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Paris, France, 3 Département Informatique, ENS de Lyon, Lyon, France, 4 Univ. Grenoble Alpes, CNRS,

Inria, Grenoble INP, Gipsa-lab, Grenoble, France, 5 Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm,
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Abstract

The COVID-19 epidemic has forced most countries to impose contact-limiting restrictions at

workplaces, universities, schools, and more broadly in our societies. Yet, the effectiveness

of these unprecedented interventions in containing the virus spread remain largely unquanti-

fied. Here, we develop a simulation study to analyze COVID-19 outbreaks on three real-life

contact networks stemming from a workplace, a primary school and a high school in France.

Our study provides a fine-grained analysis of the impact of contact-limiting strategies at

workplaces, schools and high schools, including: (1) Rotating strategies, in which workers

are evenly split into two shifts that alternate on a daily or weekly basis; and (2) On-Off strate-

gies, where the whole group alternates periods of normal work interactions with complete

telecommuting. We model epidemics spread in these different setups using a stochastic

discrete-time agent-based transmission model that includes the coronavirus most salient

features: super-spreaders, infectious asymptomatic individuals, and pre-symptomatic infec-

tious periods. Our study yields clear results: the ranking of the strategies, based on their abil-

ity to mitigate epidemic propagation in the network from a first index case, is the same for

all network topologies (workplace, primary school and high school). Namely, from best to

worst: Rotating week-by-week, Rotating day-by-day, On-Off week-by-week, and On-Off

day-by-day. Moreover, our results show that below a certain threshold for the original local

reproduction number Rlocal
0

within the network (< 1.52 for primary schools, < 1.30 for the

workplace, < 1.38 for the high school, and < 1.55 for the random graph), all four strategies

efficiently control outbreak by decreasing effective local reproduction number to Rlocal
0

< 1.

These results can provide guidance for public health decisions related to telecommuting.

Author summary

The COVID-19 epidemics has forced most countries to impose prolonged contact-limit-

ing restrictions at workplaces, universities, schools. Using simulation and taking into
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account the most salient epidemiological features of SARS-CoV-2, we analyze the risk of

outbreak and the impact of contact-limiting strategies on three real-life contact networks

stemming from a workplace, a primary school and a high school. The strategies investi-

gated involve (1) Rotation, in which workers are evenly split into two shifts that alternate

on a daily or weekly basis; and (2) On-Off, where the whole group alternates periods of

normal work interactions with complete telecommuting. Our study yields clear results,

whatever the studied network (workplace, primary school and high school), we find that,

from best to worst: Rotating week-by-week, Rotating day-by-day, On-Off week-by-week,

and On-Off day-by-day can all help mitigate transmission below a certain epidemicity

threshold. In the current context where institutions and companies have to quickly take

local organizational decisions and review their planning or agendas, our results should

help inform public health decisions.

Introduction

While the world is beginning to deploy vaccinations and experimenting for more effective

cures, the COVID-19 pandemics must be contained by the deployment of suitable Non-

Pharmaceutical Interventions (NPIs), so as not to overwhelm the healthcare systems. So far,

besides mask wearing and hygiene, governments have largely resorted to generalized lock-

down orders, which have severe adverse effects on economy and society, as well as to milder

restrictions such as partial school closures, curfews, and restricting access to non-essential

businesses such as gyms and restaurants. Such NPIs and organizational adaptations have to

balance the competing goals of limiting contagion and maintaining an adequate level of

social and economic activity. Assessing the performance of containment and mitigation

strategies with respect to the propagation of the epidemic is therefore critical to making the

right policy choices and has attracted an immense research effort from many disciplines,

from medical science to economics, engineering, and social, computer and statistical sci-

ences [1–6].

Within this broad policy and research question, our work concentrates on the role of

telecommuting and how to effectively include telecommuting in the schedules of schools,

workplaces or other organizations. Our purpose is to assess and compare several telecom-

muting strategies in workplaces and schools in terms of their effectiveness in mitigating pos-

sible local outbreaks. Coming up with a precise assessment of the effects on the epidemic of

these strategies indeed requires a precise understanding of the spreading of contagion in dif-

ferent environments [7, 8]. To achieve this objective, we exploit two main ingredients: (1)

fine-grained information about contacts between individuals in different environments;

and (2) the specific behavior of SARS-CoV-2 transmission and natural history. The first

ingredient takes the form of graphs that encode daily contact networks based on (publicly

available) empirical data collected in schools and workplaces [9] (Fig 1). The second ingre-

dient is a full epidemiological transmission model for SARS-CoV-2 virus (Fig 2) that

includes the rates of contamination by individuals in different conditions, such as asymp-

tomatic or symptomatic, as well as the possible presence of “super-spreaders” [10].

Equipped with this information, one can then simulate the spread of a coronavirus epidemic

in the different work environments and evaluate the effectiveness of various mitigation

strategies. In contrast to most previous work, we focus on real-life and not on synthetically

generated contact networks.
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Results

We simulate the spread of the virus in schools and workplaces and assess which kind of hybrid

telecommuting strategy is the most effective in preventing its dissemination. For our simulations,

we use fine-grained empirical data that describe person-to-person interactions and explore three

contact networks collected in a primary school, a high school, and a workplace in France (Fig 1)

over 2 to 10 days. We simulate the transmission of the virus over the network by implementing a

stochastic transmission model of SARS-CoV-2 (Fig 2) that captures the virus clinical and trans-

missibility characteristics, including both symptomatic and asymptomatic individuals and

super-spreading events. Several metrics are used to characterize SARS-CoV-2 transmission level

following the introduction of the virus through an index case in the network in simulations: the

Fig 1. Contact graphs. (a-c) Three one-day contact networks in (a) a primary school with 242 students, (b) a

workplace with 217 workers, (c) a high school with 327 students. Node colors correspond to known groups (classes or

department). We see that the majority of contacts happen within groups. (d) A synthetic random graph with 9 groups

selected randomly.

https://doi.org/10.1371/journal.pcbi.1009264.g001

Fig 2. The infection model for SARS-CoV-2. The incubation (Exposed, green) lasts on average 3.7 days [11–13] and

is followed by an infectious period (Infectious, orange) of 9.5 days on average, consisting of a presymptomatic period

of average 1.5 days [11] followed by a symptomatic period of average 8 days [14]. We assume that symptomatic

individuals self-isolate after one day of symptoms, while asymptomatic individuals (40% of the infected [15]) do not

isolate.

https://doi.org/10.1371/journal.pcbi.1009264.g002
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probability that an outbreak occurs (defined here as� 5 local secondary cases), the delay until

such outbreak starts, and the expected total number of locally infected individuals in case of out-

break. Assuming a baseline local reproduction number of 1.25 within the studied settings and no

specific telecommuting measure implemented, the importation of the virus in the network leads

to frequent local outbreaks (27% of the times for a high school, 25% for a primary school, and

26% for a workplace) and to a significant number of infections in case of outbreak, no matter the

size of the studied network (34 infections on average in a high school of size 327).

In order to assess to which extent telecommuting can help mitigating the dissemination risk,

five containment strategies are implemented and assessed here. Two “On-Off” strategies that

consist in allowing the whole group of individuals (pupils/workers) on site (1) every other day

(On-Off Daily), or (2) every other week (On-Off Weekly). We also consider two “Rotating”

strategies which consist in allowing half the individuals on (1) odd days, while the other half is

allowed on even days (Rotating Daily), or (2) odd weeks, while the other is allowed on even

weeks (Rotating Weekly). Finally, we additionally consider the case of full-time telecommuting

as a benchmark. In all these scenarios, we allow the individuals to maintain a small fraction 25%

of their original local interactions even while telecommuting (thereby modeling the case of

imperfect compliance by the individuals). We start the simulation with an index patient who is

infected on a random day picked uniformly between 1 and 14: since the strategies are periodic

with period 2 weeks, then, by symmetry, On-Off and Off-On are equivalent in our simulations.

Our results are clear: no matter which contact network they are tested on, no matter the

underlying comparison metric (probability of outbreak, delay until outbreak, or expected total

number of infected patients), the rankings of the four strategies are consistent (see Fig 3): the

Rotating strategies significantly dominate the On-Off strategies which in turns largely domi-

nate the absence of any policy. As expected, the full-time telecommuting (with persistent con-

tacts only) dominates all strategies. The figure also shows that weekly and daily alternations

are very similar in terms of the probability of local outbreak and of delay before outbreak,

because these quantities depend on the beginning of the epidemic only; but the total number

of infected people presented on the bottom panel shows that in the long run weekly alternation

is a little bit better than daily alternation, both for On-Off (15.6 vs 17.4) and for Rotating (12.0

vs. 12.4) strategies. The robustness of our findings is confirmed by the extensive sensitivity

analysis that we performed both on the graph structures and on the parameters of the epidem-

ics, such as the dispersion of transmission probability, the fraction of asymptomatic patients,

or variations of Rlocal
0

. For simplicity, we only present in the main text results associated with

the high school contact graph: the corresponding results for the other graphs are presented in

S5–S7 Fig in the Supplementary Information.

Because the true local reproductive number in the studied settings is unknown, and to pro-

vide more insight, we study the impact of the strategies on the effective reproductive number.

If Rlocal
0

denotes the local baseline reproductive number in the absence of strategy, what is the

actual effective reproductive number Reffective if some strategy is in place? The answer is given

in Fig 4. We observe that, in the high school graph, if Rlocal
0

is too high (larger than 1.7), then

none of these strategies, except from the full-time telecommuting, suffices to prevent the onset

of an outbreak. Instead, for Rlocal
0

that are between 1 and 1.38, we show that all four of these

strategies are satisfactory and manage to curb the epidemic. Moreover, the ranking of the strat-

egies described above is consistent with the effectiveness of the strategies regarding the reduc-

tion of the effective reproductive number. Namely, the Rotating strategies outperform the On-

Off strategies, and the full-time telecommuting outperforms the Rotating strategies.

Fig 5 provides an illustration of transmission chains resulting from the various strategies.

Due to the randomness, the introduction from an infected index case within the workplace or
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school results in a variety of propagation trees (see S19–S22 Figs). However, some general pat-

terns are observed. First, transmissions often occur between nodes of the same color (86% of

all transmissions for high school, for the baseline values of model parameters), i.e. within

groups (classes in school and departments at work), reflecting the higher density of contacts

within groups (93% of all contacts for high school, see Table 1 and Fig 1 and S1–S3 Figs). Sec-

ond, a large share of transmissions (56%) are due to asymptomatic cases. this is due to the

hypothesis that symptomatic cases isolate themselves after a day whereas asymptomatic cases

do not. Third, a few super-spreading events are visible; e.g. on the top panel of Fig 5, which is

sampled with no telecommuting strategy, a super-spreader event on week 4 is at the origin of 7

new branches accumulating in total 47 cases. Comparing the different trees highlights how the

strategies avoid this super-spreading event and, therefore, the transmission. Indeed, for the

baseline values of the parameters, averaging over all executions, in the high school contact net-

work 15% of the tree nodes have degree at least 3 and those nodes are responsible for 61% of

all infections.

We finally investigate whether our results are maintained under different contexts related

to population immunization and circulating variants (see Fig 6). Even at relatively high level of

Fig 3. Comparison of the effects on SARS-CoV-2 outbreak of containment strategies implemented in the contact

graph of a high school when Rlocal
0 ¼ 1:25. The three panels respectively correspond to three relevant metrics: (top)

the probability that at least 5 people are infected besides patient 0 (which we define as ‘Outbreak’ event); (middle) the

average number of days until 5 people are infected besides patient 0, conditioned on the occurrence of outbreak;

(bottom) the average total number of people infected in the population in case of outbreak. That number is a random

variable that has a large standard deviation, but with probability 95% its expectation lies within the error bars.

https://doi.org/10.1371/journal.pcbi.1009264.g003

PLOS COMPUTATIONAL BIOLOGY Mitigating COVID-19 outbreaks in workplaces and schools by hybrid telecommuting

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009264 August 26, 2021 5 / 24

https://doi.org/10.1371/journal.pcbi.1009264.g003
https://doi.org/10.1371/journal.pcbi.1009264


immunity, the introduction of a new variant with a higher transmission capacity (increase fac-

tor from 1.25 to 2) leads to a significant risk of outbreak in the“No strategy” scenario. Indeed,

in such scenario, the introduction in a population that is 40% immune, of a variant 50% more

infectious still leads to a probability of outbreak of 20.5%, compared to the 27.2% risk obtained

in the baseline scenario with wild type virus and no immunity. Instead, we observe that the

adoption of strategies significantly decreases the risk. We also investigate the impact of vacci-

nation (or of otherwise acquired immunity), investigating a scenario where 40% of the popula-

tion is partially immune and that partial immunity consists in a reduced but imperfect

protection against virus acquisition and transmission. Partial immunity overall reduces the

epidemic risk, but does not prevent outbreaks from happening. For example, in a situation

where partially immune individuals are 50% less likely to be infected and, if infected, 50% less

likely to infect others, then the probability of outbreak still equals 19.7% in the “No Strategy”.

Again, implementation of strategies decrease that risk. Importantly, the ranking among strate-

gies was unchanged in all the the investigated scenarios regarding variant’s transmissibility

and population’s immunity.

Fig 4. Impact of the strategies for the high school contact graph. The x-coordinate gives the value of the baseline

reproduction number Rlocal
0

(mean number of persons infected by index case). For each strategy the y-coordinate gives

the mean value of the effective reproduction number as a result of using the strategy. Thus, for our baseline value

Rlocal
0
¼ 1:25 (dotted vertical line), doing nothing leads to Re = 1.25> 1, whereas, as long as Rlocal

0
< 1:38, all strategies

lead to Re< 1. For each curve, the shaded areas correspond to 95% confidence intervals on the estimate of Rlocal
0

(calculated as a function of the model parameters: horizontal error bar) and on the estimate of Re (as a function of the

strategy: vertical error bar).

https://doi.org/10.1371/journal.pcbi.1009264.g004

PLOS COMPUTATIONAL BIOLOGY Mitigating COVID-19 outbreaks in workplaces and schools by hybrid telecommuting

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009264 August 26, 2021 6 / 24

https://doi.org/10.1371/journal.pcbi.1009264.g004
https://doi.org/10.1371/journal.pcbi.1009264


Material and methods

Key elements in constructing our simulations are the choice of the contact networks and the

definition of the disease transmission model, which we describe below.

Fig 5. Epidemic propagation in the high school contact graph for different strategies. Each panel corresponds to an

example simulation for a given strategy; strategies are sorted as by their effectiveness, from no strategy to full

telecommuting. In each panel, the horizontal axis corresponds to time (day of infection) and each white or gray

column corresponds to one week. The vertical axis shows the prevalence (percentage of infectious persons among the

students), its evolution is plotted in grey. The epidemic propagation is shown as a tree, where each node represents an

infected person and points to the persons it infects. Nodes corresponding to symptomatic (resp. asymptomatic)

persons are circled in blue (resp. red). Similarly a blue (resp. red) arrow corresponds to a contamination by a

symptomatic (resp. asymptomatic) person. The thickness of arrows indicates the super-spreading factor. The node

color corresponds to the group of the person (class or department). The node size is linear in its degree in the graph.

All the propagation trees are generated using the same realizations of the probabilistic events (run 15978 in our

simulations), so that the differences between the trees are not artifacts of their randomness, but solely depend on the

different strategies in place.

https://doi.org/10.1371/journal.pcbi.1009264.g005

Table 1. Contact graphs characteristics. The three studied Sociopatterns contact networks and the synthetic random graph are detailed in the table. Averaging over the

days on which the data was gathered, the high school, in which data was gathered over 5 school days, comprised 327 individuals (students and teachers), each of which was

in contact with 35 persons on average (degree), and the student had 230 20-second contacts per day on average (cont./pers./day). The primary school has the highest num-

ber of contacts per person in a day, followed by the high school, and finally by the workplace. All graphs have around 10 groups (classes or work departments). The percent-

age of intra-group contacts (perc. intra) is at least 70% in real networks while it is around 10% in a random graph with close to ten groups.

Contact networks nb days nodes degree cont./pers./day nb. grp. perc. intra

Primary school 2 242 68.7 519.7 10 72.6%

High school 5 327 35.6 230.6 9 93.0%

Workplace 10 217 39.4 72.1 12 76.3%

Synthetic graph 1 327 35.6 230.6 9 10.6%

https://doi.org/10.1371/journal.pcbi.1009264.t001

PLOS COMPUTATIONAL BIOLOGY Mitigating COVID-19 outbreaks in workplaces and schools by hybrid telecommuting

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009264 August 26, 2021 7 / 24

https://doi.org/10.1371/journal.pcbi.1009264.g005
https://doi.org/10.1371/journal.pcbi.1009264.t001
https://doi.org/10.1371/journal.pcbi.1009264


Contact networks

We use traces for three different places, that are available from the SocioPatterns project

(http://www.sociopatterns.org). The project collected longitudinal data on physical proximity

and face-to-face contacts between individuals in several real-world environments.

1. A primary school (see [16, 17]) where 242 persons participated in 2009 over 2 days (cover-

age of 96% among children and 100% among teachers).

Fig 6. Impact of strategies on outbreak probability in a partially immunized population subject to the circulation

of variants, simulated in the high school contact network. In our baseline scenario with no strategy, the probability

of outbreak equals 27.2%. Each row reproduces results under specific strategies. In the left column, we study the

sensitivity of this quantity with respect to potential variants showing increased transmission capacity compared to the

reference strain (multiplicative factor on the y-axis), by assuming that such variants would circulate in partially

immune populations (percentage of immune people on the x-axis); immune people do not get infected nor transmit

the virus. In the right column, we study the sensitivity with respect to vaccination: we assume that 40% of the

population is partially immune and that partially immune individuals are less likely to be infected and to contaminate

others when infected. On the x-axis, we vary the relative probability of becoming infected and, on the y-axis, the

relative probability of transmission by an infected partially immune individual. These results assume that patient 0 is

never immune.

https://doi.org/10.1371/journal.pcbi.1009264.g006
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2. A workplace Institut de Veille Sanitaire (see [9]) where 232 employees participated in 2015

over two weeks (10 working days, coverage around 70% of the employees according to a

previous deployment [18]).

3. A high school (see [19]) where 329 individuals (students) participated in 2013 over 5 days

(coverage of 86% of the students in the 9 participating classes).

For each day on which data was gathered we extract a graph aggregating the data for that

day: a node corresponds to an individual, an edge corresponds to a face to face contact within

1.5 meters within a 20 seconds time interval (interactions were measured using active radio-

frequency identification devices (RFID)), and the weight of the edge is the number of such

short contacts during the day. For comparison, we also generate a synthetic random graph, cal-

ibrated so that its main parameters (total number of nodes, of edges, and of contacts) match

those of the high school contact network: more precisely, each edge is generated by selecting

uniformly at random two nodes with one associated contact (rejecting loops and already gen-

erated pairs) and each of the remaining contacts is associated to an edge selected uniformly at

random among the previously generated edges. Table 1 lists the main parameters of the graphs

obtained by averaging over all days on which data was gathered. Fig 1 displays the three con-

tact graphs on their first day, together with the synthetic random graph obtained. The node

colors correspond to groups (classes or work departments) for the real-world contact graphs,

and are chosen uniformly at random among 9 colors for the synthetic random graph. All other

graphs and average graphs are depicted in S1–S4 Figs.

SARS-CoV-2 transmission model

We model the introduction of the virus in a network by randomly sampling an index case uni-

formly among all the nodes to determine the patient initially infected. Similarly to related

works like [20], we assume a natural history that is an agent-based model that refines classical

SEIR transmission models (see Fig 2): initially individuals are susceptible (S); once contami-

nated, having been exposed (E), they go through an incubation period, after which they become

infectious (I) after which they are assumed to recover (R) and develop immunity. An individual

may be symptomatic or asymptomatic. In the former case, before developing symptoms she/

he goes through a pre-symptomatic phase that is already infectious. We assume that transmis-

sion between an infectious and a susceptible individual happens through proximity contacts as

the ones recorded in the contact network. To every 20-second contact is associated an inde-

pendent small probability of transmission, p, so that the transmission risk increases with the

duration of contact. The time step of the simulation is one day, which is consistent with the

daily rhythm of commuting: as an example, if an infectious person is in contact with a suscep-

tible person for 15 minutes during the day (and therefore through 45 “contact events”), then

the probability of transmission during that day equals 1 − (1 − p)45, which for p = 0.001 is

approximately 4.4%.

Stochastic simulation engine

We use an agent-based model with discrete time where the time step corresponds to a day.

Each person is an agent whose state is either S, E, I, or R; according to the SEIR transmission

model described above. Every day, the state of each agent can change according to the number

of contacts with other agents in the contact network for that day, the states of these agents, and

random coin flips based on the transmission probability. The state of an agent also depends on

when it had a previous state change and on what random value was obtained for the duration
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of the current state. A dedicated C++ program was developed for that purpose and is made

available.

The model parameters are summarized in Table 2. For each infected individual, the dura-

tion of the incubation period is randomly drawn into a Gamma distribution with mean 5.2

days and shape 5 [12, 13]. The duration of the pre-symptomatic period is then uniformly

drawn in {1; 2} days, consistently to published studies [11] (Table 2). The remaining duration

of infectiousness follows a gamma distribution with mean 8 [14] and shape 10. We assume

that the fraction of asymptomatic individuals equals 40%, within the range of [21, 22]. Symp-

tomatic individuals are assumed to self-isolate after one day of symptoms and therefore do not

cause further contamination in the studied setting; on the contrary, asymptomatic individuals

stay in the system and potentially transmit the virus throughout their infectious period. The

choice of the rate of instantaneous transmission is described next.

Super-spreaders

In the COVID-19 epidemic, the number of persons contaminated by an infectious person has

been suggested to show a large variance [10, 24–28]: several studies have shown that many

infected individuals do not contaminate anyone, whereas a small fraction of the infected popu-

lation, termed ‘super-spreaders’, are responsible for the majority of the transmissions. Such

super-spreading events may be due to several factors including a higher viral load or infec-

tiousness of the super-spreader, a particularly high number of contacts, and whether those

contacts occur in a confined space with poor ventilation [29]. Here, we model super-spreading

as follows: on each day, and for each infectious individual i, a random super-spreading factor
psuper is chosen independently from a Gamma distribution where E[psuper] = 1. Then, the

transmission probability for each short contact with a susceptible individual on that day, is

p0psuper if i is symptomatic and p0psuper/2 if i is asymptomatic, where p0 is the baseline trans-

mission parameter.

Table 2. The top table gives the parameter values used in our simulations, with the supporting references. The bottom table summarizes some relevant quantities that

can be computed from our simulations: their consistency with the literature is argued in the Discussion section.

Notation Description Hypothesis Reference

Gd graph of contacts between people that are at work on day d sociopattern graph, or random graph Sociopatterns project [17–19]

Gext graph of persistent contacts between people 1/4 scaling of the average “at-work” graph fraction of outside contacts

v0 patient initially infected random uniform null hypothesis

d0 day of infection of v0 random uniform null hypothesis

q probability of being symptomatic 60% 35 to 60% [21] [22]

p probability of transmission during a 20-second contact p p0 � psympt � psuper

p0 mean transmission probability calibrated for each graph such that Rlocal
0
¼ 1:25

psympt asymptomatic relative transmission factor 1/2 when asymptomatic, 1 otherwise [23]

psuper super-spreading transmission factor, for each day and each person mean = 1, Gamma(shape = 0.1)

length of exposed period mean = 3.7, Gamma(shape = 5) [11–13]

length of presymptomatic period mean = 1.5, uniformly 1 or 2 days mean from [11]

length of symptomatic period mean = 8, Gamma(shape = 10) [14]

number of days of symptoms before isolation 1

Notation Description Value

Rlocal
0

average number of individuals infected by v0 1.25

K negative binomial dispersion parameter of the number of individuals infected by v0 0.5

d1 − d0 generation interval 5.5 when v0 is symptomatic

https://doi.org/10.1371/journal.pcbi.1009264.t002
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Calibration of the transmission parameter

The contamination parameter p0 is calibrated so that the baseline local reproduction number
Rlocal

0
, defined as the average number of persons infected by the index case, equals 1.25. The lat-

ter value is chosen to implicitly take into account the adoption of barrier measures including

social and physical distancing, mask usage and hand hygiene. The idea of inferring p0 from the

model is inspired by [30]. We find that p0 = 0.001 in the primary school contact graph, p0 =

0.004 in the high school contact graph, and p0 = 0.010 in the workplace contact graph. Several

values of Rlocal
0

were investigated, ranging from 0.5 to 2.5, corresponding (for high schools) to

p0 ranging from 0.001 to 0.010. The quantitative relations between p0 and Rlocal
0

in the different

graphs are reported in Fig 7.

Persistent contacts

All simulations are initialized with an index case in the graph assumed to have been contami-

nated by the outside world. Importantly, we then focus on transmissions occurring within the

contact graph. Since our proposed strategies act on the school or work place social networks

and aims at limiting transmission clusters occurring in these specific locations, we do not

model contagion of/from people who are not in the contact network. This choice is consistent

with studies with similar focus [3].

Fig 7. Relation between the baseline transmission parameter p0 and the network-dependent local reproduction

number Rlocal
0 for our four contact networks. We see that each curve is monotone increasing, as expected, but that the

dependency is not quite linear.

https://doi.org/10.1371/journal.pcbi.1009264.g007
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Nevertheless, contacts with friends or colleagues who belong to the same social network

may also happen outside the direct school/workplace environment. To model such interac-

tions, we assume that there exists a background external graph Gext of persistent contacts that

take place every day, whether workday or weekend, whether telecommuting or not. We define

this external graph from the contact network by applying a dampening factor of 25% to all

contacts. This factor stems from imagining a scenario in which someone would invite col-

leagues or fellow students to come and interact for roughly two hours during the day instead

of eight hours of interaction at work (hence the 25%); and those persons would be selected

from among their usual school/work colleagues, proportionally to their contacts.

Strategies

Several non-pharmaceutical strategies were used or recommended across the world depending

on activity type (school, workplace, university) or country. Here we concentrate on strategies

at the level of the work/school environment which focuses on presence-sheet organization and

promotion of hybrid telecommuting with partial use or partial closure of school or work envi-

ronments. First, we consider on-off strategies, in which alternatively, either 100% of employees

or students do face-to-face work, or 100% do telecommuting (distance learning). Such a strat-

egy has, for example, been recommended as a way to exit the lockdown by alternating 4 days

on and 10 days off [31]. Venezuela had for example a temporary exit strategy in which busi-

nesses were allowed to reopen on a week-on-week-off basis [32]. Second, we consider rotating

strategies, in which 50% of employees or students do face-to-face while the other 50% do dis-

tance learning, periodically switching between the two groups. Organizing work with Rotating

shifts was for example one of the actions recommended by the CDC [33]. We implement both

types of strategies with different alternations: daily alternation (even day, odd day, not count-

ing weekends) and weekly alternation (even week, odd week). Finally, we consider a full tele-

commuting strategy. This results in five strategies, which we compare in their ability to reduce

the likelihood and intensity of epidemic outbreaks.

Evaluation criteria

More precisely, strategies are evaluated based on three criteria: the probability of outbreak,

defined as the percentage of simulations for which at least 5 secondary cases were infected

besides the index case; the velocity of outbreak (average delay until five persons are infected);

and the average cumulative number of infections until extinction of the epidemics, within

outbreaks.

Varying population immunity and cross immunity

In the current context (July 2021) vaccinations are being widely deployed in Europe and new,

more transmissible, viral variants are spreading. This situation is attracting the attention of

researchers: for instance, the effect of various level of immunity on the death toll in Italy has

been studied in [34]. Therefore, we further evaluated the impact of the different strategies on

the probability of outbreak assuming a portion of the population was already partially or fully

immunized. Immunity could arise from previous natural infection or from vaccination. Since

several vaccines have been introduced simultaneously and may differ in their properties, we

analyse the impact of strategies under different assumptions of vaccine efficacy in terms of

preventing acquisition and/or transmission. We finally assessed, in this context of a partially

immune population, the remaining epidemic potential for a new strain or variant with a higher

transmissibility potential.
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Discussion

Summary

By simulating SARS-CoV-2 transmission over a diversity of contact networks, we showed how

(hybrid) telecommuting reduces the virus transmission in schools and workplaces. We focused

on three types of strategies: On-Off, Rotating, and Full telecommuting. Our results highlight

that, whatever the contact network, these measures significantly reduce the risk of outbreak,

delay the time when the outbreak occurs, and reduce the overall attack rate. This conclusion

holds even though we assume some persistent contacts between individuals and a fraction

of their workplace contacts, when they are not at the work location (for example, colleagues

meeting outside work).

The rankings of the strategies are consistent (Fig 3): Full telecommuting (maintaining per-

sistent contacts) significantly dominates the Rotating strategies which significantly dominate

the On-Off strategies which in turns significantly dominate the absence of any policy. This

strategies classification was not affected by the introductions of assumptions on vaccine- or

naturally-induced immunity; nor by the modelling of an hypothetical more epidemic variant

circulating in a partially immune population assuming cross-immunity.

Interestingly, despite strategies strongly differed in their probability of occurrence and size

of outbreak (Fig 3), the average delay before observing an outbreak did not vary much across

strategies. As a reminder, that delay-related criteria was defined as the time between index

case’s virus acquisition and a cumulative incidence of at least 5 secondary infected cases, con-

ditioned on the occurrence of an outbreak. The time until that happens, conditioned on the

fact that it does happen, is then largely determined by the model parameters related to virus

natural history of infection, rather than by the choice of strategy. For example, considering a

single index case, and an average reproductive number of 1.25, at least 2 generations of trans-

missions are required to reach a cumulative incidence of 5. Considering a generation time

between 5 (if symptomatic) and 8 days (if asymptomatic), this would represent between 10

and 15 days. It is then expected that that delay is slightly increased when the effective repro-

ductive number is reduced, but that it impacts more strongly the probability of outbreak.

These results are consistent with intuition. A back-of-the-envelope calculation suggests

that if we order strategies according to how much they reduce contacts, the ranking is: On-off,

Rotating, Full Telecommuting. Indeed, Rotating strategies always induce fewer contacts overall

than On-Off strategies, because they involve the presence of smaller groups, but that does not

necessarily imply less epidemic propagation because of non linear effects (in Fig 4 the relation-

ship between Re as a function of Rlocal
0

are not quite linear). It is important to note that we

focused here on the dissemination risk of the pathogen in a location from a single introduction

by an infected individual. We therefore simulate here the beginning of an outbreak only and

do not consider multiple introductions from the community.

Our results are also consistent with several studies that argue the advantage of Rotating

strategies, either based on deterministic compartmental models [3, 35] or on agent-based sim-

ulations [20]. Compared with the daily alternation, the weekly alternation is naturally in phase

with the duration of the incubation period and generation time of the disease. As a conse-

quence, one can expect that it more effectively breaks the contact chains. Consistently, Fig 3

(as well as S7 and S13 Figs) show that weekly alternations are better than daily alternations.

Empirical contact data have been extensively used in infectious diseases epidemiology to

realistically simulate epidemic outbreaks and assess surveillance or mitigation measures in spe-

cific environments like schools and hospitals [36–39], including the issue of school closures

[16]. Regarding COVID-19 outbreak though, most previous work has focused on synthetically

generated populations, both at large scale (e.g. a whole country [40, 41]) and for smaller
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communities like schools [20]. Here, we build our simulations on publicly available empirical

data collected in schools and workplaces [9]. Therefore, our work has some parallelism with

[42], where contact data informed the agent-based simulation of COVID-19 outbreaks in a

long-term care facility. Simulations on real small-scale networks enable analysing the evolution

of the epidemics using realistic contact patterns, without making strong hypotheses regarding

the structure of contacts and heterogeneity associated with it. As illustrated on Fig 5, transmis-

sion in such small populations is characterized by a strong stochasticity, with high chance of

natural extinctions, which are less probable in epidemic models from the general population.

Fig 5 also shows that due to the strong clustering, most of transmission events occur within

groups rather than between group (in highschool, 93% of contacts and 86% of contaminations

are within a group). Visualizing the detailed evolution of the epidemics in these environments

(see Fig 5) and leveraging this fine understanding yields explicit recommendations about the

effectiveness of the strategies.

A key feature of the COVID-19 pandemic is the role played by asymptomatic cases in the

transmission. From the transmission trees shown on Fig 5 and S19–S22 Figs, one can note that

an important proportion of the transmissions arise from asymptomatic cases. Indeed, in our

baseline simulations over the high school contact network, we estimate that 56% of transmis-

sions are due to asymptomatic individuals on average. Compared to symptomatic individuals,

asymptomatic individuals are less infectious but do not self-isolate, so they have a reduced rate

of transmission but over a longer period of time. The assumption that symptomatic cases

would isolate relatively quickly is consistent with current recommendations in school and

workplaces where individuals are asked to stay at home when they have any suspect symptoms.

Imperfect compliance with isolation recommendations (which may be more realistic) would

result in an increased risk of outbreak in all settings: see S14(c) Fig.

Validity of the parameter values and robustness of the results

A lot of uncertainty exists regarding SARS-CoV-2 epidemiology and natural history and our

choice of parameters, despite based on published data, deserves to be discussed. From the anal-

ysis of our simulations, we show below that our estimates are consistent with other studies.

In order to compare the risk associated with the graph structure, and not the number of

contacts, we chose to analyse the three graphs by considering the same local reproduction

number Rlocal
0
¼ 1:25. We calibrated the baseline probability of transmission to ensure a base-

line Rlocal
0
¼ 1:25. Consequently, our estimates of the transmission risk over a contact strongly

varied according to the analysed graph: p = 0.001, 0.004, 0.010 for the three graphs analysed

here. Limited data is available regarding the transmission of SARS-CoV-2 in such environ-

ments and populations (here children, teenagers and adults). However, previous study on

influenza transmission estimating the transmission risk from an infectious to a susceptible

individual in similar contact records of 20 seconds [39] found consistent values, p = 0.003. The

baseline value Rlocal
0
¼ 1:25 was set to simulate a significant but moderate epidemic risk within

the network. This value may vary due to deployment of NPIs as frequent hand washing, mask

wearing and social distancing. We ran simulations for values of Rlocal
0

ranging 0–2.5. Higher

Rlocal
0

values led to higher risks of outbreaks and bigger outbreak sizes (reaching 135 for

Rlocal
0
¼ 2), but regardless of the value of Rlocal

0
, simulations confirm that the investigated strate-

gies reduce the global risk compared with no strategy: all investigated strategies are able to

reduce R below 1 for Rlocal
0

< 1:38 (Fig 4). Additionally variations of Rlocal
0

did not affect strate-

gies classification. Overall, our results for Re (Fig 4) were comparable to [31]. Indeed, if we set

Rlocal
0
� 1:15, assuming that the local reproduction number is the same on weekends as on

weekdays would yield RW = 1.48; we then obtain that for full telecommuting RL = Re� 0.53,
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and simulating the “4 days on, 10 days off” On-Off strategy from [31] yields Re� 0.82. Thus,

this is consistent with the findings from [31]: for RW = 1.5 and RL = 0.6 they find that Re =

0.86. We also note that from the above calculation, our baseline intensity set at 25% for persis-

tent contacts happens to yield a ratio RW/RL that is almost the same as in [31], further confirm-

ing our choice of 25%.

Another key characteristics of SARS-CoV-2 dynamics is the generation time, that is, the

average number of days until the secondary generation of cases are infected by the index case.

Here, the effective generation time, recovered from baseline simulations of our model, is 7.3

days: this value is a weighted average of the generation times resulting from transmissions

from asymptomatic individuals (8.8 days) and transmissions from symptomatic individuals

(5.5 days). The latter is consistent with an estimate of 5.2 for the Singapore cluster (and a little

higher than for the Tianjin cluster) [23].

Several studies have stressed the high heterogeneity in transmissions across individuals,

suggesting that about 80% of transmission events are caused by only about 10% of the total

cases (see [25] for example). We therefore integrated the possibility of super-spreading

events in our model: even though we do not reach such high levels of dispersion, our baseline

model for high schools already shows much dispersion: among all simulations, the 20% with

the most secondary infections accounted for 68% of secondary infections (see S1 Text and

S13 Fig).

Besides the above consistency checks, extensive sensitivity analyses were carried out to

assess the robustness of our results with respect to model assumptions and parameter values:

graph of persistent contacts, asymptomatic probability, 20-second mean transmission proba-

bility, asymptomatic relative infectiousness, super-spreading transmission factor, length and

dispersion of exposed period, of presymptomatic period, or symptomatic period, and number

of days of symptoms before isolation. They are presented in S13–S17 Figs. These sensitivity

analyses show that although the evolution of the epidemic varies greatly with the parameters,

corresponding variations are smooth and the ranking of the strategies is always respected. We

observe that the duration of the epidemic until outbreak is the least sensitive measure, whereas

the most sensitive measure is the total number of infected people when there is an outbreak

(attack rate). This quantity increases when the graph of persistent contacts is replaced by a (cal-

ibrated) complete graph (S9 Fig); when Rlocal
0

increases (S7 Fig); and when the shape parameter

of the transmission probability distribution increases, due to super-spreaders (S13 Fig). Inter-

estingly, the attack rate also becomes much larger when the contact graph is replaced by a (cali-

brated) homogeneous graph (S5 Fig).

Our simulations are based on empirical data collected in three specific locations (French

primary school, high school and a workplace) and are therefore specific to these locations.

Nevertheless, both our results on the random network and our extended sensitivity analysis

support the generality of our finding that all strategies globally reduce the dissemination risk

and Rotating strategies give the best effect. Comparison with real epidemiological data in

France was not possible. Indeed, in May-June 2020 variations of the Rotating and On-Off

strategies were implemented in most schools, but at that time tests were not readily available to

measure the impact of those measures and the virus was nearly absent. However, assessing the

impact of these strategies on transmission risk in schools should be possible in the near future,

because tests are now widely available and used while some regions have high levels of viral

circulation.

Limitations of our study

The results presented here should be interpreted in the light of our rather simple assumptions.
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Firstly, virus transmission is assumed to occur within the contact network only, thereby

neglecting potential acquisitions through external contacts, such as family members or friends

are not considered, with the exception of the index case. As a matter of fact, when the levels of

community circulation of the virus are high, individuals can also be exposed to the virus out-

side school or work place, this chance being potentially increased over telecommuting periods.

Our objective was not to provide predictions about the expected prevalence in schools or

workplaces but rather to evaluate the virus dissemination risk within the network, or in other

words, the network vulnerability: we therefore focused on the quantification of this risk follow-

ing a single introduction of the virus by an index case. Other studies [20] that include repeated

acquisition from the community and simulate the epidemics evolution over longer time spans

have reached conclusions that are consistent with ours, namely, on the advantage of rotating

strategies.

Conversely, infected people within the social network might in turn infect members of

other social groups, but those are outside the reach of the proposed strategies: this effect was

not analyzed here. Nevertheless, in order to more realistically model contact patterns in a situ-

ation where telecommuting recommendations are not strictly enforced or complied with, we

assumed that telecommuting individuals maintain a fraction of their in-network contacts. This

could depict a situation where compliance with telecommuting recommendations is low. In a

case of a strict lockdown or curfew, individuals would have no contacts over their telecommut-

ing periods and may not be able to visit colleagues or school friends. In terms of modelling,

this scenario simply requires removing persistent contacts and leads to a lower risk of outbreak

than the one presented in our baseline model. In order to assess how changes in persistent con-

tacts network affect the reported results, we simulated the model for different assumptions

related to the external persistent graphs. The top left panel of S9 Fig shows that when a strict

lockdown removes all persistent contacts (that situation is obtained in the simulation by multi-

plying the external contact graph by a factor of 0%), the outbreak probability drops from 27%

to 17%. Moreover, in that case, all of our strategies cause the reproduction factor to drop

below 1 for all values of Rlocal
0

< 1:6 and for all contact networks (see S11 and S12 Figs). Thus,

adding a curfew on top of a hybrid telecommuting strategy leads to significant improvements.

Secondly, we performed our simulations on a small set of empirical contact graphs that

were built from publicly available data about just three schools and workplaces. Extrapolating

from such a small set should be done cautiously. However, we are comforted by two facts.

First, the main features of those networks, such as their degree distribution and their commu-

nity structure (more than 70% of contacts within classes or departments; see Table 1), are rep-

resentative of the social groups that we are interested in. These features are indeed key to

shaping the progression of the epidemics: our simulations therefore allow studying mitigation

in networks with such community structure. Second, despite significant differences between

the three empirical graphs, our results are consistent across all of them and are robust to varia-

tions in the simulation parameters. Furthermore, our qualitative conclusions also extend to

synthetic random graphs as described in Materials and Methods. However, quantitative results

for the random graph are rather different from the original graph that has been used to tune its

parameters (see S5 Fig): for instance, estimated risks were significantly worse in terms of total

attack rate but better in terms of outbreak explosion. This discrepancy cautions against deriv-

ing quantitative predictions from homogeneous random models and highlights the impor-

tance of using empirical data and heterogeneous graphs that take into account real contact

structures when assessing virus transmission. Another important aspect is that population cov-

erage was imperfect in the Sociopatterns experiments. Indeed, information is missing for 4%

(children), 14% (students), and 30% (employees) of the nodes of the contact networks. In
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order to assess to which extent data incompleteness could affect our results, we run a sensitiv-

ity analysis in which we artificially decreased the number of participants in each graph to

remove a random fraction (their connections are lost and they do not participate anymore to

the transmission). Corresponding results are presented in S18 Fig. Whatever the incomplete-

ness level, strategies order is preserved. Lower participation rates lead to underestimating the

epidemic risk and the epidemic size while overestimating the delay. This analysis confirms

that, up to a certain threshold, the fact that Sociopatterns contacts graphs were not perfectly

observed should not affect our main conclusions.

Thirdly, for simplification, we assumed in our baseline model a fixed probability of being

asymptomatic, equals to 40% whatever the population used. Studies have suggested that chil-

dren are likely to be more frequently asymptomatic than older individuals. To address that

point, we ran a sensitivity analysis varying the probability of being asymptomatic in the differ-

ent networks. Results suggest that our main results were not affected by this hypothesis, see

S15 Fig.

Implementation and choice in practice

Of course, the choice of strategies also crucially depends on criteria such as the feasibility in

practice, ease of implementation, etc. For example, hybrid teaching, in which teachers have to

manage distance-teaching for half their group and onsite-teaching for the other half, has been

used in many French universities since the beginning of the epidemic, but it may be more con-

venient for an instructor to teach on and off, having the full group either online or onsite. On

the other hand, in sectors such as manufacturing a minimum of workers on site may be essen-

tial to maintain production, and then Rotating will be the most appealing strategy. We note

that the main ingredient differentiating Rotating from On-Off is the breaking of connections

between groups (except for the persistent contacts described above). A strategy in a school that

would, for example, bring in all students of one level on even weeks and all students of another

level on odd weeks would resemble On-Off more than Rotating, because it would not break

the groups of students who are in contact.

It is also important to note that modifications in the implementation of the proposed strate-

gies could result in potentially different dynamics. Let’s discuss possible consequences of two

natural variations of the proposed strategies. In the first one, a daily Rotating strategy is imple-

mented but schedule is set such that every employee meets each colleague at least once a week.

This strategy generates leaky isolation of subgroups, and is therefore expected to limit control

efficiency. In the second one, Rotating is planned so that collaborators are grouped in the same

group of the colleagues with whom they interact the most. It is likely that such a partition

would erase the advantage of Rotating over On-Off, as compared to our simulations where

individuals are randomly partitioned.

Conclusion

In this paper, we simulate SARS-CoV-2 transmission and assess the epidemiological impact of

various telecommuting strategies. Our study goes beyond previous work by modeling the fine-

grained spreading effects of Sars-Cov2, using real-world contact networks at a workplace, a

primary school and a high school. To summarize, our results highlight that (1) when Rlocal
0

is

moderately high, all the hybrid telecommuting strategies considered reduce it to less than 1,

and the choice between them should primarily be done on the basis of practical considerations.

(2) To help prevent dissemination of the disease, it is preferable to alternate over longer peri-

ods (weekly rather than daily), but the difference is so slight that practical, psychological, and

other considerations should determine the alternation time. In future work, it might be
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interesting to incorporate the real-life networks as blocks within larger synthetic networks for

simulations at larger scales of society.

Supporting information

S1 Text. Supporting information.

(PDF)

S1 Fig. Primary school graphs extracted from http://www.sociopatterns.org/wp-content/

uploads/2015/09/primaryschool.csv.gz. The two days of the trace correspond to Thursday

and Friday. Each day is represented by a graph where a node corresponds to an individual,

and an edge corresponds one or several face contacts. Edge width corresponds to the number

of contacts. Node sizes correspond to weighted degrees. Node colors correspond to known

groups which are classes. There size vary between 22 and 27. We observe many contacts

between classes of the same grade (e.g. 5A and 5B).

(TIF)

S2 Fig. Workplace graphs extracted from http://www.sociopatterns.org/wp-content/

uploads/2018/12/tij_InVS15.dat_.gz. The trace lasts over two weeks and contains contacts

only during working days. Each day is represented by a graph where a node corresponds to an

individual, and an edge corresponds one or several face contacts. Edge width corresponds to

the number of contacts. Node sizes correspond to weighted degrees. Node colors correspond

to known groups which are departments. Their size vary from 2 to 57, most of them contain at

most 32 persons.

(TIF)

S3 Fig. Highschool graphs extracted from http://www.sociopatterns.org/wp-content/

uploads/2015/07/High-School_data_2013.csv.gz. The trace lasts during the 5 working days

of a week. Each day is represented by a graph where a node corresponds to an individual, and

an edge corresponds one or several face contacts. Edge width corresponds to the number of

contacts. Node sizes correspond to weighted degrees. Node colors correspond to known

groups which are classes. Their size vary from 29 to 44.

(TIF)

S4 Fig. Random uniform graph. The trace lasts one day (average graph is identical to Day 1).

It is represented by a graph where a node corresponds to an individual, and an edge corre-

sponds one or several face contacts. The graph is calibrated so that its main parameters (total

number of nodes, of edges, and of contacts) match those of the high-school average graph:

more precisely, each edge is generated by selecting uniformly at random two nodes with one

associated contact (rejecting loops and already generated pairs) and each of the remaining

contacts is associated to an edge selected uniformly at random among the previously generated

edges. Edge width corresponds to the number of contacts that were associated to it. Node sizes

correspond to weighted degrees. Node colors correspond to groups which were selected uni-

formly at random for each node within 9 fixed groups. Their size vary from 30 to 48.

(TIF)

S5 Fig. Sensitivity of the results to the choice of contact graph. Panel (c) is identical to Fig 3.

We see that regardless of the contact graph, the ranking of the strategies by effectiveness is the

same, thus the qualitative results are robust. Note that the quantitative results are also similar

from graph to graph, with the exception of the total number of infected people: for the high

school contact graph (c), it equals 34.8, whereas for the synthetic random graph (d), it equals

72.3. That happens in spite of the fact that the random graph is calibrated to be the same as the
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high school graph in terms of number of nodes, edges, and contacts: thus, the difference is due

to the expansion of the random graph, which contrasts with the high school group structure.

(TIF)

S6 Fig. Sensitivity of the results to the choice of contact graph. Panel (c) is identical to Fig 4.

Qualitatively, we see that the order between the curves is the same for all contact graphs and all

values of Rlocal
0

, so that result is robust. The weekly and daily alternations are indistinguishable

for this measure. Quantitatively, if we focus on the largest Rlocal
0

such that On-Off leads to Re<
1, we see that it depends significantly on the underlying contact graph: Rlocal

0
¼ 1:52 for pri-

mary schools, 1.30 for the workplace, 1.38 for the high school, and 1.55 for the random graph.

(TIF)

S7 Fig. Sensitivity of the results to the choice of contact graph. For all contact networks,

we performed a sensitivity analysis of the results of S5 Fig w.r.t. Rlocal
0

(or equivalently, to the

parameter p.) We see that the probability of an outbreak is sensitive to the value of Rlocal
0

: for

example, for On-Off, as Rlocal
0

varies from 1 to 1.5, it goes from 21% to 33%. However, it is not

so sensitive to the choice of contact graph: when there is no strategy, for the base case Rlocal
0
¼

1:25 it is around .25 for all graphs. The number of days until an outbreak, around two weeks,

is fairly robust and shows little sensitivity to either Rlocal
0

or the choice of contact graph. The

final number of people infected conditioned on an outbreak is the most sensitive quantity,

both to the value of Rlocal
0

and to the choice of contact graph.

(TIF)

S8 Fig. Sensitivity of the results to the choice of contact graph. Numerical data of S5–S7 Figs

when Rlocal
0
¼ 1:25.

(TIF)

S9 Fig. Sensitivity analysis of the results of Fig 3, for the high school contact network, w.r.t.

graph of persistent contacts. In part (a), we do a sensitivity analysis when we vary the inten-

sity of persistent contacts (baseline: 25%). The baseline case in (a) corresponds to the vertical

dotted line, whose intersection with the curves of the strategies gives the values of Fig 3. We

see that, the more persistent contacts there are, the worse it is for the epidemic, but that the

variation is smooth. Parts (b), (c) and (d) we do a sensitivity analysis in which we vary the

structure of the persistent contacts graph, while keeping the total number of contacts

unchanged. Part (c) is the baseline case and is an identical copy of Fig 3, for ease of compari-

son. Part (d) takes a complete homogeneous graph for the persistent contacts graph. Part (b) is

a construction of what we call a best friends graph, constructed in the following two steps:

First, each person lists their neighbor by order of decreasing number of contacts, stopping as

soon as they reach 25% or their total number of contacts. This creates a directed graph in

which many arcs carry 0 contacts. Second, we make it symmetric by putting on each edge {u,

v} the average of the number of contacts on arc(u, v) and on arc (v, u). We observe that the

results are sensitive to the structure. The best friends graph propagates the epidemic the least,

the complete graph propagates it the most, and the baseline graph is intermediate. For exam-

ple, regarding the probability of outbreak, when there is no strategy the probability is 33% for

the complete graph, 27% for the baseline graph, and 23% for the best friends graph. Regarding

the total number of persons infected when there is an outbreak, when there is no strategy we

have 151.8 for the complete graph (the bar actually goes beyond the figure), 34.8 for the base-

line graph, and 23.1 for the best friends graph. When the daily On-Off strategy is used, the

numbers are 59.7 for the complete graph, 17.4 for the baseline graph, and just 11.8 for the best

friends graph. We see that the structure of contacts in the high school, that mostly happen
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within well-separated groups, results in a much smaller number of infected people. A further

behavioral change in which people reduce the number of people they interact with to just a

few best friends, even without reducing their total number of contacts, results in a significant

reduction in the number of people infected.

(TIF)

S10 Fig. Numerical data of S9 Fig for different types of persistent contacts, in the high

school contact graph, with a transmission parameter set to have Rlocal
0 ¼ 1:25 in baseline.

Thus, for the high school contact network, compared to having no strategy, Daily On-Off

reduces the reproduction number by 1 − 0.48/0.91 = 47% and Daily Rotation reduces it by

1 − 0.23/0.91 = 75%. The improvement of weekly strategies over their daily analog is less

than 2%.

(TIF)

S11 Fig. Sensitivity of S6 Fig if we remove the graph of persistent contacts, which corre-

sponds to a strict curfew.

(TIF)

S12 Fig. Sensitivity of S7 Fig if we remove the graph of persistent contacts, which corre-

sponds to a strict curfew.

(TIF)

S13 Fig. Sensitivity analysis of the results of Fig 3, for the high school contact network.

In (a), we look at the parameters as a function of Rlocal
0

, which varies by changing the value

of the probability p of symptomatic transmission (baseline Rlocal
0
¼ 1:25 corresponding to

p = 0.0035, and Rlocal
0
¼ 1 corresponds to p = 0.025). We do not observe a phase transition in

which the number of infected people would explode when Rlocal
0

becomes greater than 1, but

instead, we observe a smooth increase. This is probably due to the small size of the graph

(327 nodes), too small to see the theoretical asymptotic behavior as the number of nodes

goes to infinity. In (b), we look at the parameters by changing the shape of the super-spread-

ing distribution (gamma of mean 1, baseline shape value 0.1). The baseline case corresponds

to the vertical dotted line at Rlocal
0
¼ 1:25, whose intersection with the curves of the strategies

gives the values of Fig 3.

(TIF)

S14 Fig. Sensitivity analysis of the results of Fig 3, for the high school contact network, w.r.

t. (a) the difference of infectiousness of an asymptomatic person compared to that of a symp-

tomatic person (baseline: 1/2); here there is a tradeoff in the duration until outbreak, condi-

tioning on existence of an outbreak: when asymptomatic persons are almost not infectious, the

epidemic evolution is driven by symptomatic persons, who are only able to contaminate others

in the first few days before they isolate, so when outbreaks do happen, they happen more

quickly; at the other end of the scale, when most asymptomatic people are just as infectious as

symptomatic people, they are infectious for many days but because they are more contagious,

they infect people earlier on. (b) the number of days during which a symptomatic individuals

continues going to school or work after developing symptoms (baseline: 1 day). The baseline

case corresponds to the vertical dotted line, whose intersection with the curves of the strategies

gives the values of Fig 3. Part (b) suggests that changing behavior so that a person self-isolates

as soon as she develops symptoms is very effective to reduce the dissemination of the epidemic

in her contact network.

(TIF)
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S15 Fig. Sensitivity analysis of the results of S5 Fig, for the four contact networks, w.r.t. the

probability that an infected person is asymptomatic (baseline: 40%); as expected given that

symptomatic individuals isolate, the higher the fraction of asymptomatic persons, the

worse the outbreak is.

(TIF)

S16 Fig. Sensitivity analysis of the results of Fig 3, for the high school contact network, w.r.

t. the SEIR model parameters. (a) the mean length of the exposed period (baseline: 3.7 days);

(b) the shape of the distribution of the exposed period (baseline: 5). The baseline case corre-

sponds to the vertical dotted line, whose intersection with the curves of the strategies gives the

values of Fig 3. Unsurprisingly, the longer the exposed period, the more time it takes before 5

people are infected; otherwise the distribution of the exposed period has little impact on the

results.

(TIF)

S17 Fig. Sensitivity analysis of the results of Fig 3, for the high school contact network,

w.r.t. the SEIR model parameters. (a) the mean length of the infectious period (baseline: 9.5

days); (b) the shape of the distribution of the remaining of the infectious period after the first

1.5 days (baseline: 10). The baseline case corresponds to the vertical dotted line, whose inter-

section with the curves of the strategies gives the values of Fig 3. The variations are monotone

and smooth.

(TIF)

S18 Fig. Sensitivity of S5 Fig to an incomplete input contact network. The primary school

contact network is missing 4% of the children, who did not participate in the Sociopatterns

study. Our baseline results for primary schools are therefore on the 4% vertical line. To analyze

the effect of removing participants, we remove additional participants uniformly at random,

starting from the data with 4% missing and going all the way to 50%. We proceed similarly for

high schools (baseline: 14%) and for the workplace (baseline: 30%). We see that, unsurpris-

ingly, removing people reduces the probability of outbreak, reduces the expected final number

of people infected conditioned on an outbreak, and increases the number of days until there is

an outbreak. Thus, our quantitative results seem to be an underestimate of the situation in the

actual contact network. Note that the value of p was not recalibrated for each new network,

hence sparser networks have a lower R value.

(TIF)

S19 Fig. Four simulation runs of epidemic propagation inside the primary school network

(similarly to Fig 5). Among the runs producing an outbreak under no strategy, we selected

the first four that produce a median number of infections when we do not implement a strat-

egy, that is 37.

(TIF)

S20 Fig. Four simulation runs of epidemic propagation inside the workplace network (sim-

ilarly to Fig 5). Among the runs producing an outbreak under no strategy, we selected the

first four that produce a median number of infections, that is 43.

(TIF)

S21 Fig. Four simulation runs of epidemic propagation inside the highschool network

(similarly to Fig 5). Among the runs producing an outbreak under no strategy, we selected

the first four that produce a median number of infections, that is 26.

(TIF)
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S22 Fig. Four simulation runs of epidemic propagation inside the random uniform graph

(similarly to Fig 5). Among the runs producing an outbreak under no strategy, we selected

the first four that produce a median number of infections, that is 47.

(TIF)

Acknowledgments

We wish to thank the coordinators of the MODCOV19 project for providing interesting refer-

ences and contacts, and Simon Cauchemez for an inspiring discussion about modeling super-

spreaders.

Author Contributions

Conceptualization: Simon Mauras, Vincent Cohen-Addad, Guillaume Duboc, Max Dupré la
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Methodology: Simon Mauras, Vincent Cohen-Addad, Guillaume Duboc, Max Dupré la Tour,
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