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Abstract: In this research, we report a simple hydrothermal synthesis to prepare rhenium (Re)- doped
MoS2 flower-like microspheres and the tuning of their structural, electronic, and electrocatalytic
properties by modulating the insertion of Re. The obtained compounds were characterized by
X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron
microscopy (HRTEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Structural,
morphological, and chemical analyses confirmed the synthesis of poorly crystalline Re-doped MoS2

flower-like microspheres composed of few stacked layers. They exhibit enhanced hydrogen evolution
reaction (HER) performance with low overpotential of 210 mV at current density of 10 mA/cm2, with a
small Tafel slope of 78 mV/dec. The enhanced catalytic HER performance can be ascribed to activation
of MoS2 basal planes and by reduction in charge transfer resistance during HER upon doping.

Keywords: molybdenum disulfide; rhenium doping; hydrothermal synthesis; HER; hydrogen
evolution reaction

1. Introduction

The use of hydrogen (H2) as fuel has gained significant importance. Hydrogen is a source of clean
energy obtained at convenient cost by the water electrolysis process [1,2]. This process has proven
to be one of the most efficient methods for hydrogen production; however, the use of high-cost and
scarce precious metal (Pt, Pd) materials, which have excellent electrocatalytic performances, hinders
their large-scale application. In this context, several earth-abundant catalytic alternatives have been
investigated, including, for example, phosphide-based materials [3], transition metal monopnictides [4],
metal carbides [5], and transition metal dichalcogenides [6], among others. Molybdenum disulfide
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(MoS2), one of the most earth-abundant transition metal dichalcogenides, has been extensively
researched as a low-cost electrocatalyst for hydrogen evolution reaction (HER) [2,7]. Theoretical
and experimental studies have demonstrated that the edges of the semiconducting 2H-MoS2 are
the catalytically active sites toward HER, while the basal planes are inert [8,9]. Most strategies to
improve HER performance of MoS2 electrocatalysts are consequently focused on phase, defects, and
heterostructure engineering to maximally expose edge sites and to activate the basal plane [7,10,11].
Doping with non-metallic or transition metals atoms into the MoS2 structure activates both edges and
basal plane, improving the electronic mobility, charge transportability, and catalytically active surface
area, therefore enhancing HER activity of the material [12–15]. In this sense, rhenium doping has been
proposed to tune the electronic structure and polymorphic phases and to activate the basal planes of
MoS2 [16–19]. It has been demonstrated that a low concentration Re (n-type) doping induces broader
valence bands and electron accumulation close to the Fermi level in MoS2 fullerenes, resulting in a
better HER performance [20].

This work studies the influence of rhenium incorporation under hydrothermal conditions in the
electrocatalytic behavior of Re-doped MoS2 for HER in acidic media. The Re-doped MoS2 samples
were prepared by a direct in situ sulfurization of ammonium molybdate and ammonium perrhenate
by thiourea, using a simple hydrothermal process. A pristine MoS2 material for direct comparison
was also synthesized by the same method. Herein, we show morphological, structural, electronic, and
electrocatalytic effects of a hydrothermal Re doping on MoS2, where the HER performance is tuned by
the amount of Re doping.

2. Results

2.1. Characterization of the Catalyst

2.1.1. Scanning Electron Microscopy Analysis

SEM measurements were carried out to characterize the morphology of all samples. SEM images
of all samples showed an overall flower-like similar morphology, both in the undoped and Re-doped
MoS2 samples (Figure 1).
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These flower-like particles are composed of disordered nanosheets, which project their edges
perpendicularly from the surface of a hierarchical structure. For the pristine MoS2 sample (Figure 1a),
an agglomeration of sphere-like particles with sizes ranging from 1.0 to 3.0 µm is observed.
With increasing Re content in the samples, a decreasing size of the MoS2 hierarchical structures
is observed, with no perceptible changes in their morphology (Figure 1a–c). As it can been seen in
Figure 1c,d, more discrete particles are observed for samples with higher rhenium content, with an
average diameter of 1.63 µm for the 39.2% Re-doped MoS2 sample (Figure 1d). Higher magnification
of the nanosheets reveals the Re-doped samples to have a smaller lateral size than that of the undoped
sample, with the smallest size for the 39.2% Re-MoS2 sample (Insets Figure 1a–d). Similar trends have
been observed for solvothermal MoS2, and MoSe2 materials doped with Cu, Ru, and V [14,21,22].

2.1.2. X-ray Diffraction Analysis

XRD was utilized to analyze the structural features of rhenium doping in all samples. As observed
in Figure 2, the XRD profiles of pristine and doped samples look very similar, showing a single-phase
with four reflections at approximately 2 θ = 14.3, 33.2, 39.5, and 58.7◦ corresponding, respectively,
to (002), (100), (103), and (110) planes of 2H-phase MoS2 polytype (JCPDS 37–1492) [19,23]. Dominance
of 2H-MoS2 diffraction peaks makes it difficult to determine the presence of the 1Td-ReS2 phase
(which has a particularly disordered lattice structure) in all XRD sample patterns [23]. Although the
Re-doped MoS2 and pristine MoS2 XRD profiles shown in Figure 2 look very similar, even with
increasing rhenium content, they reveal a broadening of the (002) peaks and a gradual decrease of the
I(002)/I(100) diffraction peaks ratio (2.2, 1.9, 1.3 for pristine MoS2, 14.7% Re–MoS2, and 27.7% Re–MoS2,
respectively). This result indicates a concomitant decrease of the aligned (002) planes with increasing
rhenium content in the samples, which is in agreement with similar MoS2 materials with disordered
structures [24]. Sample 39.2% Re–MoS2, which presents the highest proportion of rhenium, shows the
most amorphous structure, with a broad bulge in the 33–45◦ range, associated with merging of (100)
and (103) planes, and by the presence of a low-intensity and shifted (110) peak (Inset Figure 2) [25].

Molecules 2019, 24, 4631 3 of 12 

 

These flower-like particles are composed of disordered nanosheets, which project their edges 
perpendicularly from the surface of a hierarchical structure. For the pristine MoS2 sample (Figure 1a), 
an agglomeration of sphere-like particles with sizes ranging from 1.0 to 3.0 µm is observed. With 
increasing Re content in the samples, a decreasing size of the MoS2 hierarchical structures is observed, 
with no perceptible changes in their morphology (Figure 1a–c). As it can been seen in Figure 1c,d, 
more discrete particles are observed for samples with higher rhenium content, with an average 
diameter of 1.63 µm for the 39.2% Re-doped MoS2 sample (Figure 1d). Higher magnification of the 
nanosheets reveals the Re-doped samples to have a smaller lateral size than that of the undoped 
sample, with the smallest size for the 39.2% Re-MoS2 sample (Insets Figure 1a–d). Similar trends have 
been observed for solvothermal MoS2, and MoSe2 materials doped with Cu, Ru, and V [14,21,22]. 

2.1.2. X-ray Diffraction Analysis  

XRD was utilized to analyze the structural features of rhenium doping in all samples. As 
observed in Figure 2, the XRD profiles of pristine and doped samples look very similar, showing a 
single-phase with four reflections at approximately 2 θ = 14.3, 33.2, 39.5, and 58.7° corresponding, 
respectively, to (002), (100), (103), and (110) planes of 2H-phase MoS2 polytype (JCPDS 37–1492) 
[19,23]. Dominance of 2H-MoS2 diffraction peaks makes it difficult to determine the presence of the 
1Td-ReS2 phase (which has a particularly disordered lattice structure) in all XRD sample patterns [23]. 
Although the Re-doped MoS2 and pristine MoS2 XRD profiles shown in Figure 2 look very similar, 
even with increasing rhenium content, they reveal a broadening of the (002) peaks and a gradual 
decrease of the I(002)/I(100) diffraction peaks ratio (2.2, 1.9, 1.3 for pristine MoS2, 14.7% Re–MoS2, and 
27.7% Re–MoS2, respectively). This result indicates a concomitant decrease of the aligned (002) planes 
with increasing rhenium content in the samples, which is in agreement with similar MoS2 materials 
with disordered structures [24]. Sample 39.2% Re–MoS2, which presents the highest proportion of 
rhenium, shows the most amorphous structure, with a broad bulge in the 33–45° range, associated 
with merging of (100) and (103) planes, and by the presence of a low-intensity and shifted (110) peak 
(Inset Figure 2) [25]. 

 
Figure 2. X-ray diffraction patterns of pristine MoS2, 14.7% Re-doped MoS2, 27.7% Re-doped MoS2, 
and 39.2% Re-doped MoS2 samples. Inset shows the (110) peak of all samples. 

2.1.3. Raman Spectroscopy Analysis 

Raman spectroscopy was utilized to characterize crystal phase and structural features of Re-
doped MoS2 samples. As shown in Figure 3, Raman spectra of all samples display the typical two 
main lines of 2H-MoS2, corresponding to out-of-plane A1g mode, and an in-plane E12g mode, observed 
at approximately 409–400 cm−1 and 382–371 cm−1, respectively [23,26]. By the increase of rhenium 
content, a remarkable line broadening is observed in the first-order Raman signals. The disordered 

Figure 2. X-ray diffraction patterns of pristine MoS2, 14.7% Re-doped MoS2, 27.7% Re-doped MoS2,
and 39.2% Re-doped MoS2 samples. Inset shows the (110) peak of all samples.

2.1.3. Raman Spectroscopy Analysis

Raman spectroscopy was utilized to characterize crystal phase and structural features of Re-doped
MoS2 samples. As shown in Figure 3, Raman spectra of all samples display the typical two main
lines of 2H-MoS2, corresponding to out-of-plane A1g mode, and an in-plane E1

2g mode, observed
at approximately 409–400 cm−1 and 382–371 cm−1, respectively [23,26]. By the increase of rhenium
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content, a remarkable line broadening is observed in the first-order Raman signals. The disordered
layered arrangement in the Re-doped MoS2 samples agrees with the broadening of the lines and with
the aspect ratio intensity of these peaks (A1g:E1

2g) in all samples [26,27]. This has also been correlated
with incorporating substitutional Re into the MoS2 structure [23,27]. Additionally, the intensity of
the broadened band in the region between 100 and 250 cm−1 can also be attributed to Re content
in the samples [28]. In this sense, the rhenium content could affect this Raman region through
formation of a ReS2 single phase (ReS2 Raman active strongest vibrations are located in the range
of 120 to 240 cm−1) [29,30] by inducing changes in the MoS2 phase (from 2H to 1T/1Td) [16,18,31] or
by defect-induced scattering of the MoS2 small/disordered particles (low-frequency defect-activated
modes) [26,28,32]. The overlapping frequencies of these variables preclude a particular identification
for the origin of these bands.
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Figure 3. Raman spectra of pristine MoS2, 14.7% Re-doped MoS2, 27.7% Re-doped MoS2, and 39.2%
Re-doped MoS2 samples.

2.1.4. Scanning Transmission Electron Microscopy Analysis

High-resolution transmission electron microscopy was used to characterize the microstructure of
Re-doped MoS2 samples. Figure 4a shows the border of a flower-like particle of the 14.7% Re-doped
MoS2 sample. As can be seen, it confirms that the flower-like particles are composed of an agglomeration
of few MoS2 layers, whereas Figure 4b shows the detail of a few MoS2 stacked layers in the same sample,
which are composed of about 10 atomic layers. Further, a layer spacing of 0.66 nm can be observed,
corresponding to the (002) crystalline plane of 2H-MoS2 [21]. The most noticeable difference between
the pristine MoS2 and Re-doped MoS2 samples is the curvature associated in the latter (Figure S1).
Figure 4c shows a c-axis view of the same sample (14.7% Re-MoS2). A d-spacing of 0.27 nm is evident,
which can be assigned to the (100) plane of hexagonal MoS2. A high-angle annular darkfield-scanning
transmission electron microscopy (HAADF-STEM) image of the same sample reveals insertion of
rhenium atoms in MoS2 layers (Figure 4d), and its homogeneous distribution over the structure is
corroborated by elemental mapping (Figure 4e).
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particle, (b) detail of the previous image, (c) c-axis view of the particle, (d) (HAADF-STEM) image of the
same sample c, (e) HAADF element mapping images of Mo, Re, and S of the Re-doped MoS2 particle.

2.1.5. X-Ray Photoelectron Spectroscopy

The chemical states, phase, and composition of the Re-doped MoS2 samples were characterized by
X-ray photoelectron spectra (XPS) measurements (Figure 5). Figure 5a shows the XPS survey spectra of
all samples, indicating the presence of O, Mo, C, S, and Re on the surface. Binding energies (BEs) of all
peaks were calibrated on the C–C bond of C 1s at 284.5 eV (Figure S2). Figure 5b–d shows Mo 3d, S 2p,
and Re 4f high-resolution spectra of pristine MoS2, and of 14.7%, 29.7%, and 39.2% Re-doped MoS2

samples. A typical doublet Mo 3d5/2 and Mo 3d3/2 with binding energies in agreement for the presence
of Mo4+ in MoS2 is shown in Figure 5b [27]. Samples 14.7% Re-doped MoS2 and 29.7% Re-doped MoS2

show an upshift of 0.5 eV in comparison to the pristine MoS2, with peaks located at approximately
229.7 and 232.8 eV for the Mo 3d5/2 and Mo 3d3/2, respectively, in both samples. The binding energy
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upshift for the same samples is also observed in the S 2p region (Figure 5c). These results, together
with those of HAADF-STEM analysis, confirm a substitutional n-type Re doping on the MoS2 structure
and are consistent with previously synthesized Re-doped MoS2 materials [33]. The sample with the
highest amount of rhenium (39.2% Re-MoS2) shows the most broadened spectra, having an additional
low-energy component obtained by the deconvolution of the Mo 3d and S 2p spectra (Figure 5b,c),
which suggests the presence of two kinds of molybdenum species [19]. This component at low binding
energy can be considered as a contribution of structural defects or due to disordered structures close to
the metastable 1T-MoS2 configuration among a 2H-MoS2 phase [19]. Figure 5d shows the Re 4f7/2 and
4f5/2 binding energy peaks for the 14.7%, 29.7%, and 39.2% Re-doped MoS2 samples, which confirms the
presence of Re4+ in all the Re-doped samples [30]. This points out that rhenium atoms are immobilized
as Re4+ (as rhenium sulfide) in the MoS2 structure. The binding energies and element analysis results
of the samples are summarized in Table 1.
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XPS of all samples, high- resolution XPS core-level of (b) Mo 3d, (c) S 2p, and states of (d) Re 4f and
Mo 4p.

Table 1. Binding energies (eV) of core electrons of the pristine MoS2 and Re-doped MoS2 samples.

Sample Mo 3d5/2 S 2p3/2 Re 4f7/2 Composition

Pristine MoS2 229.3 161.8 - MoS1.64
14.7% Re-doped MoS2 229.7 162.6 42.4 Mo0.85Re0.15S1.76
27.7% Re-doped MoS2 229.7 162.5 42.2 Mo0.72Re0.28S1.73
39.2 % Re-doped MoS2 229.8, 228.8 162.8, 161.7 42.7, 41.6 Mo0.61Re0.39S1.83
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2.2. Hydrogen Evolution Reaction (HER) Performance of Pristine MoS2 and Re-doped MoS2 Samples

HER catalytic activity for the pristine MoS2 and the Re-doped MoS2 samples is shown in Figure 6.
As depicted in the electrochemical linear sweep voltammetry (LSV) in Figure 6a, the pristine MoS2

sample exhibits an overpotential of 326 mV at a current density of 10 mA/cm2 in agreement with similar
MoS2 materials reported in the literature [34]. Although doping by rhenium clearly improves the
catalytic performance of MoS2, it is the sample with the lowest rhenium content (14.7% Re-doped MoS2)
that shows the highest activity among all samples towards HER, with a small overpotential of 210 mV
observed at a current density of 10 mA/cm2. Considering the similar crystallinity and nanosheet
arrangement between the pristine MoS2 and 14.7% Re-doped MoS2 sample, the superior catalytic
activity of the doped sample must necessarily arise from doping, rather than from textural effects of
rhenium over morphology. A decay in HER performance for samples with higher Re-doping content
(39.2% Re-MoS2 and 27.7% Re-MoS2) is also evident, and this trend has been previously observed for
transition metal doping in MoS2 materials [16,35]. Thus, the Re atoms do not function as active sites;
rather, they activate the MoS2 basal planes. Tafel plots of all samples were derived from LSV curves
to characterize their intrinsic reaction kinetics (Figure 6b). As can be seen, 14.7% Re-doped MoS2

exhibits the smallest Tafel slope (78 mVdec−1), indicating a faster reaction rate in comparison with that
of the pristine MoS2 sample (102 mVdec−1). Re atomic doping increases the Tafel slope of samples,
as summarized in Table 2. These results indicate that HER of 14.7% Re-doped MoS2 sample proceeds
via a Volmer–Heyrovsky mechanism, where a proton fast discharge is followed by a rate-limiting
electrochemical desorption step [36]. Figure 6c shows electrochemical double-layer capacitance (Cdl)
measured from cyclic voltammograms of Figure S3, considering its linear proportional relationship
with the electrochemical active surface area (ECSA). As expected, 14.7% Re-doped MoS2 shows the
highest Cdl of all samples, being approximately three times higher than that of the pristine MoS2

sample, suggesting a greater availability of active sites in Re-doped MoS2 sample. Higher ECSA in
Re-doped MoS2 samples can be explained by the increase of catalytically active sites in basal planes,
in agreement with previous results obtained in similar Re-doped MoS2 materials [16]. Electrochemical
impedance spectroscopic (EIS) measurements were conducted to elucidate the electrode kinetics upon
HER. The observed diameters of semicircles in Nyquist plots (Figure 6d) correlate with the charge
transfer resistance (Rct) at the solid–liquid interphase. As can be seen in Figure 6d, the sample with
minor rhenium content (14.7% Re-MoS2) displayed lower impedance than that of the pristine MoS2

sample. This demonstrates that low Re-doping on MoS2 decreases charge-transfer resistance in this
material and enhances its catalytic activity in HER. The stability of the 39.2% Re-doped MoS2 sample
was investigated by a continuous cyclic voltammetry (CV). A similar polarization curve after 1000
cycles was observed in comparison to the initial curve in Figure S4, indicating the long-term stability
of 39.2% Re-MoS2 sample, with only slight activity degradation at the end of the cycling.

Experimental results indicate formation of 2H MoS2 phase with Re substitutional n-type doping,
where Re doping allows tuning of morphological, structural, and electronic properties of MoS2

during hydrothermal synthesis. Although it has been found that hydrothermal synthesis of MoS2

doped with Re induces 2H-1T phase transformation [18], we cannot specifically identify this phase
transformation in our results due to special features of MoS2 synthesized under solvothermal conditions.
These include easy oxidation of samples in environmental conditions during Raman acquisition
(Figure S5) [31]; difficulty in identifying the 1T/2H phase of few-layered MoS2 materials in TEM [37];
and existence of molybdenum polysulfides (considering solvothermal synthesis conditions) for XPS [38].
Our electrocatalytic results show that low Re doping improves overall HER catalytic activity of MoS2

due to the creation of new catalytically active sites in basal planes, and by decreasing charge transfer
resistance in the doped material. This result agrees with n-type Re doping in MoS2, where the presence
of extra states close to the Fermi energy is correlated with an increase of HER activity and with longer
Mo-S bond length [16]. The catalytic active sites in our hydrothermal Re-doped MoS2 samples should
correspond to activated sulfur atoms (Re-S*-Mo) in the basal plane of MoS2 [15,35]. This can explain
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the lower HER performance of higher rhenium content samples, where there is a decrease of Re–S*–Mo
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Figure 6. Electrocatalytic performance of Re-doped MoS2 and pristine MoS2. (a) Linear sweep voltammetry
(LSV) curves, (b) Tafel plots, (c) electrochemical double layer capacitance (Cdl), and (d) electrochemical
impedance spectroscopy (EIS) plots.

Table 2. Summary of electrochemical measurements of pristine MoS2 and Re-doped MoS2 samples.

Sample Onset Potential (mV) η10 (mV) Tafel Slope (mVdec−1) Rct (Ωcm2)

Pristine MoS2 203 326 102 32.58
14.7% Re-doped MoS2 123 210 78 7.77
27.7% Re-doped MoS2 164 285 97 17.45
39.2% Re-doped MoS2 244 379 132 157.86

Pt/C 10% 20 42 32 -

3. Materials and Methods

3.1. Chemicals

All chemical reagents used in the experiments were obtained from commercial sources as
guaranteed grade reagents. Thiourea CH4N2S (molecular weight 76.12 g/mol, purity ≥ 99.0%),
ammonium molybdate (NH4)2MoO4 (molecular weight 196.01 g/mol, purity ≥ 99.98%), ammonium
perrhenate NH4ReO4 (molecular weight 268.24 g/mol, purity ≥ 99.0%), and Pt/C 10% (molecular weight
195.08, purity 9.8–10.2%) were purchased from Sigma-Aldrich. All chemical reagents were of analytical
grade and utilized without any further purification.

3.2. Synthesis of Re-Doped MoS2 and Pristine MoS2

The synthesis of Re-doped MoS2 consists in the hydrothermal treatment of 1.0 to 2.0 mmol
(NH4)2MoO4, 6.0 mmol CH4N2S, and 0.2 to 1.0 mmol NH4ReO4 (Table 3). This mixture was dissolved
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in 18 mL of deionized water, placed into a Teflon-lined 20 mL stainless steel autoclave, and heated in an
electric oven for 24 h at 180 ◦C. The obtained product, a black powder, was washed several times with
ethanol and dried in vacuum overnight. The as-prepared samples were annealed by heating at 10 ◦C
per min rate in a conventional tube furnace under Ar flow (20 sccm) up to 400 ◦C for 2.0 h. The same
procedure was used to prepare pristine MoS2 as the control experiment, but without adding NH4ReO4.

Table 3. Synthesis parameters for pristine MoS2 and Re-doped MoS2 samples.

Sample (NH4)2MoO4 (NH4)ReO4 CH4N2S

Pristine MoS2 2.0 mmol - 6.0 mmol
14.7% Re-doped MoS2 1.8 mmol 0.2 mmol 6.0 mmol
27.7% Re-doped MoS2 1.5 mmol 0.5 mmol 6.0 mmol
39.2% Re-doped MoS2 1.0 mmol 1.0 mmol 6.0 mmol

3.3. Characterization Techniques

X-ray diffraction (XRD) measurements of the samples were gathered in a Bruker diffractometer
model D8 (Bruker, Billerica, USA) using the Cu Kα radiation (40 kV, 30 mA) with a wavelength
of 0.154 nm. Crystalline phases were identified using standard JCPDS files. Raman spectroscopy
measurements were collected at room temperature. Samples were measured using a confocal WITec
alpha300 system instrument (WITec, Ulm, Germany) equipped with a 100× objective and 300 lines/mm
grating. Measurements were performed using a green (532 nm) laser excitation wavelength. The Si
Raman band at 520 cm−1 was used as a reference for the calibration of the Raman shift. Field-emission
scanning electron microscopy (SEM) micrographs were obtained in an SEM LEO 1420VP, Oxford
Instruments, equipped with an energy-dispersive X-ray spectroscopy (EDS) system (Oxford Instruments,
Oxford, UK). Transmission electron microscopy (TEM) in STEM mode was conducted using a JEOL
2000FS (JEOL, Peabody, MA, USA) operating at 200 kV. The analysis of images was carried out using the
Digital Micrograph Gatan™ software. X-ray photoelectron spectra (XPS) of both catalysts were carried
out in a SPECS GmbH custom-made system using a PHOIBOS 150 WAL hemispherical analyzer and a
µ-FOCUS 500 X-ray source (SPECS, Berlin, Germany). All data were acquired using monochromated
Al Kα X-rays (1486.6 eV, 110 W), a pass energy of 50 eV, and high-intensity lens mode. The charge
referencing was done against adventitious carbon (C 1s 284.5 eV). Spectra were presented without
smoothing, and a Shirley-type background was subtracted. Fits of the experimental peaks were
obtained using combinations of Gaussian/Lorentzian lines with a 70/30 proportion using CasaXPS from
Casa Software Ltd. The effective atomic concentrations were corrected according to sensitivity factors.

3.4. Electrochemical Measurements

Electrochemical measurements were obtained with a computer-controlled Zahner IM6ex, in a
standard three-electrode cell using an Ag/AgCl (in 1.0 n KCl solution) electrode as the reference
electrode, a platinum wire as the counter electrode, and glassy carbon (GC) electrodes carrying the
catalyst as working electrodes. The working electrode was fabricated as follows: 4 mg of catalyst and
80 µL of 5 wt% Nafion solution were dispersed in 1 mL of a solution of deionized water and ethanol
(3:1 in volume ratio). After stirring by ultrasonication for 1 h, 5µL of the resulting ink was drop-casted
onto the top of a glassy carbon electrode with a 3 mm diameter. The catalyst-coated GC electrode was
dried at 80 ◦C for 2 h to yield a catalyst loading of 0.285 mg cm−2. Linear sweep voltammetry (LSV)
with a scan rate of 2 mV s−1 was conducted in 0.5 M H2SO4 (purged with Ar), without applying iR
correction. To determine double layer capacitance (Cdl) values, cyclic voltammograms (CVs) were
collected at different scan rates (50, 60, 80, 100, 120, 140, 160, 180, and 200 mV s−1) in the range of
potential from 0.1 to 0.2 V vs. RHE. Electrochemical impedance spectroscopy (EIS) analyses were
performed at an overpotential of 200 mV (vs RHE) from 100 kHz to 0.1 Hz with the amplitude fixed at
5 mV in the same configuration. All catalysts were electrochemically cleaned by cyclic voltammetry
from OPC to −0.55 V for 20 cycles at a scan rate of 10 mVs−1 prior to measurements.
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4. Conclusions

In conclusion, hydrothermally synthesized Re-doped MoS2 materials were characterized and
investigated as unsupported catalyst for HER. Re doping shows a homogeneous distribution within
the catalyst structure and maintained 2H-MoS2 crystallographic phase, with no indication of minority
phases. Optimization of Re-doping on the MoS2 structure enables improving its catalytic performance
through activation of its basal plane for HER and by decreasing charge transfer resistance of the doped
material. This result agrees with the presence of extra states close to Fermi level for n-type doping.
Rhenium doping on MoS2 reduces overpotential from 326 to 210 mV at 10 mA cm−2 for sample with
14.7% Re.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/24/4631/
s1, Figure S1: TEM images of pristine MoS2 particle (a), and 39.2% Re-doped MoS2 particle (b); Figure S2:
High-resolution spectra of C 1s of Re-MoS2 composites with different loadings of rhenium; Figure S3: Cyclic
voltammograms of pristine MoS2 (a), 14.7% Re-doped MoS2 (b), 27.7% Re-doped MoS2 (c), and 39.2% Re-doped
MoS2 (d) samples; Figure S4: Polarization curves of 39.2% Re-doped MoS2 sample before and after 1.000 cycles;
Figure S5: Oxidation of pristine MoS2 sample in environmental conditions during Raman acquisition; Table S1:
Atomic ratios of the samples derived from peak deconvolution of XPS spectra.
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