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Abstract

Background: Immune responses to sandfly saliva have been shown to protect animals against Leishmania
infection. Yet very little is known about the molecular characteristics of salivary proteins from different sandflies,
particularly from vectors transmitting visceral leishmaniasis, the fatal form of the disease. Further knowledge of
the repertoire of these salivary proteins will give us insights into the molecular evolution of these proteins and
will help us select relevant antigens for the development of a vector based anti-Leishmania vaccine.

Results: Two salivary gland cDNA libraries from female sandflies Phlebotomus argentipes and P. perniciosus were
constructed, sequenced and proteomic analysis of the salivary proteins was performed. The majority of the
sequenced transcripts from the two cDNA libraries coded for secreted proteins. In this analysis we identified
transcripts coding for protein families not previously described in sandflies. A comparative sandfly salivary
transcriptome analysis was performed by using these two cDNA libraries and two other sandfly salivary gland
cDNA libraries from P. ariasi and Lutzomyia longipalpis, also vectors of visceral leishmaniasis. Full-length secreted
proteins from each sandfly library were compared using a stand-alone version of BLAST, creating formatted
protein databases of each sandfly library. Related groups of proteins from each sandfly species were combined
into defined families of proteins. With this comparison, we identified families of salivary proteins common among
all of the sandflies studied, proteins to be genus specific and proteins that appear to be species specific. The
common proteins included apyrase, yellow-related protein, antigen-5, PpSP15 and PpSP32-related protein, a 33-
kDa protein, D7-related protein, a 39- and a 16.1- kDa protein and an endonuclease-like protein. Some of these
families contained multiple members, including PPSP15-like, yellow proteins and D7-related proteins suggesting
gene expansion in these proteins.

Conclusion: This comprehensive analysis allows us the identification of genus- specific proteins, species-specific
proteins and, more importantly, proteins common among these different sandflies. These results give us insights
into the repertoire of salivary proteins that are potential candidates for a vector-based vaccine.
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Background

Phlebotomine sandflies are vectors of Leishmania para-
sites, causal agents of leishmaniasis in at least 88 coun-
tries. The manifestations of this disease range from the
self-healing cutaneous and mucocutaneous forms to the
potentially fatal visceral form. The incidence of leishmani-
asis is 2 million cases annually, of which 500,000 cases
are visceral and potentially lethal [1]. Visceral leishmani-
asis is caused by parasites of the Leishmania donovani com-
plex: L. donovani, L. infantum and L. chagasi (L. infantum
chagasi). There are a limited number of competent sandfly
vectors that can transmit parasites within this complex.
For example, Phlebotomus argentipes transmits only L. dono-
vani in the India sub-continent, P. ariasi and P. perniciosus
transmit L. infantum within southern Europe, and Lutzo-
myia longipalpis exclusively transmits L. chagasi (L. infan-
tum chagasi) in Central and South America.

Infected sandflies deliver the Leishmania parasite to a
mammalian host during blood meal acquisition.
Together with the parasite, sandflies inject saliva into the
host. This saliva contains potent pharmacologically active
components that facilitate blood feeding [2]. Addition-
ally, the saliva affects the establishment of the parasite
within the vertebrate host; small amount of L. longipalpis
saliva exacerbates L. major infection in mice [3]. On the
other hand, immune responses to sandfly saliva have
been shown to protect against Leishmania infection [4,5].
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Antibodies to maxadilan, a salivary protein from the sand-
fly L. longipalpis protected mice against L. major infection
[6], while cellular immune response to PpSP15, a protein
from the sandfly P. papatasi was sufficient to control L.
major infection in mice [7]. Therefore, immune responses
to salivary protein have promise as an effective vector-
based vaccine to control Leishmania infection.

The repertoire of sandfly salivary proteins that have been
studied is largely limited to three sandflies: P. papatasi, P.
ariasi and L. longipalpis, vectors of L major, L. infantum and
L. chagasi (L. infantum chagasi), respectively. Only two sal-
ivary proteins have been extensively studied: maxadilan
from the sandfly L. longipalpis, and PpSP15 from the sand-
fly P. papatasi. Maxadilan, a potent vasodilatory, immu-
nomodulatory and protective molecule was shown to be
very polymorphic [8]. On the other hand, PpSP15, a pro-
tective molecule with unknown biological function was
shown to be highly conserved among colonized or field-
collected P. papatasi sandflies [9].

Because of the potential of sandfly salivary proteins as
anti-Leishmania vaccines, it is important to understand the
diversity and degree of similarity between salivary pro-
teins from various sandflies. More importantly, under-
standing the evolutionary relatedness of salivary proteins
will help us to identify proteins that can be used as a glo-

Table I: Putative secreted proteins from the salivary glands of Phlebotomus argentipes.

Sequence NCBI Cluster Signal P site MW pl Best match to NR E value Comments Presentin
name accession protein database proteome
number
PagSPOI DQI36148 | 20-21 142 6.1 SLI protein L. longipalpis 2e-018  Similar to PpSPI5 Yes
PagSP02 DQI36149 2 20-21 13.6 9.4 SLI protein L. longipalpis 7e-029  Similar to PpsPI5 Yes
PagSP03 DQI136150 3 21-22 349 9.1 Apyrase Phlebotomus 4e-092  Salivary apyrase Yes
PagSP04 DQI36151 4 18-19 432 8.8 44 kDa salivary protein le-120  Yellow protein Yes
PagSP05 DQI136152 5 19-20 29.1 9.1 Antigen 5 L. longipalpis le-104  Antigen 5 protein Yes
PagSP06 DQI136153 6 17-18 249 9.6 32 kDa salivary protein 9e-038  Similar to PpSP32 Yes
PagSP07 DQI136154 7 20-21 143 8.9 SLI protein L. longipalpis 2e-019  Similar to PpSP15 Yes
PagSP09 DQI36155 9 22-23 33.1 89 32 kDa protein L. longipalpis 2e-64 Yes
PagSP10 DQI136156 10 19-20 26.7 5.5 28 kDa salivary protein 7e-078 D7 related protein Yes
PagSPI | DQI36157 I 21-22 40.1 9.4 Endonuclease L. longipalpis 4e-039 Endonuclease
PagSP12 DQI36158 12 20-21 14.1 8.9 SLI protein L. longipalpis 4e-023  Similar to PpSP15
PagSP13 DQI136159 13 20-21 13.9 89 14 kDa salivary protein 8e-031  Similar to PpSPI5
PagSP 14 DQI136160 14 24-25 439 8.8 ebiP388I An gambiae 7e-099  Lipase-like
PagSP15 DQIl36l6l 15 20-21 30.1 9.6 Novel protein
PagSP17 DQI36162 17 20-21 294 80 Novel protein Yes
PagSPI19 DQI36163 19 21-22 300 12 Novel protein
PagSP20 DQI36164 20 20-21 274 9.6 Novel protein
PagSP25 DQI36165 25 20-21 279 9.5 30 kDa salivary protein 6e-045 D7 protein
PagSP56 DQI36166 56 20-21 30.1 7.0 Novel protein
PagSP60 DQI36167 60 19-20 I1.7 3.9 putative histone promoter 2e-005
PagSP73 DQI36168 73 20-21 16. 5.5 A. gambiae unknown 0.002  Unknown
PagSP124 DQI136169 124 21-22 155 52 Novel protein
PagSP132 DQI136170 132 22-23 47.3 6.5 agCP4255 An. gambiae 2e-095 Pyrophosphatase
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Table 2: Putative secreted proteins from the salivary glands of Phlebotomus perniciosus.

Sequence NCBI Cluster SignalP MW pl Best match to NR protein E value Comments Presentin

name accession site database proteome
number

PpeSPOI DQ192490 | 20-21 355 9.3 Salivary apyrase P. papatasi 4e-86 Apyrase Yes

PpeSPOIB DQ192491 IB Salivary apyrase P. papatasi Apyrase Yes

PpeSP02 DQ150620 2 20-21 148 87 SLI protein L. longipalpis 2e-20 SPI5 like protein Yes

PpeSP03 DQI150621 3 18-19 41.8 6.0 42 kDa salivary prot. P. papatasi le-113  Yellow protein Yes

PpeSP03B DQ150622 3B 18-19 427 86 44 kDa salivary prot. P. papatasi le-117  Yellow protein Yes

PpeSP04 DQ150623 4 1920 245 85 28 kDa salivary prot. P. papatasi 6e-64 D7 protein Yes

PpeSP04B DQ150624 4B 19-20 269 8.7 28 kDa salivary prot. P. papatasi 3e-80 D7 protein Yes

PpeSP05 DQ153099 5 17-18 278 104 29 kDa salivary prot. L. longipalpis  1e-23

PpeSP06 DQI53100 6 22-23 33.0 89 32 kDa salivary prot. L. longipalpis  6e69 Yes

PpeSP07 DQIl53101 7 19-20 29.6 9.1 Antigen 5 prot. L. longipalpis 5e-84 Antigen 5 protein Yes

PpeSP08 DQI53102 8 25-26 288 4.9 Salivary prot. C. sonorensis 0.016

PpeSP09 DQI153103 9 20-21 146 86 14 kDa salivary prot. P. papatasi 2e-28 SP15-like protein Yes

PpeSPI10 DQI53104 10 19-20 267 9.4 30 kDa salivary prot. P. papatasi 2e-47 D7 protein Yes

PpeSPI | DQI53105 I 19-20 132 9.0 SLI prot. L. longipalpis le-20 SP15 like protein Yes

PpeSP12 DQI53106 12 20-21 71 110 Novel protein

PpeSPI3 DQI53107 13 20-21 97 48 Novel protein

PpeSP15 DQ192489 15 25-26 2.7 106 Novel protein

PpeSPI18 DQ154097 18 29-30 29.9 83 Phospholipase A2, Drosophila le-78 Phospholipase A2

PpeSPI19 DQ154098 19 20-21 458 85 37 kDa prot.. L. longipalpis 2e-33 Yes

PpeSP32 DQ154099 32 23-24 414 9.5 L longipalpis endonuclease le-121  Endonuclease

bal or general anti-Leishmania vaccine within a complex of
vector species.

Here we explored the proteins and transcripts encoded in
the salivary glands of the sandflies P. argentipes and P. per-
niciosus and studied the repertoire of proteins on these
sandflies and compared them with the P. ariasi and L. lon-
gipalpis salivary proteins, also vectors of visceral leishma-
niasis. We studied their molecular characteristics in the
relation to molecular evolution of sandfly salivary pro-
teins, and in the context of possible scenarios for global
vector-based vaccines strategies.

Results and discussion

Sequencing of P. argentipes and P. perniciosus salivary
gland cDNA libraries

From the P. argentipes salivary gland cDNA library, we
sequenced 603 randomly selected clones from which 135
unique clusters of related sequences were obtained. Out of
the 135 clusters, we found 45 clusters (1.11 sequences per
cluster) of transcripts coding for housekeeping genes. We
found 111 sequences, arranged in 55 clusters (1.8
sequences per cluster) that were not similar to other genes
in the NCBI databank and lacked a secretory signal pep-
tide. The most abundant transcripts in this cDNA library
contained putative secretory proteins. We found 438
cDNA with potentially secreted proteins signals arranged
in 30 clusters (an average of 14.36 sequences per cluster).
The number of cDNA coding for secretory proteins is 9
times greater than the cDNA coding for housekeeping

genes and 4 times greater than the cDNA coding for non-
secreted proteins with unknown function. The transcripts
coding for secretory proteins represent 73% of the total
transcripts sequenced in the P. argentipes salivary gland
library.

Similarly, the most abundant transcripts found in the P.
perniciosus salivary gland cDNA library coded for secretory
proteins. From a total of 535 sequenced cDNA we found
that 394 cDNA were potentially secreted and were
grouped into 30 clusters (average of 14.36 sequences per
cluster). The cDNA coding for secretory proteins represent
74% of the cDNA sequenced, while transcripts coding for
housekeeping genes represent 13.4 % (72/535). An addi-
tional 13 % (69/535) of transcripts coded for unknown
(non-secreted) proteins. Table 1 and Table 2 contain the
results of the analysis of the transcripts coding for secreted
proteins from the salivary glands of P. argentipes and P.
perniciosus.

In addition to the identification of proteins previously
reported from other sandflies, we found a number of tran-
scripts coding for proteins not previously shown to be
present in the salivary glands of sandflies. A protein
homologous to lipases from Anopheles gambiae, Drosophila
melanogaster and other organisms was found in the P.
argentipes cDNA library. We also found in this library and
in the P. perniciosus cDNA library, a transcript coding for a
protein homologous to a pyrophosphatase. The predicted
47-kDa protein named PagSP132 contains a phosphodi-
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esterase type I, phosphodiesterase/nucleotide pyrophos-
phatase motif. This type of enzymes cleaves the
phosphodiester and phosphosulfate bonds in NAD, deox-
ynucleotides and nucleotide sugars [10]. BLAST search of
this protein identified protein orthologs found in mam-
mals as well as in A. gambiae. To our knowledge, pyro-
phosphatases have not been described in the saliva of
other sandflies.

We found one cluster in the P. perniciosus cDNA library
coding for a phospholipase A2 (PLA2) protein (PpeSP18).
This type of protein has never been reported from the
saliva of a blood-feeding insect. PLA2 (Phosphatidylcho-
line-2-acylhydrolase, E.C. 3.1.1.4) are well known for
their ability to cleave the arachidonic acid and lysophos-
phatidylcholine from the sn-2 position of membrane
glycerol-3-phospholipids. Also PLA2 are known to work
as toxins by blocking the release of neurotransmitters
[11].

We identified transcripts coding for secreted proteins that
did not match any reported proteins in accessible data-
bases. P. argentipes contained six unknown proteins that
ranged from 15 to 30 kDa, while only three were found in
the P. perniciosus library and all were relatively small rang-
ing from 10 to 27 kDa (Tables 1 and 2).

Proteome analysis of P. argentipes and P. perniciosus
salivary proteins

Edman degradation of the salivary proteins separated by
SDS-PAGE from P. argentipes resulted in the identification
of 12 N-terminal sequences (Figure 1A). The identified
proteins included three PpSP15-like protein (PagSP02,
PagSP01 and PagSP07), D7-related protein (PagSP10),
PpSP32-like salivary protein (PagSP06), antigen 5 related
proteins (PagSP05), a novel protein (PagSP17), P. papatasi
apyrase-like protein (PagSP03), L. longipalpis 32-kDa-like
salivary protein (PagSP09), and a yellow-related protein
(PagSP04). Three proteins with different mobility on the
gel had the same N-terminal sequence (PagSP04), and
were probably derived from the same transcript but with
different post-translational modifications.

From P. perniciosus salivary gland protein analysis we
found 13 N-terminus sequences (Figure 1B). The identi-
fied proteins included: three PpSP15-like proteins
(PpeSP11, PpeSP02 and PpeSP09), three D7-related pro-
teins (PpeSP04, PpeSP04B, PpeSP10), a 37-kDa-like pro-
tein described previously in the saliva of L. longipalpis
(PpeSP19), an antigen-5 related protein (PpeSP07), two
apyrase-like proteins (PpeSP01, PpeSP01B), a 32-kDa-like
salivary protein described on L. longipalpis (PpeSP06) and
two yellow-related proteins (PpeSP03, PpeSP03B). Not all
attempted Edman degradation experiments resulted in a

http://www.biomedcentral.com/1471-2164/7/52

sequence, either because of insufficient protein amount or
because N-terminal ends were blocked.

Comparative analysis of salivary transcripts from vectors
of visceral leishmaniasis: P. argentipes, P. perniciosus, P.
ariasi and L. longipalpis

In an attempt to understand the relationship of salivary
proteins among different sandflies and to gain insights
into the evolution of sandfly salivary proteins, we com-
pared cDNA libraries from four different sandflies. We
selected the sandflies based on their availability and their
significance for this study. First, we selected sandflies from
the two different genera, Phlebotomus and Lutzomyia. Sec-
ondly, from the Phlebotomus genus we selected two differ-
ent subgenus, Euphlebotomus (P. argentipes) and Larroussius
(P. ariasi and P. perniciosus). The phylogenetic relationship
among these sandflies was previously studied using the
small subunit nuclear ribosomal DNA [12].

Full-length secreted proteins from each sandfly library
were compared using a stand alone version of BLAST. We
found 10 families of proteins that are common among all
four cDNA libraries: 1) PpSP15 like protein, 2) apyrase-
like, 3) yellow related protein, 4) antigen-5 related pro-
tein, 5) PpSP32 like protein, 6) 32 kDa-like protein, 7) D7
related protein and 8) an endonuclease-like protein, 9) a
39-kDa-like protein, and a 16.1 kDa-like protein (Table
3). The level of similarities according to BLAST values was
highly significant (2E-18 to 1E-16?). The protein families
listed above may be common to both Lutzomyia and Phle-
botomus species, and may be present in other species from
both genera.

It is interesting to note the amount of variation that exists
in the number of members of the different protein fami-
lies found in the four sandflies (Table 3). The PpSP15-like
family has five members identified in P. argentipes
(PagSP01, PagSP02, PagSP07, PagSP12 and PagSP13),
two in P. ariasi (ParSP03, ParSP08), three in P. perniciosus
(PpeSP02, PpeSP09 and PpeSP11), yet only one
(L1oSP05) in L. longipalpis (Table 3). On the other hand,
only one member of the apyrase family of proteins has
been found in each sandfly except for P. perniciosus, which
has two members (Table 3). Other families of salivary
proteins, such as antigen 5, PpSP32, 32 kDa and endonu-
clease-like protein were represented by only one member
from each of the different sandflies. The yellow-related
protein has one member found in P. argentipes, two mem-
bers in the P. perniciosus and P. ariasi and three members
in the Lutzomyia longipalpis sandfly. The D7-related pro-
tein was represented by three members in Phlebotomus
sandflies, while only one member is present in the L. lon-
gipalpis sandfly.
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Phlebotomus perniciosus salivary proteins
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Edman degradation

kDa
49-

P. perniciosus
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Amino-terminal sequence of salivary gland proteins. (A) Supernatant of salivary gland homogenate of Phlebotomus
argentipes was separated in SDS-PAGE and transfer to PYDF membrane as described in Methods. N-terminal sequence
obtained was searched in the sandfly database and the clone containing the sequence is shown at the right. (B) N-terminal
sequence and matched clones of salivary gland proteins from Phlebotomus perniciosus.
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Table 3: Salivary transcripts shared by Phlebotomus and Lutzomyia sandflies.

Family of proteins P. argentipes P. ariasi P. perniciosus L. longipalpis
PpSP15-like protein PagSPOI, 02, 07, 12, 13 ParSP03, 08 PpeSP02, 09, 11 LJM04
Apyrase PagSP03 ParSPOI PpeSPOI, 01B LJL23
Yellow protein PagSP04 ParSP04, 04B PpeSP03, 03B LMI7, UMI L, YMIT
Antigen 5-related protein PagSP05 ParSPO5 PpeSP07 LJL34
PpSP32-like protein PagSP06 ParSP02 PpeSp05 LjLO4

33 kDa, unknown function PagSP09 ParSP09 PpeSP06 LjL143
D7-related protein PagSP10, 25 ParSP07, 12, 16 PpeSP04, 04B, 10 LJLI3
Endonuclease-like PagSP1 | ParSP10 PpeSP32 LjL138

39 kDa, unknown function ParSp17 PpeSPI19 LjM78
16.1 kDa, unknown function. ParSP80 LJS138

Through comparative analysis we found at least one
unique transcript from each of the four cDNA libraries.
Nine unique transcripts were identified in P. argentipes,
five in P. ariasi, one in P. perniciosus and twenty-four in L.
longipalpis. The large difference in L. longipalpis may be due
to genus differences (Phlebotomus vs. Lutzomyia); therefore,
we would expect to find similar transcripts in other Lutzo-
myia species. Only four families of proteins were unique
to Phlebotomus: a 32-kDa protein of unknown function, a
2-kDa peptide, a 5-kDa peptide and a phospholipase A2-
like protein (Table 4).

Molecular characteristics of salivary proteins shared
among the analysed sandflies

In order to understand the relationship among salivary
proteins from different sandflies, we performed multiple
sequence alignment followed by phylogenetic analysis of
the salivary transcripts shared by the vectors of visceral
leishmaniasis studied (Table 3). Following is a description
of the shared proteins:

SLI/PpSPI5 related proteins

The SL1/PpSP15 group of proteins is similar to the SL1
salivary protein from L. longipalpis, which has no known
function [13], and to PpSP15, a 15- kDa salivary protein
from Phlebotomus papatasi that was previously shown to
confer protection against L. major infection [14]. The pre-
dicted molecular weight of these transcripts is approxi-
mately 14 kDa and is in agreement with the observed MW
found through the proteome analysis (Figure 1). This
group represents the most abundant transcripts in the sal-
ivary gland cDNA library of P. argentipes (Table 1). The
fact that only one PpSP15 member was found in L. longi-
palpis, suggests that a number of lineage-specific gene
expansions (gene duplication events) occurred in the Phle-
botomus lineage at various periods in the evolution of
these sandflies.

The PpSP15 family of proteins has only been found in
species of sandflies suggesting that this family was a spe-
cific invention that occurred during sandfly evolution,

most likely during their adaptation to a blood-feeding
environment. Although PSI-BLAST analysis using PpSP15
proteins retrieved only members of the PpSP15 family,
the PHYRE prediction servers indicated that members of
the PpSP15 family possess an EF-hand fold most closely
related to members of the odorant-binding protein (OBP)
family to which the D7-proteins belong. It is thus likely
that PpSP15 members were derived from an OBP ances-
tral protein. Characteristically, the OBP family in Dro-
sophila has a low degree of sequence similarity among its
members with only six conserved cysteines among the
thirty-four members of this family [15].

The multiple pair-wise alignment analysis of sandfly
PpSP15 shows a high degree of divergence among the
sequences, 7.5% identity and 23.10% similarity (Figure
2A). The number of amino acids between the second and
third cysteine (three) and between the fifth and the sixth
cysteine (eight) were shown to be conserved among all the
Drosophila OBP members [15]. All of the sandflies
sequences analysed from the PpSP15 protein family con-
tained identical cysteine positioning. This data suggests
that this family of proteins may be closely related to the
short form of D7 because of the similarities to OBP and its
small size of 15 kDa, which is similar to the MW found in
the mosquitoes short D7 [16].

Phylogenetic analysis of PpSP15 transcripts from the dif-
ferent sandflies including P. papatasi resulted in the forma-
tion of 5 distinct clades (Figure 2B). As such, three major
clusters of orthologous groups of proteins (COGs), and
hence gene duplication events, can be identified that pos-
sibly occurred in the ancestor to the Phlebotomus lineage.
COG1 includes members from P. perniciosus, P. argentipes
and P. papatasi with a second related clade that includes a
lineage-specific expansion (LSE) in P. papatasi. COG2
includes members from P. perniciosus and P. argentipes.
COGS3 includes members from P. perniciosus, P. argentipes
and P. ariasi. Another clade composed solely of members
of P. argentipes indicates another LSE. Evolutionarily, the
P. papatasi group was basal to the other Phlebotomus mem-
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Table 4: Salivary transcripts shared by Phlebotomus sandflies.
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Protein P. argentipes P. ariasi P. perniciosus
32 kDa, unknown function PagSP19 ParSP25 PpeSP08
2 kDa, unknown function ParSP23 PpeSPI5
5 kDa, unknown function ParSPI5 PpeSP12
Phospholipase A2-like PagSP18 ParSPI | PpeSP18

bers analysed in this study, followed by P. argentipes, with
P. perniciosus and P. ariasi forming the terminal clade.
Given this, the topology of the cladogram obtained for the
PpSP15 family suggests that COG2 resulted from gene
duplication event that occurred in the ancestor to P. perni-
ciosus and P. ariasi. COG1 follows the expected phyloge-
netic grouping but suggests that this gene was lost in P.
ariasi or we failed to detect the ortholog in our library.
COGS3 again suggests that this specific gene duplication
event occurred after divergence from the shared ancestor
with P. papatasi. The PpSP15 family found in sandflies is
thus characterised by both gene duplication and possibly
gene loss events, both restricting an accurate reconstruc-
tion of its phylogeny. It is currently impossible to say
which proteins share a conserved function with the
PpSP15 from L. longipalpis as the major clades create a pol-
ytomy. As such, this family might bind related or similar
pharmacologic components so that they all have, in fact,
a similar function. This might explain the seemingly hap-
hazard acquisition and loss of genes.

D7 family of proteins

D7-related proteins are found in the saliva of different
diptera, including Anopheles [17], Aedes [18] and Culex
[19] mosquitoes as well as in the sandflies P. papatasi [19],
L. longipalpis [13] and P. ariasi [21] and does not appear to
occur in non-dipteran species. Two forms of the protein
have been described; a long and short form [19]; and
appear to be distantly related to an odorant binding super
family of proteins. Interestingly, the OBP family seems to
be the ancestral molecule of the PpSP15 family (see
above). Therefore, it may be possible that both D7 and
PpSP15 related proteins have a common ancestor.

The D7 protein named hamadarin from Anopheles
stephensi acts as an anticoagulant affecting the plasma con-
tact system by inhibiting the activation of Factor XII and
kallikrein [23]. Recently, a biological function of four
short members of the D7 family from A. gambige and a
long D7 from Aedes aegypti was described [16]. These sali-
vary proteins were shown to bind biogenic amines such as
serotonin, histamine and norepinephrine. This function
is relevant for blood-feeding because of the inhibition of
the vasoconstrictor, platelet aggregating, and pain induc-
ing properties of these biogenic amines [16]. The exact

function of D7 proteins in sandflies is largely unknown,
but it may be related to the function observed in mosquito
D7 proteins, either as an anticoagulant or binding bio-
genic amines.

The D7 family is represented in the P. argentipes cDNA
library by two members, PagSP10 and PagSP25, and in
the P. perniciosus ¢cDNA library by three members,
PpeSP04, PpeSP04B and PpeSP10. Only one member of
this family is present in L. longipalpis sandfly, suggesting a
case of gene duplication of this protein that probably
occurred more recently in the Phlebotomus genus.

Comparative analysis of the D7 family of proteins from
different sandflies reveals few conserved regions of iden-
tity, with only 16% identity and 23% similarity between
the sandfly D7 proteins. There are 10 conserved cysteines
throughout the molecule. The size of the sandfly D7 pro-
teins is slightly smaller than the long D7 forms found in
mosquitoes. Additionally, sandfly D7 is missing the last
cysteine that is present at the carboxy terminal region of
the mosquito long- and short-form D7 and, instead, have
a cysteine present between conserved cysteines 8 and 19
[19]. Based on PHYRE prediction results, the long-form
D7 proteins have 16 alpha helix domains, the short form
have 8 alpha helix domains, while the sandfly form have
13 domains. All three forms are associated to OBP, as
mentioned above. Interestingly, the sandfly D7 proteins
are predicted to contain a beta-strand domain starting at
the 7t cysteine and characterised by a repeat of tyrosines
at amino acid 188 (Figure 3A), replacing the alpha helix
domain found in the mosquito D7 proteins at the same
position. Due to these differences we are categorising the
sandfly D7 as the medium form (Figure 3B).

Phylogenetic analysis of D7 proteins from different organ-
isms shows 2 distinct clades with the sandfly proteins
branching from the long form (Figure 3B). All of the sand-
fly D7 members are clustered within one clade, distinct
from the long form members. The clade containing the
mosquito D7 short-form proteins contains two clusters,
one containing the Anopheles mosquitoes and the other
containing the Culex and Aedes species. The sandfly clade
subdivides into two distinct clades. The lower clade shows
5 distinct groups, two of these groups represent COGs of
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Figure 2

Analysis of PpSP |5 family of sandfly salivary proteins. (A) Multiple sequence alignment of PpSP 15 salivary proteins from
Phlebotomus argentipes (Pag), Phlebotomus ariasi (Par), Phlebotomus perniciosus (Ppe) and Lutzomyia longipalpis (L)). Sequences
were aligned using ClustalX and manually refined using BioEdit sequence-editing software. (B) Phylogenetic tree analysis of
PpSP15 salivary proteins from these four sandflies. Phylogenetic analysis was conducted on protein alignments using Tree Puz-
zle version 5.2 by maximum likelihood using quartet puzzling, automatically estimating internal branch node support (1000 rep-

lications).
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P. perniciosus and P. ariasi, and the group of P. papatasi
seems to be a case of lineage expansion. The lower clade
shows a COG that includes P. argentipes, P. ariasi and P.
perniciosus proteins, PagSP25, ParSP07 and PpeSP10.

Apyrase family of proteins

Both the P. perniciosus and P. argentipes libraries contained
transcripts homologous to the Cimex family of apyrases
[24], a protein also present in the saliva of P. papatasi 7]
and L. longipalpis [ 13]. Apyrases are enzymes that function
as potent anti-platelet factors by destroying or hydrolysing
the platelet activator ADP. An orthologue was found in
humans and the recombinant protein was shown to
hydrolyse a variety of nucleoside di- and triphosphates,
preferentially UDP, followed by GDP, UTP, GTP, ADP,
and ATP [25,26].

Sequence alignment of the P. argentipes,P. perniciosus and
P. ariasi apyrases show a 47% identity and 81% similarity
at the amino acid level (Figure 4A). When L. longipalpis is
included in the analysis, there is a considerable decrease
in the identity (29%) as well as in the similarity (67%)
(data not shown).

Phylogenetic analysis of apyrases from different organ-
isms indicates three main clades with the sandfly apyrases
in a distinct clade, apart from vertebrates, yet closely
related to other insects (Figure 4B). Interestingly sandfly
apyrases share a common ancestor with Cimex lectularius
apyrase. The two insects appear to have evolved to the
blood feeding mode independently [27]. Within the clade
containing the sandflies, one of the P. perniciosus apyrases,
PpeSPO01, is more closely related to the P. ariasi apyrase
(ParSP01) than the second apyrase from P. perniciosus
(PpSP0O1B). This may be the result of a gene duplication
event in P. perniciosus and subsequent loss in P. ariasi.
When searching databases we found a transcript from A.
gambiae similar to sandfly apyrases. This is interesting
because the known mosquito apyrases belong to the 5'-
nucleotidase family of proteins. The known mosquito
apyrase is very distinct, in size and sequence, from the
Cimex family of apyrases also present in sandflies
[28,24,7], thus it is possible that mosquitoes in addition
to a functional 5'-nucleotidase type apyrase, may have a
non-functional sandfly/bedbug-like apyrase gene or it
may have a house keeping function such as hydrolysing
UDP formed after transglycosylation reactions in the
Golgi [29]. Alternatively, the mosquito may have a similar
apyrase but with different substrate specificity or this pro-
tein is not present in their salivary gland.

Interestingly, the mosquito apyrase gene seems to be
ancestral to the sandfly apyrase based on phylogenetic
association (Figure 4B). Then it may be possible that mos-
quitoes have lost the function of this gene and kept the

http://www.biomedcentral.com/1471-2164/7/52

active form of the 5'-nucleotidase gene, which is the active
apyrase in these insects.

The crystal structure of the Cimex family of apyrases was
elucidated from the human counterpart and the amino
acids relevant for calcium- and nucleotide-binding sites
were determined [30]. Several differences were noted
among the amino acids relevant for nucleotide- or cal-
cium-binding between sandflies, bedbugs and humans
[30]. Figure 5 shows the alignment of the different apy-
rases with amino acids relevant for calcium- and nucle-
otide-binding highlighted. We observed clear differences
in some of these amino acids when sandflies were com-
pared with other organisms including mosquitoes. The
amino acids at position 124 are Ser (S), Thr (T) or Ala (A),
in sandflies and Met (M) or Leu (L) in other organisms
(Figure 5). Amino acids at position 126 is Met (M), Ile (I)
or Leu (L) in sandflies and Lys (K) in other organisms; at
position 129, sandflies have either Lys (K), Tyr (Y) or Leu
(L) and other organisms have only Thr (T). At position
178, sandflies and bedbugs have a Trp (W) while other
organisms have Ile (I). Amino acid substitutions may pro-
duce the specificity of the sandfly apyrases to ADP, a mol-
ecule that these insects must hydrolyse to overcome the
hemostatic system and take a successful blood meal. In
fact, Dai et al [30] showed that amino acid substitutions
at some positions changed the substrate (GDP to ADP) in
human apyrase. Human apyrases have more affinity for
GDP substrate while sandfly apyrases have affinity for
ADP [30].

Yellow-related protein

The gene coding for the yellow protein was first described
in Drosophila melanogaster [31]. The proteins in this family
appear to be derived from a common ancestor of the
major royal jelly proteins (MRJPs) from honeybees and
the yellow protein from Drosophila spp.

Drosophila yellow protein is related to pigmentation and
male sexual behavior. In the family Culicidae a yellow
protein was identified in Ae. aegypti whole-larvae extract
and was associated to a dopachrome converting enzyme
activity found in this insect [32]. The function of this pro-
tein in the saliva of sandflies and its importance for blood
feeding remains to be elucidated. The yellow protein fam-
ily is one of the most abundant proteins found in the
sandfly saliva.

We identified transcripts coding for secreted proteins of
approximately 45 kDa, previously described in the saliva
of L. longipalpis, P. papatasi and P. ariasi as yellow-related
proteins [13,14,21]. In the P. argentipes cDNA library we
found only one cluster (PagSP04) coding for this protein,
yetin P. papatasi and L. longipalpis salivary glands there are
multiple members of this family of proteins [33]. Pro-
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proteins from the salivary glands of Phlebotomus argen-

tipes (Pag), Phlebotomus ariasi (Par), Phlebotomus perniciosus (Ppe) and Lutzomyia longipalpis (L]). Sequences were aligned using

ClustalX and manually refined using BioEdit sequence-editing software. (

B) Phylogenetic tree analysis of D7 salivary proteins

from P. argentipes (Pag), P. ariasi (Par), P. perniciosus (Ppe), L. longipalpis (L)), P. papatasi, Aedes aegypti, Ae. albopictus, Anopheles
gambiae, An. Arabiensis, An. Darlingi, An. Stephensi and Culex quinquefasciatus. Phylogenetic analysis was conducted on protein
alignments using Tree Puzzle version 5.2 by maximum likelihood using quartet puzzling, automatically estimating internal branch

node support (1000 replications).
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Figure 4

Analysis of apyrase protein family. (A) Multiple sequence analysis of apyrases from the salivary glands of Phlebotomus argen-
tipes (Pag), Phlebotomus ariasi (Par) and Phlebotomus perniciosus (Ppe). Sequences were aligned using ClustalX and manually
refined using BioEdit sequence-editing software. (B) Phylogenetic tree analysis of apyrase protein family from P. argentipes (Pag),
P. ariasi (Par), P. perniciosus (Ppe), L. longipalpis (L)), P. papatasi, Cimex lectularius, and transcripts coding from this protein family
(identified at GenBank) from Drosophila melanogaster, An. Gambiae, A. mellifera, C. elegans, M. musculus, R. ratus, B. Taurus, H. sapi-
ens, P. troglodytes, G. galus, D. rerio and X. leavis. Phylogenetic analysis was conducted on protein alignments using Tree Puzzle
version 5.2 by maximum likelihood using quartet puzzling, automatically estimating internal branch node support (1000 replica-
tions).
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M. musculus YNALR-AAAGIRPPGYLIHESACWSDTLORWFFLPRRASHERYSEKDDERKGSN
R. novergicus YNALR-AAAGIQPPGYLIHESACWSDTLORWFFLPRRASHERYSEREDERKGSN
A. mellifera YKRLR-QAIDIEYPGYMIHESGAWSDIHKSWFFLPRRCSHDQYNETKDETMSCN
D. melanogaster FKQLRLQOSMQITWPGYMIHESGTWSEERNRWFFLPRRCSKEKYNETKDEHMGCN
A. gambiae YKAIR-KAIGIEWPGYMIHESGAWSEVHRRWFFLPRRCSRERYNETRDEHMGCN
C. lectularius  YEKIR-SSMNITFPGYMWHEAACWSDKYNKWFFLPRALSQEAYDSKKFETQGAN
PpesSP01 YKKVRDAMGLVS - -GFVIWHEAVNWS PRKNLWVFMPRKCTNEPY TVRLDKKTGCN
Parsp01 YSKVKNAMGI PSSVGFVIWHEAVNWS PRKNLWVFMPRKCTTEYETSQVEEKTGCN
PpeSP1B YKKVKDAMGMS S - -GFVIWHEAVNWS PRKNLWVFMPRKCSRQPESAQIEEHTGCN
PagspP03 YEAVKKALGMTN--GFVIWHEAVTWS SHKKLWVFLPRKCTAEKYSRQIEETTGCN
P. papatasi YDKIKSAMKIPN--GFIWHEAVNWSKLKNQWVFLPRKCSERPEDTKTEETIGCN
LJL23 YRKILKALNMPN--GFVIWHEAVTWS PFRKQWVFMPRKCSRHPESQELEERTGCN
Figure 5

Multiple sequence analysis of the apyrase family of proteins. Multiple sequence alignment of different organisms show-
ing the amino acids highlighted in grey that are relevant for calcium and nucleotide binding as predicted from the structure of
the human apyrase. Sequences were aligned using ClustalX and manually refined using BioEdit sequence-editing software.
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teomic analysis (Figure 1A) revealed that the PagSP04
transcript (YHVEREYAWRNVTFEGVN) was one of the
most abundant proteins found in the salivary glands of P.
argentipes. Interestingly, three proteins with different
mobilities coded for the same N-terminus sequence (Fig-
ure 1A) suggesting they may represent the same protein
with different post-translational modifications.

Based on comparative analysis, we identified ten different
sandfly salivary proteins that are members of the yellow
family. Alignment of yellow proteins from Phlebotomus
sandflies (P. argentipes, P. perniciosus, and P. ariasi),
revealed a 43% identity and 79% similarity among the
members of this protein family (Figure 6A). When the
three yellow proteins from L. longipalpis were added, the
identity was 21% identity and similarity was 57% among
these proteins (Figure 6B). The phylogenetic analysis
based on maximum likelihood using amino acid data of
several MRJP/yellow proteins resulted in the formation of
various clades (Figure 7), one clade containing yellow
proteins from honeybees, a second clade containing mos-
quitoes and Drosophila, and a third clade containing the
yellow proteins from sandflies. The sandfly clade was sub-
divided into three sub-clades, one containing the two yel-
low proteins from P. papatasi, the second clade containing
the yellow proteins from P. ariasi and P. pernicious, and the
third clade containing the L. longipalpis yellow proteins.

Based on their MW, the yellow proteins from L. longipalpis
appear to be the most recognised proteins from the sera of
individuals living in endemic areas of visceral leishmani-
asis and from individuals that have anti-Leishmania
immunity [34]. The antibody response against these sali-
vary proteins appears to correlate with protection against
leishmaniasis.

Antigen-5 family of proteins

This cluster codes for a secreted protein of 29 kDa similar
to antigen 5-related protein found in wasp venom [35].
Similar proteins have been isolated from the salivary
glands of Aedes aegypti [20], An. gambiae [36] and from the
salivary glands of L. longipalpis [13]. We found only one
cluster coding for this protein in the cDNA library of P.
argentipes (PagSP05) and in the cDNA library of P. pernici-
osus (PpeSP07). The N-terminal sequence corresponding
to these transcripts was identified in the salivary glands of
P. argentipes (Figure 1A) and P. perniciosus (Figure 1B).

This family of proteins belong to the CAP family (CRISP,
Ag5,PR-1) of proteins [37,35]. A remarkable feature of
this family is the large number of cysteine residues, partic-
ularly at the carboxy-terminal region. X-ray structure of
Na-AS-2, a member of this family from the human hook-
worm Necator americanus, was recently reported [38] and
showed structural similarities to chemokines. Thus, it is

http://www.biomedcentral.com/1471-2164/7/52

possible that this type of protein in sandflies or other
insects may bind cytokines with potential effects on the
host immune response.

Multiple alignments of the antigen-5 protein from the
sandflies indicated a 49% identity and 80% similarity
(Figure 8A) with fourteen conserved cysteines. Phyloge-
netic analysis identified unique clades containing
Hymenoptera, Culicidae, sandflies and mammals (Figure
8B). The only other organism included in the sandfly
clade was the biting midge Culicoides sonorensis.

33-kDa protein family

The 33-kDa protein family does not appear to be related
to any other known proteins found in GenBank. Phle-
botomus ariasi and P. perniciosus, 33-kDa proteins, are more
closely related to each other than to P. argentipes, whereas
the 33-kDa protein from L. longipalpis is distant to the
three Phlebotomus species (data not shown). In general, all
four sequences are somewhat similar with only 34%
shared amino acids (Figure 9). Without further investiga-
tion, the function of this protein is unknown.

Endonuclease family of proteins

Transcripts coding for an endonuclease-like protein were
found in P. argentipes (PagSP11) and P. perniciosus
(PpeSP32) salivary gland cDNA libraries. These tran-
scripts code for a protein of approximately 40 kDa with
similarities to non-specific endonucleases from the sand-
fly L. longipalpis [33], tse tse fly Glossina morsitans [39], and
the mosquito Culex pipiens quinquefasciatus [40]. This tran-
script does not have a direct match with the NUC Smart
motif, which is indicative DNA/RNA non-specific endo-
nucleases and phosphodiesterases, but it does have a high
homology with other known endonucleases from other
arthropods such as D. melanogaster (AAL13973) as well as
non-insect arthropods such as P. camtschaticus (king crab)
(AAN86143) and M. japonicus (prawn) (ACB55635) (Fig-
ure 10B).

Endonuclease proteins were found in all sandflies studied.
The multiple alignment of sandfly endonuclease showed
various regions of identity among amino acids, and many
regions of conserved amino acids, even when comparing
endonucleases from different sandfly genera (Figure 10A).
Phylogenetic analysis indicated that the sandfly endonu-
cleases clustered (92% bootstrap support) with other
arthropods, including two non-insect arthropods (Para-
lithode camtschaticus and Marsupenaeus japonicus) (Figure
10B), however, sandfly endonucleases formed a distinct
clade within the arthropod cluster (90% bootstrap sup-
port). Additionally, these endonucleases were clearly dis-
tant from other endonucleases. This suggests that this
endonuclease may represent a common antigen for differ-
ent sandflies and that the distant relationship to other
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Multiple sequence analysis of yellow-related proteins from the salivary glands of different sandflies. (A) Only
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shown on this alignment. Sequences were aligned using ClustalX and manually refined using BioEdit sequence-editing software.
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Phylogenetic tree analysis of yellow-related salivary proteins. Yellow-related proteins from other organisms including
S. invicta, An. Gambiae, A. mellifera, D. melanogaster and Ae. Aegypti. Phylogenetic analysis was conducted on protein alignments
using Tree Puzzle version 5.2 by maximum likelihood using quartet puzzling, automatically estimating internal branch node sup-

port (1000 replications).

endonucleases may avoid potential cross reactivity with
non-insect organisms. Since this type of enzyme can
cleave double- and single-stranded DNA, the role of this
protein in the saliva of sandflies should be investigated
further.

PpSP32-like protein

The PpSP32-like family of proteins is similar to the 32.4-
kDa protein first identified in P. papatasi salivary glands
[14]. We found only one cluster (PagSP06) coding for this
protein in the P. argentipes cDNA library. BLAST analysis
of PagSP06 identified significant homology to L. longi-
palpis and P. papatasi PpSP32-like proteins. The P. pernici-
osus cDNA library contained only one cluster (PpeSP05)
sharing identity with the PpSP32-like protein. Interest-
ingly, upon BLAST analysis the PpSP32-like protein from
P. perniciosus was found to be highly homologous to a
Type VII collagen protein from Canis familiaris (E = 10-5)
as well as a collagen from Mus musculus, Rattus norvegicus,

Chinese hamster, and Bos taurus. This homology was
found along approximately 74 amino acids (36% iden-
tity) and was dominated by conserved glycines and pro-
lines (Figure 11).

The role of a collagen-like protein in sandfly salivary
glands is unknown, yet intriguing. Because this protein
may bind matrix protein, it is possible that this type of
protein may form strong associations with basal matrix
proteins. Within the Phlebotomus genera the relationship
to collagen appears to be limited to PpSP32 kDa-like pro-
teins from P. pernicious. P. papatasi and P. ariasi share only
weak (non-significant) homology with Type VII collagen
(E = 2.8 and 4.5, respectively) and P. argentipes did not
match any collagen proteins upon multiple BLAST
searches.

One explanation for the apparent homology between the

four sandflies studied, yet lack of identity between colla-
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Analysis of antigen 5-related proteins. (A) Multiple sequence alignment of antigen 5 related proteins from the salivary
glands of Phlebotomus argentipes (Pag), Phlebotomus ariasi (Par), Phlebotomus perniciosus (Ppe) and Lutzomyia longipalpis (LJ).
Sequences were aligned using ClustalX and manually refined using BioEdit sequence-editing software. (B) Phylogenetic tree
analysis of antigen 5-related protein from sandflies and other organisms, including A. Aegypti, A. Albopictus, A. stephensi, A. darlingi,
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by maximum likelihood using quartet puzzling, automatically estimating internal branch node support (1000 replications).
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Multiple sequence analysis of the 33-kDa protein family found on the salivary glands of sandflies. Phlebotomus and
Lutzomyia salivary proteins were used for this comparison. Sequences were aligned using ClustalX and manually refined using

BioEdit sequence-editing software.

gen-related proteins in all sandflies, was revealed in the
comparative analysis of the four sandflies. The majority of
the homology between the four sandflies was found at the
N- and carboxy terminus whereas the middle section of
the protein appeared to be less conserved. The N-terminal
and carboxy terminus has 43% and 23% identity between
the four flies, respectively, whereas the midsection of the
protein contains only 4% identity (Figure 11A). The
region of homology between P. perniciosus and Type VII
collagen was found in the non-homologous region of the
protein (Figure 11B).

Additionally, BLAST analysis of L. longipalpis LJLO4
(AAS16906) revealed a significant homology to collagen
adhesion proteins from B. thuringiensis (ZP_00739782)
and B. cereus (NP_830673) (Figure 11C). Again, the
region of homology was found in the divergent section of
the PpSP32-kDa protein. The most perplexing aspect of
this family of proteins is that, although highly conserved
among the four sandflies studied here, the N-terminal and

carboxy regions of the protein have no homology to pro-
teins of known function.

Perspectives on the evolution of hematophagy in sandflies
The presence of a specific gene in distantly related species
could indicate a true orthologous relationship (i.e., the
presence of the gene in the ancestral species) or acquisi-
tion of the gene by one of the species by horizontal gene
transfer. While horizontal gene transfer is a common
event in prokaryotes its provenance in eukaryotes is not
well established and the general consensus is that its
occurrence is rare, if present at all. In the case of sandflies
this would imply that proteins present in evolutionary
distant species (insects or other metazoans) were present
in the ancestral sandfly. As such, two general trends can be
observed for the sandfly protein families found in their
transcriptomes. Firstly, those proteins that occur through-
out the metazoans or insecta tend to be found as single
members in all sandfly genera with no extensive gene
duplication events occurring in sandflies. These proteins

Page 17 of 23

(page number not for citation purposes)



BMC Genomics 2006, 7:52

A

PagSP11
ParSP10
PpeSP32
LJL138

PagSP11
ParsSP10
PpeSP32
LJL138

PagSP11
ParSP10
PpeSP32
LJL138

PagSP11l
ParsSP10
PpeSP32
LJL138

PagSP11
ParSP10
PpeSP32
LJL138

B

IRQWILPLCLEVLHIPESAA---
INPIVLRFTFLLVIL-LPGKCKSAP
IINSTVIQFIFLEVIF-LPGKSKSAP
HLOLNLCAILLSVLNGIQGAPKSINS|YSEANS

|
R--TIESVPEORDGHSLLVAQKK@KGRILSELL:
L-KKLKSVP@SR---KFSLESYSENNSSQSELVOIE]
Q-KELKRVP@SP---KFSLENIT@NSNVHSE LVDUE!
DGKDVETIT@NT---NEFDLASYS@NKSTSTDTIEMNE]

170

180

GOLE
THIS
THIS

(TOEMNLIETSIPTKGS IMLLNGNG----SVFRPDEKLTOLNIG

ITHR EDIPHDC I LNPDES-----1 GFRIT@KVTKI---E}
SE@TIMNTLIETSTPKKGI#P M- LNSNG----SVFRPI[€GLTQLNIG
ENVTAKK|@PVRLKPSNDGSLSTPLOPS[gPFVSLKIGE]

http://www.biomedcentral.com/1471-2164/7/52

130
TLIEIGFQTTSKH
KWYNIG3PIRETN.

KCYNIS|3PIRETNT)
[KVYKVG|3PIBgESGN|

[RKL: FVLSSKTSQLFLSP”
KKV TIRFRKPLH-——YI#A
[KRIT| ST TIRFRKPLH---YJRA}

TQIE! KL THFRRPLN---F#Sisle]
280 290 300 310 320
P O I (PP I IV [ P P PO
\DDLH QLAN————RKV W [HVKTSA
DNL L] 1 DI KESNKRADTET HLRTSS
DDLH TG TMKE SNKRAERE T HPKTSS
KDIT) TCIMRLKSKKIEKET DPOKOE
360 370 380 390 400
F e o I P ey I IS (PUPIP I I |
————— KNIVKOS] T
GIIGDKOHGNON|FSN Y ST EWODEIGNS| KDIQV-Jit-NH- 0
GGKOHENQNSSINH T IEPDELGNS IMFKEFQG-IM-NY — K
©20RCHGN --DNLE VERNYS T EEEVKRNGI IIBEKEVNN -[3-NY T K

NP 460296 — S. typhimurium

52{————————————————
P38446 -4

b

sp.

YP169631 — F. tularensis

53

NP 224013 — H. pylori
P08466 — S. cerevisiae

008600 — M. musculus

81 -
96 -
65 AAH16351 — H. sapien
o L— NP 766044 - M. musculus
Q9Y2C4 — H. sapien

ZP00588775 — P. phaeoclathratiform

84— YP199045 — X. oryzae

92

84
69|

88

o5 ZP00508809 — Polaromonas sp.
‘E NP518865 — R. solanacearum
67, ZP00595698 — R. metallidurans

Figure 10

0.5

98

o

AARI18449 — C. pipiens

AAF82097 — G. morsitans

AAL1

PagSP11b
LIL138
PpeSP32
ParSP10

AAF82098 — G. morsitans
3973 — D. melanogaster

AANB6143 — P. camtschaticus
CABS55635 — M. japonicus

Analysis of the endonuclease family of proteins. (A) Multiple sequence analysis of salivary endonucleases from Phle-
botomus and Lutzomyia sandflies. Sequences were aligned using ClustalX and manually refined using BioEdit sequence-editing
software. (B) Phylogenetic tree analysis of endonucleases from sandflies and other organisms, including S. thypimurium, Anabaena
sp., F. tularensis, H. pylori, S. serevisiae, M. musculus, H. sapiens, P. phaeoclathratiform, X. oryzar, Polaromonas sp., R. solanacearum, R.
metallidurans, C. pippiens, G. morsitans, D. melanogaster, P. cantschaticus and M. japonicus. Phylogenetic analysis was conducted on
protein alignments using Tree Puzzle version 5.2 by maximum likelihood using quartet puzzling, automatically estimating inter-
nal branch node support (1000 replications).
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Figure 11

Analysis of the PpSP32 protein family. (A) Multiple sequence analysis of PpSP32 like proteins from the salivary glands of
Phlebotomus and Lutzomyia sandflies. (B) Multiple sequence alignment of Lutzomyia longipalpis salivary protein LJL04 and collagen
adhesion proteins from B. thruingiensis and B. cereus. (C) Multiple sequence alignment of Phlebotomus perniciosus PpeSP05 and
type VIl collagen proteins from Canis familiairis, Mus musculus, Rattus norvegicus, Chinese hamster, and Bos Taurus. Sequences
were aligned using ClustalX and manually refined using BioEdit sequence-editing software.
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are generally well conserved and possibly share the same
or a very similar function to those found in the main fam-
ily. These proteins include the apyrase, antigen 5 and
endonuclease families and probably consist of the core
repertoire of the ancestral sandfly proteins that develop
during adaptation to hematophagous behavior. Although
yellow-related proteins and D7 proteins are generally well
conserved, we observed some gene expansion of these
proteins in sandflies (Figures 3 and 7).

Alternatively, a number of protein families are limited to
sandflies as a group or specific species and show low levels
of similarity to family members found in other insects.
Members of this group show high levels of divergence,
more gene duplication events and were probably evolved
specifically during adaptation to a blood-feeding lifestyle
and specific host species. Proteins in this category include
the PSP15 like, PSP32 like, 32 kDa, 39 kDa and 16.1 kDa
protein families (Table 3) Within this group can also be
placed the singletons, which are proteins limited exclu-
sively to single species (Table 4). In the case of the 39 kDa
and 16.1 kDa families (Table 3), it is possible that gene
losses occurred among selected sandfly species or the
sequences or transcripts were missed on this analysis due
to low representation of these transcripts in the sandflies
studied. In the case of the 2- and 5-kDa salivary proteins
only found in P. ariasi and P. perniciosus (Table 4), these
proteins may be specific for the subgenus Larroussius. We
found many transcripts in the P. argentipes and L. longi-
palpis cDNA libraries coding for proteins of similar MW,
however with no significant homology to these two pro-
teins.

As expected, we found that salivary proteins from sand
flies belonging to the same subgenus are more closely
related to each other than proteins from different subge-
nus. We observed that proteins belonging to P. ariasi (sub-
genus Larroussius) in all phylogenetic tree analysis based
on protein sequence were more closely related to P. perni-
ciosus (subgenus Larroussius) than to P. argentipes salivary
proteins (subgenus Euphlebotomus). These results are in
agreement with previously studies using the small subunit
nuclear ribosomal DNA [12].

Can we use the salivary proteins common to these four

sandflies as global antigens for a vector-based vaccine?

The large degree of divergence found in the majority of the
most abundant sandfly salivary proteins suggests that a
specific salivary protein may not be used as common vac-
cine target or as a common marker for sandfly exposure to
different sandfly genera. This is supported by the recent
findings by Rohousova et al [41], who compared anti-
body responses to salivary proteins from P. papatasi, P. ser-
genti and L. longipalpis and also demonstrated a lack of
cross-reactivity between animals bitten by two different

http://www.biomedcentral.com/1471-2164/7/52

sandfly genera. This lack of cross-reactivity is possibly due
to the low degree of similarities found in the Lutzomyia
and Phlebotomus salivary proteins, as reported in the
present work, and to the lack of recognition to specific
molecules present exclusively in the different genera. We
cannot exclude at this point potential cross-reactivity, or
lack thereof, with components of the cellular immune
response to sandfly salivary proteins. This area has been
under-studied and should be evaluated experimentally.
Although there is an overall low degree of identity
between most salivary proteins across the genera, there are
small regions of identities that may contain common T
cell epitopes conserved between Lutzomyia and Phle-
botomus salivary proteins. These small regions are
observed in proteins such as D7, apyrases, yellow-related
protein, antigen 5, a 33-kDa protein and endonucleases
from these sandflies studied thus far.

In contrast, we found salivary proteins that have the
potential to be a common vaccine target within the genus
Phlebotomus. We identified three proteins that are highly
conserved in different Phlebotomus species, the yellow-
related protein, the apyrases and the antigen 5-related
proteins. Additionally, these proteins have the potential
to be markers of exposure for Phlebotomus sandflies in gen-
eral. This is supported by observations by Rohousova et al
[41] and Volf and Rohousova [42], which showed some
cross-reactivity in animals to salivary proteins between
different Phlebotomus species. These observations need to
be expanded and evaluated experimentally for the poten-
tial cross-reactivity of these salivary proteins on specific
cellular immune responses that may protect against Leish-
mania infection.

Conclusion

Overall, this study led us to the identification of novel sal-
ivary proteins from two sandfly vectors of visceral leish-
maniasis, P. argentipes and P. perniciosus, and the
identification of the overall repertoire of secreted proteins
present in their salivary glands. Additionally, this study
allowed the discovery of the salivary proteins common
among four different sandflies, from two different genera
(Lutzomyia and Phlebotomus) and from two different sub-
genera (Euphlebotomus and Larroussius). This comparative
study is giving us insight into the evolution of sandfly sal-
ivary proteins, their relationship and their molecular char-
acteristics.

Moreover, this study is providing a better understanding
of the overall sequence identity of sandfly salivary pro-
teins across genus and species, while suggesting that a glo-
bal vector-based vaccine may not be possible across
different genera and that possibly genus- or species-spe-
cific salivary proteins may need to be used for this type of
vaccine.
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Methods

Sandfly rearing

Adult Phlebotomus argentipes (NIH colony) and P. pernicio-
sus (kindly obtained by Dr. Michele Maroli, Italy) sand-
flies were kept with free access to a 20% solution of
sucrose. Salivary glands from recently emerged and 1- to
2-day-old adult female flies were dissected and transferred
to 10 or 20 ul 10 mM HEPES pH 7.0, 0.15 M NaCl in 1.5
ml polypropylene vials, usually in groups of 10 pairs of
glands in 20 ul of HEPES saline. Salivary glands were kept
at -75°C until needed.

Salivary Gland cDNA Library

Salivary gland mRNA from both species was isolated from
40-50 salivary gland pairs, respectively, using the Micro-
FastTrack mRNA isolation kit (Invitrogen, San Diego,
CA). The PCR-based cDNA library was made using the
SMART cDNA library construction kit (BD-Clontech, Palo
Alto, CA), following the manufacturer's recommendation
with some modifications [33]. The obtained cDNA librar-
ies (large, medium and small sizes) were plated by infect-
ing log phase XL1- blue cells (Clontech); insert size was
determined with PCR using vector primers flanking the
inserted cDNA and visualised on a 1.1 % agarose gel with
ethidium bromide (1.5 ug/ml). Inserts were sequenced as
previously described using a CEQ 2000XL DNA sequenc-
ing instrument (Beckman Coulter) [33].

Bioinformatics

Detailed description of the bioinformatic treatment of the
data appear in [19]. Briefly, primer and vector sequences
were removed from raw sequences and sequences shorter
than 50 nucleotides or containing more than 15% N were
removed from further analysis. Sequences were compared
to the GenBank non-redundant (nr) protein database
using the standalone BlastX program [43] using a cut-off
E-value of 1 x 10->. Related sequences containing less than
5% N were clustered into rated groups based on 90%
homology over a continuous stretch of 90 nucleotides
using the CAP3 assembler program [44]. Sequences were
then grouped into contigs and aligned. Contigs and sin-
gletons (contig containing only one sequence) were com-
pared using the program BlastX, BlastN, or rpsBlast [43] to
the non-redundant (nr) protein database of the National
Center of Biological Information (NCBI), to the gene
ontology database (GO) [45], to the Conserved Domains
Database (CDD) that includes all Pfam [46], Smart
[47,48] and COG protein domains in the NCBI [49].

Additionally, contigs were compared to a customised sub-
set of the NCBI nucleotide database containing either
mitochondrial (mit-pla) or rRNA (rrna) sequences. Iden-
tification of putative secreted proteins was conducted
using the SignalP server [50]. The three-frame translation
of each dataset was used to determine open reading
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frames (ORF). Only ORFs that started with a methionine
and were longer than 40 amino acid (AA) residues were
submitted to the SignalP server. The grouped and assem-
bled sequences, BLAST results and signal peptide results
were combined in an Excel spreadsheet and manually ver-
ified and annotated.

Sequence contigs containing signal peptides were selected
from both species for further analysis and compared with
secreted proteins from L. longipalpis [33] and P. ariasi [21].
Full-length secreted proteins from each sandfly library
were compared using a stand alone version of BLAST [51]
creating formatted protein databases of each sandfly
library. Related groups of proteins from each sandfly spe-
cies were combined into defined families of proteins.

To ensure the fidelity of the sandfly library comparative
analysis, the original nucleotide sequence data files from
each library (including secreted and non-secreted
sequences) were combined and compared to known fam-
ilies of salivary gland proteins using BLAST analysis.
Results of this analysis were compared to the original indi-
vidual analysis.

Predictions of protein secondary structures were per-
formed using the PHYRE prediction server [52].

Phylogenetic analysis

The evolutionary relatedness of the protein families iden-
tified through the bioinformatics analysis was evaluated
using phylogenetics. Consensus protein sequences of the
identified protein families from each of the sandflies used
in this analysis were compared with related sequences
from non-visceral Leishmania sandfly vectors as well as
non-sandfly species obtained from GenBank. Sequences
were aligned using ClustalX [53] and manually refined
using BioEdit sequence-editing software [54]. Alignments
were analysed using ProtTest version 1.2.6 [55] to deter-
mine the best fit model of protein evolution for each par-
ticular alignment. Phylogenetic analysis was conducted
on protein alignments using Tree Puzzle version 5.2 [56]
incorporating the appropriate model of evolution defined
by ProtTest. Tree Puzzle constructs phylogenetic trees by
maximum likelihood using quartet puzzling, automati-
cally estimating internal branch node support (1000 rep-
lications). Derived trees were visualised using TreeView
[57].

Full-length Sequencing of Selected cDNA Clones

An aliquot (4 pl) of the A-phage containing the cDNA of
interestwas amplified using the PT2F1 and PT2R1 prim-
ers, as described previously [33]. The PCR samples were
cleaned using the multiscreen PCR 96-well filtration sys-
tem (Millipore). Cleaned samples were sequenced first
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with PT2F3 primer (5'-TCT CGG GAA GCG CGC CAT
TGT-3') and subsequently with custom primers.

SDS-PAGE

For P. argentipes salivary glands, Tris-glycine gels (4-20%),
1 mm thick (Invitrogen), were used. Gels were run with
Tris-glycine SDS buffer according to the manufacturer's
instructions. To estimate the molecular weight of the sam-
ples, SeeBlue™ MW markers from Invitrogen were used.
SGH were treated with equal parts of 2x SDS sample
buffer (8% SDS in Tris-HCI buffer, 0.5 M, pH 6.8, 10%
glycerol and 1% bromophenol blue dye). Each lane con-
tained 20 pairs of homogenised P. argentipes salivary
glands (20 ug protein). Protein were visualised with
Coomassie blue stain. For aminoterminal sequencing of
proteins, 20 pairs of homogenised salivary glands were
electrophoresed and transferred to polyvinylidene difluo-
ride (PVDF) membrane using 10 mM CAPS, pH 11.0,
10% methanol as the transfer buffer on a Blot-Module for
the XCell II Mini-Cell (Invitrogen). The membrane was
stained with Coomassie blue without acetic acid. Stained
bands were cut from the PVDF membrane and subjected
to Edman degradation using a Procise sequencer (Perkin-
Elmer Corp.). Similar procedure was used to perform the
amino-terminal sequence of P. perniciosus with the excep-
tion that 10% polyacylamide NuPAGE Bis-Tris (Invitro-
gen) was used for protein separation.

To locate the cDNA sequence cluster that corresponds to
the amino acid sequence obtained by Edman degradation,
we used a search program that compared the amino acid
sequences against the three possible protein translations
of each cDNA sequence obtained in the DNA sequencing
project [22].

List of abbreviations

COG, cluster of orthologous groups; OBP, odurant-bind-
ing protein; LSE, lineage-specific expansion; PLA2, phos-
pholipase A2, MRJP, major royal jelly proteins; MW,
molecular weight; PVDF, polyvinylidene difluoride;.
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