequence or structural preference rather than 

strict specificity.

Mn2+ Promotes Nickase Activity when Only One of the Two Cognate RNAs Is Available

We analyzed plasmid cleavage in the presence of one of the cognate RNAs (crRNA or 

tracrRNA) and its relation to the type of divalent metal ion present in the reaction. We found 

that in the presence of Mg2+, FnoCas9 is tightly regulated and linearizes the plasmid strictly 
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in the presence of both crRNA and tracrRNA (Figures 6A and 6B). Similarly, FnoCas12a, 

which requires only crRNA for RNA-dependent cleavage, linearizes the substrate plasmid 

only when crRNA and Mg2+ are present (Figure S5A). In the presence of Mn2+, FnoCas9 

nicks the plasmid in an RNA-independent manner if only one of the two RNAs (crRNA or 

tracrRNA) is present in the reaction, while it linearizes in an RNA-dependent manner when 

both crRNA and tracrRNA are available (Figure 6A). A comparison between the relative 

efficiencies of RNA-dependent (100%) and RNA-independent (50%–80%) activities can be 

seen in the reactions carried out with RNA-Mn2+ and Mn2+ (Figures 6A and S5). 

Accompanying experiments showed that in FnoCas9-D11A (in which the HNH domain is 

active), non-specific nicking can happen in the presence of Mn2+ and one of the two RNAs, 

while in the presence of both RNAs and Mn2+, the nicking should be strand specific, as has 

been previously observed (Figure 6A) (Hirano et al., 2016; Jinek et al., 2012). An HNH-

inactive mutant (FnoCas9-H969A) only possessed RNA-dependent, strand-specific nicking, 

while a double endonuclease mutant is inactive (Figure 6B). In the case of FnoCas12a, the 

Nuc domain mutant retained RNA-dependent nicking in the presence of Mn2+, similar to 

previous observations with Mg2+ (Yamano et al., 2016), while the individual (RuvC or Nuc) 

active site mutants of FnoCas12a lost the RNA-independent activity in the presence of Mn2+ 

(Figure S5A). An experiment was conducted with a cognate substrate and a non-cognate 

substrate with FnoCas9 (Figure S5B) or FnoCas12a (Figure S5C) and Mn2+. With a non-

cognate substrate, RNA-independent activity is promoted in the presence of one or none of 

the cognate RNAs in FnoCas9 and in the absence of crRNA in FnoCas12a. When all 

required RNA components are present, the noncognate substrate is not cleaved, while the 

cognate substrate is linearized by FnoCas9 and FnoCas12a.

Metal Dependency for the RNA-Independent DNA Cleavage Activity

To determine whether the RNA-independent DNA cleavage occurs at lower Mn2+ 

concentrations, we performed the cleavage assays at varying metal concentrations (Figure 

S6). We observed ds plasmid nicking starting at 500 mM Mn2+ in the case of FnoCas9 and 

at only 10 mM in the case of FnoCas12a (Figures S6A and S6B). The ssDNA cleavage is 

more efficient at a lower Mn2+ concentration (250 mM for SpyCas9 and FnoCas12a) 

compared to dsDNA cleavage (Figures S6C and S6D). We proceeded to analyze the effect of 

two divalent metals in promoting RNA-independent DNA cleavage. The rationale was to test 

whether the presence of Mg2+ ions will abolish the Mn2+-dependent, RNA-independent 

DNA cleavage activity. The RNA-independent activity was performed under three sets of 

conditions: 1, 5, and 10 mM Mn2+. For each Mn2+ concentration, 0, 1, or 2 mM Mg2+ 

concentrations were tested. We did not detect Mg2+ inhibition of the Mn2+-dependent 

activities under these conditions (Figures S6E–S6H).

To identify whether other divalent metals can promote the RNA-independent DNA cleavage 

activity, we performed an array of reactions using different divalent metals (Figure S7). The 

ds plasmid nicking activity is promoted by Co2+ in both FnoCas12a and FnoCas9, while 

metals such as Ni2+, Cu2+, and Zn2+ promoted a minimal level of activity in the case of 

FnoCas9 (Figures S7A and S7B). No ds plasmid nicking was observed for SpyCas9 using 

the different divalent metal ions tested in this study (Figure S7C). For circular ssDNA 

degradation, Co2+ promoted minimal activity in FnoCas12a and complete degradation in 
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SpyCas9 (Figures S7D and S7E). Some degradation was visible for SpyCas9 in the presence 

of 10 mM Ni2+ as well (Figure S7E). In the case of FnoCas9, Co2+ promoted ssDNA 

degradation (Figure S7F). The substitution of Mg2+ with other divalent metal ions was 

shown to be successful for RNA-dependent DNA cleavage in SpyCas9 (Ca2+, Mg2+, and 

Mn2+) (Jinek et al., 2012), FnoCas9 (Mg2+ and Zn2+) (Hirano et al., 2016), FnoCas12a 

(Ca2+, Mg2+, and Mn2+) (Zetsche et al., 2015), and Neisseria meningitidis Cas9 (Mg2+, 

Ca2+, and Ba2+) (Zhang et al., 2015). Our experiments show that Co2+ behaves identically to 

Mn2+ in promoting RNA-independent DNA cleavage in all Cas proteins tested. Certain 

protein-specific differences in the divalent metal requirement are visible for the RNA-

independent activity (e.g., FnoCas12a activity is supported by only Mn2+ and Co2+, whereas 

FnoCas9 and SpyCas9 can accommodate several other divalent metal ions for this reaction).

Mn2+ and DNA Trigger Conformational Changes in Cas Proteins that Are Distinct from 
Apo- and RNA-Bound Forms of the Proteins

Several studies on SpyCas9 and Cas12a have shown that the apo protein binds to RNA to 

undergo large conformational changes essential for cleavage of target DNA (Gao et al., 

2016; Jinek et al., 2014; Nishimasu et al., 2014; Swarts et al., 2017). We performed limited 

trypsin digestion of apo-, cognate RNA-bound, DNA-Mn2+-bound, and DNA-Mg2+-bound 

forms of the Cas proteins to probe their structural differences (Figure 7). In the case of 

SpyCas9, Mn2+-ssDNA-and Mn2+-dsDNA-bound Cas9 showed a comparable proteolytic 

digestion pattern to that of the single guide RNA (sgRNA)-SpyCas9 complex. The Mn2+-

DNA-bound form produced a more stable conformation compared to that of the Mg2+-DNA-

bound form. The full-length apo-SpyCas9 protein is digested into fragments by trypsin, 

whereas there is stabilization of the full-length protein in the RNA- and DNA-bound forms 

(Figure 7A). In the case of FnoCas9, the RNA-bound and DNA-bound forms (both ss and 

ds) had similar digestion patterns with both Mg2+ and Mn2+ conditions, and these 

conformations are different from the apo form (Figure 7B). For FnoCas12a, DNA-bound 

conformations are similar in the presence of both Mn2+ and Mg2+, and it is different from 

the apo form. In FnoCas12a, the DNA-bound forms possess a distinct banding pattern (e.g., 

~37 kDa) that is absent in the apo- or RNA-bound forms of FnoCas12a (Figure 7C). Our 

experiments demonstrate that while RNA-bound conformational changes are essential for 

RNA-dependent DNA cleavage, DNA and Mn2+ can trigger conformational changes 

required for RNA-independent DNA cleavage by Cas9 and Cas12a.

DISCUSSION

Protein Conformation in Relation to RNA-Independent Activity

Several structural and biophysical studies have provided insight into the mechanism of 

activation of Cas9 and the basis of sequence-specific, RNA-guided DNA cleavage (Jinek et 

al., 2014; Nishimasu et al., 2014; Sternberg et al., 2015). In the absence of sgRNA, apo-

SpyCas9 binds DNA in a sequence-independent manner with a binding affinity of 25 nM, in 

comparison to the SpyCas9-sgRNA complex binding complementary DNA with an affinity 

of 0.5 nM (Sternberg et al., 2014). The high-affinity non-specific DNA binding of apo-

SpyCas9 in the absence of sgRNA shows that conditions exist that can promote RNA-

independent activity. Structural or catalytic features are imparted by Mn2+ or Co2+ that 
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facilitate RNA-independent DNA cleavage by Cas proteins. In the case of RNA-dependent 

DNA cleavage by Cas9 and Cas12a, sequence specificity is based on RNA-DNA base-

pairing and PAM recognition, followed by a ruler mechanism to locate the cleavage position, 

not by direct sequence recognition of the cleavage region. It is likely that the observed 

sequence-independent DNA cleavage in the absence of RNA is facilitated by conformational 

changes induced by the specific divalent metals. Such conformational changes may orient 

the endonuclease domain ideally for DNA cleavage.

Based on limited proteolysis patterns of SpyCas9 and FnoCas12a, we postulate that the 

active site assembly (positioning of the HNH and the RuvC domains) and the subsequent 

conformational changes occurring in the Cas9-DNA complex are not identical when 

compared to the Cas9-sgRNA complex (Figure 7). SpyCas9 showed differences between the 

Cas9-DNA-Mg2+ and Cas9-DNA-Mn2+ conformations. While sequence-specific sgRNA 

interaction with the bridge helix causes large re-arrangements in the REC domain of Cas9 

during RNA-dependent DNA cleavage (Nishimasu et al., 2014), this may not occur in the 

case of the RNA-independent activity. Similarly, the conserved phosphate lock loop that is 

essential for R-loop formation in Cas9 and Cas12a orthologs may not be essential for RNA-

independent activity (Murugan et al., 2017). The RNA-independent DNA cleavage may 

involve conformational changes that place the DNA close to the endonuclease site where 

DNA cleavage occurs.

The relative flexibilities of the HNH and RuvC domains vary. The HNH domain is highly 

flexible compared to the RuvC domain. The HNH domain of SpyCas9 is ordered in the 

various crystal structures of SpyCas9, with increased stabilization coming from RNA-DNA 

binding compared to the apo protein (Hirano et al., 2016; Jinek et al., 2014; Jiang et al., 

2016; Nishimasu et al., 2014). In contrast, the electron density for HNH was weak in the 

crystal structure of FnoCas9 bound to the RNA-DNA hybrid, suggesting high mobility of 

this domain compared to the rest of the protein (Hirano et al., 2016). Even in the apo-

SpyCas9 crystal structure, more regions of the HNH are visible compared to the FnoCas9-

RNA-DNA-bound structure. In the recently reported CjeCas9 structure, the entire HNH 

domain had to be deleted to enable crystallization (Yamada et al., 2017). Altogether, these 

observations emphasize the differences in the flexibility of the HNH domain in different 

Cas9 orthologs, providing evidence for functional differences. A more mobile HNH domain 

may engage a dsDNA substrate non-specifically without a guide RNA and contribute to 

nicking by FnoCas9, but this may not be possible in the more rigid HNH domain of 

SpyCas9.

CRISPR-Cas9, CRISPR-Cascade, and Argonautes use similar mechanisms of target DNA 

binding to the pre-assembled RNP complex, even though they evolved divergently (Gao et 

al., 2016). Despite the mechanistic differences in RNA-dependent DNA cleavage, both Cas9 

and Cas12a possess Mn2+-dependent, RNA-independent DNA cleavage activities. It was 

reported that Cas5d, the protein essential for metal-independent crRNA maturation in type I-

C systems, possesses divalent metal-dependent DNase activity on a variety of DNA 

substrates (Punetha et al., 2014). Csd1, a component of the type I-C effector complex, also 

possesses RNase and metal-dependent DNA cleavage activities (Punetha et al., 2014). This 
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emphasizes the capabilities of Cas proteins of different CRISPR types in performing diverse 

DNA cleavage activities.

Contribution of Mn2+ to Diverse Activity in Other DNA-Metabolizing Enzymes

Several DNA-metabolizing enzymes exhibit differences in catalytic function based on the 

identity of the divalent metal involved in the reaction. For example, DNase I exhibits a 

higher level of activity and simultaneous cleavage of both strands of the DNA in the 

presence of Mn2+ compared to Mg2+ (Melgar and Goldthwait, 1968). Mn2+ and Co2+ ions 

have the unique ability to bind the DNA strand between a guanine base and an adjacent 

phosphate, producing a local unwinding effect on the DNA. The destabilized DNA is acted 

upon by multiple DNase I molecules, which is not achieved by metals such as Mg2+, Ca2+, 

and Zn2+ (Campbell and Jackson, 1980). In addition to changes in DNA structure, metal 

binding can promote conformational changes in the protein-DNA complex to position the 

scissile phosphate closer to the nucleophile in the active site.

Both Mn2+ and Co2+ have a preferred octahedral geometry, and they may bind to the 

protein, the DNA, or both in the complex. Even though Mg2+ can form an octahedral 

coordination sphere, Mn2+ and Co2+ may promote optimal orientation of the DNA in the 

active site to catalyze DNA cleavage in the absence of a guide RNA. This observation is 

supported by the crystal structures of DNA ligase D 3′-phosphoesterase (PE) enzyme, where 

Mn2+ and Co2+ promote a productive orientation of the metal, phosphate, and active site 

residues of the protein, but Zn2+ does not (Das et al., 2012). Many Mn2+-dependent DNA 

repair enzymes are active specifically in the presence of Mn2+, but not with Mg2+ (Das et al., 

2012; Zhu and Shuman, 2005), because of reduced transition state stability in the presence 

of Mg2+. In the case of DNA polymerases, divalent metal ions such as Mn2+, Co2+, Ni2+, 

and Zn2+ can substitute for Mg2+, with a subsequent reduction in fidelity and processivity of 

the enzyme (Frank and Woodgate, 2007). Some families of polymerases have evolved to use 

Mn2+ as the native co-factor, because Mn2+ promotes catalytic reactions that are not 

supported by Mg2+ ions due to the relaxed metal coordination and the active site flexibility 

that results from Mn2+ coordination (Frank and Woodgate, 2007; Yang et al., 2006). These 

observations can be applied to the RNA-independent DNA cleavage activities of Cas 

proteins. The presence of both cognate RNAs and Mn2+ leads to RNA-dependent activity, 

while the presence of one or none of the RNAs and Mn2+ leads to RNA-independent activity 

in FnoCas9, indicating the capabilities of Cas proteins to adopt different conformations 

based on the availability of RNA and divalent metals. Metal ions are not usually discernable 

within Cas9 structures, except in the case of FnoCas9, where a Zn2+ ion is essential for 

structural assembly of the REC3 domain, a region of the recognition lobe that is unique to 

FnoCas9 (Hirano et al., 2016). Thus, the observed differences in cleavage activity in the 

absence of RNA and in the presence of distinct divalent metals should not stem from drastic 

protein structural changes due to the absence of a structural Mg2+ ion.

Significance of RNA-Independent Activity in Genome Editing and Bacterial Physiology

Our experiments show that the RNA-independent DNA cleavage could occur at Mn2+ 

concentrations as low as 250 mM, especially in the case of ssDNA substrates. Mn2+ is 

essential for the survival of most organisms due to its role as an enzyme co-factor, ability to 
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provide protection during oxidative stress, contributions to transcriptional control 

mechanisms, and a host of other cellular roles (Jakubovics and Jenkinson, 2001). The 

effective physiological concentration of Mg2+ and Mn2+ varies considerably. For example, 

intracellular concentrations of Mg2+ can range from 2 to 3 mM of free Mg2+ up to 100 mM 

of bound Mg2+ in Escherichia coli (Cayley et al., 1991; Moncany and Kellenberger, 1981). 

Mn2+ can accumulate at millimolar concentrations in E. coli and many lactobacilli without 

deleterious effects to the cell (Jakubovics and Jenkinson, 2001; McEwan, 2009). The 

concentration of bound Mn2+ can differ from that of free Mn2+, thus affecting the net 

available concentration of Mn2+ to any specific protein (Akabayov and Richardson, 2011). 

Thus, it is possible for Cas proteins to encounter effective Mn2+ concentrations required for 

RNA-independent DNA cleavage under cellular conditions.

This finding may have significant impacts on CRISPR-mediated genome editing and 

warrants further consideration. Our results show that in the presence of one of the cognate 

RNAs (tracrRNA or crRNA) and Mn2+, RNA-independent activity is promoted in Cas9 

orthologs, which may be important in sgRNA design. Our experiments also show that 

SpyCas9 is superior to both FnoCas9 and FnoCas12a for ds genome editing under a broader 

range of conditions due to the absence of RNA-independent ds plasmid nicking activity in 

SpyCas9 under all divalent metal concentrations tested. A previous study that monitored 

mice offspring for undesirable effects following prolonged Cas9 expression found no 

morphological abnormalities or evidence of increased DNA damage (Platt et al., 2014). This 

may be attributed to the relative dearth of ssDNA sites in the mouse genome; Mn2+ 

concentrations below the threshold for promoting the RNA-independent DNA cleavage; the 

co-expression of Cas9 and sgRNA, thereby limiting promiscuous activity; or any 

combination of these. One study reported a high occurrence of single-nucleotide variants in 

mice edited using CRISPR-Cas9 (Schaefer et al., 2017), though these findings require 

additional support. Nonetheless, these and other reports emphasize the importance of further 

characterization of CRISPR systems in development for human therapeutic applications.

Mn2+ is essential for virulence, pathogenicity, and sporulation in many bacteria (Jakubovics 

and Jenkinson, 2001). Under these conditions, we can postulate that the Mn2+-dependent, 

RNA-independent DNA cleavage activity of Cas9 and Cas12a may play a role in bacterial 

pathogenesis by degrading or nicking DNA in a sequence-independent manner without a 

guide RNA. As one possible example, immune responses in many organisms, including 

humans and mice, involve secretion of extracellular traps (ETs) outside of the cell to prevent 

bacterial infection (Goldmann and Medina, 2013). ETs are composed of extensive DNA 

networks, along with antimicrobial proteins, and they have been shown to engulf bacteria 

that are ultimately killed by antimicrobial peptides in the trap (Brinkmann et al., 2004). 

Pathogens that were shown to escape ETs tend to possess powerful DNases that can cleave 

the backbone of an ET, thereby dismantling the antimicrobial peptides (Goldmann and 

Medina, 2013). In such a scenario, along with the importance of Mn2+ in some cases of 

bacterial virulence, it is conceivable that Cas9/Cas12a may promote non-specific DNA 

cleavage as a means of increasing bacterial pathogenicity. Previous studies have shown that 

Cas9 deletion mutants of C. jejuni and N. meningitidis had decreased virulence, lending 

weight to such hypotheses (Louwen et al., 2013; Sampson et al., 2013).
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EXPERIMENTAL PROCEDURES

Detailed experimental and analytical procedures are presented in the Supplemental 

Information.

Bacterial Strains, Plasmids, and Oligonucleotides

The Fno genomic DNA was obtained from Biodefense and Emerging Infections Research 

Resources Repository (BEI Resources). The plasmids, oligonucleotides, and other resources 

used in the study are listed in the supplemental information (Tables S1–S4).

Cloning and Protein Purification

The Fno cas9 and cas12a genes were cloned into a pET28a-based vector. Protein expression 

and purification of all the wild-type and mutant proteins followed previous protocols (Tables 

S2 and S3) (Jinek et al., 2012; Zetsche et al., 2015).

In Vitro Transcription

The transcription templates included DNA oligos (Table S4) or linearized plasmids 

containing the gene for the RNA of interest. The RNA was purified from an acrylamide-8 M 

urea gel.

Cleavage Assay

The cleavage assay using plasmids, linearized plasmids, and oligo DNAs was performed 

following previous protocols (Jinek et al., 2012). Control reactions include 10 mM Mn2+ and 

no protein. The quantification of activity is based on three replications of time course assays 

that used recombinant protein from different preparations. The gels were quantified using 

ImageJ (v.1.x) (Schneider et al., 2012). For the ds plasmid cleavage assays, the product 

formation was calculated using the formula P =[Ni ÷ (SCi + Ni)] × 100, where Ni represents 

the intensity of nicked DNA and SCi represents the intensity of supercoiled DNA. The 

graphs were prepared by plotting the average cleavage from the three replications (PAV) 

against the time points. SD was calculated using the formula , and 

SEM was calculated using the formula , where n represents the number of 

replications. For circular ssDNA degradation, the intensity of the circular DNA remaining at 

each time point was measured and normalized before plotting over time using the formula 

(CLi ÷ CHi) × 100, where CLi is the intensity of circular DNA in each lane and CHi is the 

highest intensity of circular DNA in each gel. SD and SEM were calculated using the same 

equations mentioned earlier, where P represents the non-degraded circular DNA.

UV-Visible Spectrophotometric Analysis of Cas Proteins

The absorbance at 254, 260, and 280 nm were recorded for SpyCas9, FnoCas9, and 

FnoCas12a proteins and RNP complexes while eluting out of an S200 increase column.
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Quantification of Co-purified RNA

A 32P labeling of RNA was performed with proteins and RNP complexes to detect trace 

amounts of co-purified RNA. The protein and RNP (a 1:1 molar ratio) samples were 

degraded by proteinase K, followed by phosphatase treatment (to remove the 5′-phosphate 

of RNAs), and labeling with 32P.

Sequence Specificity Analysis

The cleavage products of RNA-dependent and RNA-independent reactions were subjected to 

restriction digestion, and the products were resolved on native and alkaline agarose gels 

(McDonell et al., 1977).

Limited Trypsin Proteolysis

The wild-type SpyCas9, FnoCas9, and FnoCas12a proteins were treated with trypsin in their 

apo state, cognate RNA-bound state, or DNA-bound state, following previous protocols 

(Jiang et al., 2015; Ma et al., 2015).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• FnoCas9, SpyCas9, and FnoCas12a cleave DNA without a gRNA in the 

presence of Mn2+

• FnoCas9 nicks ds plasmid, while SpyCas9 degrades ssDNA

• FnoCas12a nicks ds plasmid and degrades ssDNA

• RNA-independent DNA cleavage appears not to be sequence specific
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Figure 1. FnoCas9 and FnoCas12a Possess RNA-Independent dsDNA Nickase Activity while 
SpyCas9 and FnoCas12a Possess RNA-Independent ssDNA Degradation in the Presence of Mn2+

(A) dsDNA cleavage by FnoCas12a.

(B) dsDNA cleavage by FnoCas9.

(C) dsDNA cleavage by SpyCas9. FnoCas9 and FnoCas12a nicked pUC19 (ds plasmid) in 

the presence of Mn2+. There is limited linearization of the plasmid by FnoCas12a. For 

comparison, pUC19 was digested with EcoRI (linearizes [L]) or Nt.BspQI (nicks [N]). 

SpyCas9 does not nick or linearize pUC19.

(D) ssDNA cleavage by SpyCas9 and FnoCas9.

(E) ssDNA cleavage by FnoCas12a. M13mp18 circular (Cr) ssDNA was degraded by 

SpyCas9 and FnoCas12a in the presence of Mn2+. In comparison, FnoCas9 has limited 
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ssDNA degradation. D, degradation; C, control condition with no protein; None, condition 

with protein but no external metal or EDTA; SC, supercoiled. See also Figures S1–S3, S6, 

and S7.
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Figure 2. Time Course Assay to Quantify the RNA-Independent DNA Cleavage Activity
(A) Activity of FnoCas12a on pUC19 plasmid. The major product is the nicked band. The 

linearization of the plasmid is incomplete after an overnight incubation.

(B) Activity of FnoCas9 on pUC19 plasmid. The linearization of the plasmid is minimal 

compared to FnoCas12a.

(C) Activity of FnoCas12a on M13mp18 circular DNA. The DNA is degraded, and there is 

no accumulation of lower molecular weight species except for the smaller degradation 

products.
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(D) Activity of SpyCas9 on M13mp18 circular DNA. The DNA is degraded during the 

reaction. The graphs represent the average formation of nicked DNA for ds plasmid 

substrate or the amount of circular DNA left for circular ssDNA substrate. The graphs (mean 

± SEM) indicate activity based on quantification of DNA bands (Schneider et al., 2012), and 

error bars are from three replications performed using proteins from different protein 

preparations.

(E) Time to reach 50% activity for all activities.

The error bars are represented as SEM and were calculated using the formula 

, where n represents the number of replications (see Experimental 

Procedures). SD was calculated using the formula . C, control with no 

protein; N, nicked; L, linear; SC, supercoiled; Cr, circular ssDNA; D, degradation.
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Figure 3. Active Sites Responsible for the RNA-Independent DNA Cleavage Activity
(A) ds nicking activity in FnoCas9 is performed by the HNH domain.

(B) ssDNA cleavage is performed by the RuvC domain in SpyCas9.

(C) Coordinated activity of both the RuvC and the Nuc domains is essential for RNA-

independent dsDNA nicking in FnoCas12a.

(D) Both RuvC and Nuc active sites are required for ssDNA degradation in FnoCas12a.

C, control with no protein; WT, wild-type; M, mutant; DM, double mutant (both 

endonuclease sites inactivated); N, nicked; SC, supercoiled; Cr, circular ssDNA; D, 

degradation; None, condition with protein but no external metal or EDTA. See also Figure 

S5.
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Figure 4. RNA-Independent DNA Nicking Activity by FnoCas9 and FnoCas12a Is Non-sequence 
Specific
(A and B) Restriction enzyme (RE) analysis of the cleavage products produced by FnoCas9 

on a native agarose gel (A) and on a denaturing alkaline agarose gel (B).

(C and D) RE analysis of the cleavage products produced by FnoCas12a on a native agarose 

gel (C) and on a denaturing alkaline agarose gel (D). Comparison of native and alkaline gels 

shows that the nicked band produced by RNA-independent cleavage is converted to the 

linear product after RE digestion. The absence of specific-sized products compared to the 

lanes with RNA-dependent cleavage product analysis indicates that RNA-independent 
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activity is non-sequence specific. Identification of sequence- or structure-specific hotspots in 

the RNA-independent DNA cleavage will require further experiments.

pUC19-L, pUC19 treated with EcoRI; pUC19-N, pUC19 treated with Nt.BspQI; ExoIII: 

nicked pUC19 treated with exonuclease III, Exo III degrades linear DNA; Cas-N, nicked 

product from the RNA-independent activity of Cas protein (FnoCas9 or FnoCas12a); Cas-L, 

linear product from the RNA-dependent activity of Cas protein (FnoCas9 or FnoCas12a); L, 

linearization by RE; Cl, shorter cleavage product produced by sequence-specific digestion 

by RE; CC, closed circular; kbp, kilo base pairs; kb, kilobases; RI, RNA-independent 

cleavage; RD, RNA-dependent cleavage.
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Figure 5. RNA-Independent DNA Nicking Activity on Linear DNA Substrates
(A and B) M13mp18 digested using EcoRI (one site) was treated with Cas proteins, and the 

products were analyzed on a native agarose gel (A) and a denaturing alkaline gel (B). Both 

FnoCas12a and SpyCas9 cleave linear ssDNA, while FnoCas9 has limited activity. The 

cleavage of M13mp18 with EcoRI is not complete, as seen by the presence of both closed 

circular (CC) and linear (L) bands on an alkaline gel. Exonuclease III (ExoIII) that degrades 

linear DNA is included to distinguish CC and L bands. Both CC and L DNA are degraded 

by FnoCas12a and SpyCas9.
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(C) 5′-32P-labeled ss oligo DNA was treated with Cas proteins. Only FnoCas12a cleaves ss 

oligo substrates.

C, control with no protein; none, reaction with protein without added metal; Cr, circular ss 

M13mp18; D, degradation; kbp, kilo base pairs; kb, kilobases; OI, 60-mer ss oligo; Cl, 

cleavage products. See also Figure S4.
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Figure 6. In the Presence of Either of the RNAs (crRNA or tracrRNA), Mn2+ Promotes RNA-
Independent Activity by FnoCas9
(A) Activity of FnoCas9 wild-type (WT) and the RuvC-inactive (D11A) mutant.

(B) Activity of the FnoCas9 HNH-inactive (H969A) mutant and the double mutant (DM), 

where both RuvC and HNH are inactivated.

While Mg2+ promotes RNA-dependent DNA cleavage (linear product) only when both 

crRNA and tracrRNA are present in the reaction, Mn2+ can promote plasmid nicking when 

either crRNA or tracrRNA is present in the reaction and linearization when both RNAs are 

present. In the case of D11A, nicking is observed for RNA-dependent (both RNAs present) 

and RNA-independent activities. The mutants H969A and DM show negligible RNA-
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independent activity. Control lanes with linear (L) bands produced by EcoRI digestion and 

nicked plasmids (N) produced by Nt.BspQI digestion are also shown. SC, supercoiled.

Sundaresan et al. Page 28

Cell Rep. Author manuscript; available in PMC 2018 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Limited Trypsin Proteolysis Suggests Structural Differences between Apo-, RNA-
Bound, and DNA-Bound Forms of SpyCas9, FnoCas9, and FnoCas12a
(A) Limited proteolysis of SpyCas9. In the presence of Mn2+-DNA, full-length protein is 

more intact compared to Mg2+ (arrows).

(B) Limited proteolysis of FnoCas9. There are no visible differences between Mn2+ and 

Mg2+ digestion patterns (arrow).

(C) Limited proteolysis of FnoCas12a. A distinct pattern with additional bands at 37 kDa 

(arrow) is present for DNA-bound structures when compared to apo- and RNA-bound 

FnoCas12a.

For all proteins, apo protein is rapidly degraded, while the RNA- and DNA-bound structures 

appear to be more stable, with distinct banding patterns compared to apo protein digestion. 

A protein marker (M) is present in each gel. T, trypsin.
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