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The colon is inhabited by a dense population of microorganisms, the so-called “gut

microbiota,” able to ferment carbohydrates and proteins that escape absorption in the

small intestine during digestion. This microbiota produces a wide range of metabolites,

including short chain fatty acids (SCFA). These compounds are absorbed in the large

bowel and are defined as 1-6 carbon volatile fatty acids which can present straight

or branched-chain conformation. Their production is influenced by the pattern of food

intake and diet-mediated changes in the gut microbiota. SCFA have distinct physiological

effects: they contribute to shaping the gut environment, influence the physiology of the

colon, they can be used as energy sources by host cells and the intestinal microbiota and

they also participate in different host-signaling mechanisms. We summarize the current

knowledge about the production of SCFA, including bacterial cross-feedings interactions,

and the biological properties of these metabolites with impact on the human health.
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INTRODUCTION

The gut microbiota influences our health and nutritional stage via multiple mechanisms, and a
mounting body of evidence recognizes that microbial metabolites have a major influence on host
physiology. Short chain fatty acids (SCFA) are volatile fatty acids produced by the gut microbiota in
the large bowel as fermentation products from food components that are unabsorbed/undigested in
the small intestine; they are characterized by containing fewer than six carbons, existing in straight,
and branched-chain conformation. Acetic acid (C2), propionic acid (C3), and butyric acid (C4)
are the most abundant, representing 90–95% of the SCFA present in the colon. The main sources
of SCFA are carbohydrates (CHO) but amino acids valine, leucine, and isoleucine obtained from
protein breakdown can be converted into isobutyrate, isovalerate, and 2-methyl butyrate, known
as branched-chain SCFA (BSCFA), which contribute very little (5%) to total SCFA production. The
aim of the present mini-review is to summarize the current knowledge about SCFA production,
including bacterial cross-feedings interactions, and the biological properties of these metabolites
with impact in human health.
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MECHANISMS OF SCFA PRODUCTION

Metabolic Routes
The main end products resulting from the CHO catabolism of
intestinal microbes are acetate, propionate, and butyrate. Lactate,
although is not a SCFA, is also produced by some members of
the microbiota, such as lactic acid bacteria, bifidobacteria, and
proteobacteria, but under normal physiological conditions it does
not accumulate in the colon due to the presence of some species,
such as Eubacterium hallii, that can convert lactate into different
SCFA (Flint et al., 2015).

Acetate is the most abundant SCFA in the colon and makes
up more than half of the total SCFA detected in feces (Louis
et al., 2007). Two main metabolic routes have been described
for acetate production by the gut microbiota (Figure 1). The
majority of acetate is produced bymost enteric bacteria as a result
of CHO fermentation. In addition, approximately one-third of
the colonic acetate is coming from acetogenic bacteria, which are
able to synthesize it from hydrogen and carbon dioxide or formic
acid through the Wood–Ljungdahl pathway (Miller and Wolin,
1996; Louis et al., 2014).

Propionate and butyrate metabolism have received much
attention during the last years, mainly due to the connection
between low levels of butyrate and propionate bacterial producers
and some diseases in which inflammatory processes are involved.
For instance, butyrate producers are normally low in ulcerative
colitis (Machiels et al., 2014) and reduced levels of propionate
producers have been detected in children at risk of asthma
(Arrieta et al., 2015).

Three different pathways are used by colonic bacteria for
propionate formation: succinate pathway, acrylate pathway,
and propanodiol pathway (Reichardt et al., 2014) (Figure 1).
The succinate route utilizes succinate as a substrate for
propionate formation and involves the descarboxylation of
methylmalonyl-CoA to propionyl-CoA. This pathway is present
in several Firmicutes, belonging to the Negativicutes class,
and in Bacteroidetes. In the acrylate pathway lactate is
converted to propionate through the activity of the lactoyl-
CoA dehydratase and downstream enzymatic reactions; this
route appears to be limited to a few members of the
families Veillonellaceae and Lachnospiraceae (Flint et al.,
2015). In the propanodiol pathway, characterized by the
conversion of deoxy-sugars to propionate, the CoA-dependent
propionaldehyde dehydrogenase, that converts propionaldehyde
to propionyl-CoA, has been suggested as a marker for
this route. This metabolic pathway is present in bacteria
which are phylogenetically distant, including proteobacteria
and members of the Lachnospiraceae family (Louis et al.,
2014; Reichardt et al., 2014). The relative abundance of
Bacteroidetes has also been linked to the total fecal propionate
concentration, suggesting that the succinate pathway is the
dominant route within the gut microbiota (Salonen et al.,
2014).

Two different pathways for butyrate production are known
in butyrate-producing bacteria (Figure 1). The butyrate kinase
pathway employs phosphotransbutyrylase and butyrate kinase
enzymes to convert butyryl-CoA into butyrate (Louis et al.,

2004). This route is not common among members of the
gut microbiota and is mainly limited to some Coprococcus
species (Flint et al., 2015). In contrast, the butyryl-CoA:
acetate CoA-transferase pathway, in which butyryl-CoA is
converted to butyrate in a single step enzymatic reaction, is
used by the majority of gut butyrate-producers (Louis et al.,
2010), including some of the most abundant genera of the
intestinal microbiota, such as Faecalibacterium, Eubacterium,
and Roseburia. Remarkably, the production of butyrate and
propionate by the same bacterium is not common and
only a few anaerobes, such as Roseburia inulinivorans and
Coprococcus catus, are able to produce both (Louis et al.,
2014).

Cross-Feeding Mechanisms
Bacterial cross-feeding has a huge impact on the final balance of
SCFA production and the efficient exploitation of the substrates
that reach the human gut. These mechanisms consist either
in the utilization of end products from the metabolism of a
given microorganism by another one, called metabolic cross-
feeding (Figure 1), and/or the utilization by one microorganism
of the energy rich complex CHO breakdown products formed by
another one, called substrate cross-feeding (Belenguer et al., 2006;
Flint et al., 2007). A recent in silico study showed that mutualism
cross-feeding interactions were promoted by anoxic conditions,
which are more common in the large intestine than in the small
one (Heinken and Thiele, 2015).

Microorganisms that are not capable of using complex CHO
may proliferate by taking advantage of substrate cross-feeding,
using breakdown compounds produced by hydrolytic bacteria.
This is the case of some Bifidobacterium species that are not able
to use inulin-type fructans (ITF) but can grow by cross-feeding of
mono- and oligosaccharides released by primary inulin degraders
in fecal cultures added with inulin as carbon source (Rossi et al.,
2005; Salazar et al., 2009). Other example is the degradation
of agaro-oligosaccharides (AO), which is more effective when
Bacteroides uniformis and Escherichia coli are grown in co-culture
than in separated monoculture (Li et al., 2014). In the same study
the authors suggest the utilization of agarotriose, an intermediate
in the degradation of AO, by Bifidobacterium adolescentis and
Bifidobacterium infantis. In another work, it was demonstrated
that Roseburia sp. strain A2-183 is unable to use lactate as carbon
source, but when it is co-cultured with B. adolescentis L2-32 in the
presence of FOS or starch, produces butyrate (Belenguer et al.,
2006).

Although, there are a lot of in vitro studies pointing to
metabolic cross-feeding it was not until recently that was
demonstrated in vivo by using stable isotopes of acetate,
propionate and butyrate perfused into the caecum of mice
(Den Besten et al., 2013a). This study evidenced that the
bacterial cross-feeding occurred mainly from acetate to butyrate,
at lower extent between butyrate and propionate, and almost
no metabolic flux exists between propionate and acetate. In
vitro utilization of acetate by Faecalibacterium prausnitzii and
Roseburia sp. has been evidenced (Duncan et al., 2002, 2004b).
Prediction of metabolic fluxes between F. prausnitzii A2-165
and B. adolescentis L2-32 in co-culture has been reported in a
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FIGURE 1 | Schematic representation of microbial metabolic pathways and cross-feeding mechanisms, contributing to SCFA formation in the human

gut. Shaded geometric shapes summarize routes of formation for each of the three main SCFA: acetate, propionate, and butyrate.

computational model (El-Semman et al., 2014) and was recently
demonstrated in vitro (Rios-Covián et al., 2015). Moreover, a
recent animal study suggests that F. prausnitzii is able to use
the acetate produced by Bacteroides thetaiotaomicron in vivo,
this interaction having a significant impact in the modulation
of the intestinal mucus barrier (Wrzosek et al., 2013). Although
lactate is not a SCFA, it is used by some butyrate and propionate
producing bacteria, avoiding metabolic acidosis in the host (El
Aidy et al., 2013). Several in vitro studies confirm that lactate
and/or acetate produced by Bifidobacterium when grown in
oligofructose, is used by members of Roseburia, Eubacterium,
and Anaeroestipes genera (Duncan et al., 2004a,b; Belenguer
et al., 2006; Falony et al., 2006). Members of Veillonella
and Propionibacterium are capable of transforming lactate
to propionate in vitro (Counotte et al., 1981). H2 plays an
important role in cross-feeding as well. Co-cultures of Roseburia
intestinalis with the methanogenMethanobrevibacter smithii and
the acetogen Blautia hydrogenotrophica, resulted in a decrease
of final H2 and the production of CH4 and acetate. The
acetate formed is used by R. intestinalis to produce butyrate
(Chassard and Bernalier-Donadille, 2006). Ba. thetaiotaomicron
bi-associated mice with Bl. hydrogenotrophica showed higher
levels of acetate in caecal contents and lower NADH/NAD+

ratio; the removal of H2 by B. hydrogenotrophyca in this case
allows Ba. thetaoitaomicron to regenerate NAD+ (Rey et al.,
2010).

IMPACT OF DIET ON GUT MICROBIOTA
COMPOSITION AND SCFA PRODUCTION

Diet affects the gut microbiota composition and activity, and
therefore the profile of SCFA and BSCFA synthesized, this having
a deep impact on human health (Brussow and Parkinson, 2014;
Louis et al., 2014). The first work linking the long-term diet
style with the so-called human “enterotypes” was published in
2011 (Wu et al., 2011) but it has been also demonstrated that
short-term diets can alter the human gut microbiome (David
et al., 2014). The amount and relative abundance of SCFA may
be considered as biomarkers of a healthy status (Table 1A). For
example, high fiber-low fat and meat diets are characterized by
the presence of higher amounts of fecal SCFA than diets with
reduced fiber intake (De Filippo et al., 2010; Cuervo et al., 2013;
Ou et al., 2013). A reduction in fecal butyrate has been found
in patients with colorectal adenocarcinoma (Chen et al., 2013),
whereas obesity has been related with increases in total fecal
SCFA concentration (Fernandes et al., 2014; Rahat-Rozenbloom
et al., 2014) which tend to decrease following an anti-obesity
treatment (Patil et al., 2012). These epidemiological data have
been further supported by dietary intervention studies carried
out with different human populations (Table 1B). Prebiotic
substrates that selectively promote the growth of beneficial
microbiota also induce changes in SCFA production of healthy
individuals (Lecerf et al., 2012) and in patients with irritable
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bowel syndrome or those receiving enteral nutrition (Majid et al.,
2011; Halmos et al., 2015). Interestingly, the consumption of
dairy products fermented with beneficial bacteria also modifies
the intestinal microbiota toward more butyrate producers in
comparison to chemically-acidified milk (Veiga et al., 2014).
Finally, dietary intervention studies carried out with different
overweight and obese populations seemed to be effective in
lowering the high levels of fecal SCFA associated with the obesity
status (Salazar et al., 2015).

Although animal and human trials provide the best models
for studying the influence of diet on the gut microbiota, in vitro
fecal cultures constitute simpler approaches for investigating the
interactions of diet and food components with the intestinal
microbiota. Available in vitro models range from simple batch
fermentation (Salazar et al., 2009; Arboleya et al., 2013b) to
complex multi-stage continuous culture systems. The SHIME
(Van Den Abbeele et al., 2010) and SIMGI models (Barroso
et al., 2015) simulate the digestion from stomach to colon
whereas the EnteroMix (Makivuokko et al., 2005) and the Lacroix
models mimic the entire colonic process. TIM-2 reproduces
the proximal colon and incorporates a dialysis membrane that
simulates absorption of microbial metabolites by the body
(Minekus et al., 1999). A microbial bias regarding butyrate
and propionate producers occurs with some of these models
(Van Den Abbeele et al., 2010), that could be alleviated by
incorporating a simulation of the intestinal mucosa surface
(Van Den Abbeele et al., 2013a). Labelling substrates with the
stable isotope 13C makes possible to link the fermentation with
specific members of the microbiota and to quantify production
of metabolites (Maathuis et al., 2012) whilst the mathematical
modeling is becoming a useful tool to study microbe-diet-host
interactions (Shoaie et al., 2015).

When studying in vitro the influence of dietary components
on microbial composition, the main aim usually is to increase
beneficial bacteria and to enhance the production of SCFA
whereas minimizing the synthesis of BSCFA. The fermentation
of different substrates has been evaluated, ITF being the
most studied (Sivieri et al., 2014). Starch (Fassler et al.,
2006), arabinans, arabinoxylans (Van Den Abbeele et al.,
2013b), galactooligosaccharides (Rodriguez-Colinas et al., 2013),
xylitol (Makelainen et al., 2007), and lactulose (Cardelle-Cobas
et al., 2009) have been also considered. The influence of
polyphenols on the gut microbiota metabolism is currently
receiving considerable attention (Valdés et al., 2015). Different
microbial fermentation patterns can be obtained depending
on physico-chemical characteristics of the substrates, speed of
fermentation and the microbial populations involved in the
process (initial breakdown of long polymers, direct fermentation
of substrates, and cross-feeding interactions; Hernot et al., 2009;
Zhou et al., 2013; Puertollano et al., 2014). Probiotics and
their extracellular components (exopolysaccharides), can also
act as modulators of SCFA microbial formation (Salazar et al.,
2009; Van Zanten et al., 2012). In addition, a large number
of studies highlight the influence of different foods and long-
term diets on the intestinal microbiota activity and specifically,
over the pattern of SCFA (Yang and Rose, 2014; Costabile et al.,
2015).

The basal microbiota composition has also a profound
influence on the final effects exerted in vitro by diet on microbial
populations and metabolic activity (Arboleya et al., 2013a; Souza
et al., 2014). In this regard, it has been found a different response
to probiotics and prebiotics by themicrobiota of individuals from
different groups of age (Arboleya et al., 2013a; Likotrafiti et al.,
2014), or between obese and lean people (Yang et al., 2013).

BIOLOGICAL EFFECTS OF SCFA

One of the health effects attributed to the production of SCFA
is the concomitant reduction of the luminal pH, which by itself
inhibits pathogenic microorganisms and increases the absorption
of some nutrients (Macfarlane andMacfarlane, 2012). Acetate has
been found to be a key player in the ability of bifidobacteria to
inhibit enteropathogens (Fukuda et al., 2011).Moreover, butyrate
fuels the intestinal epithelial cells and increasesmucin production
which may result in changes on bacterial adhesion (Jung et al.,
2015) and improved tight-junctions integrity (Peng et al., 2009).
Thus, the production of SCFA seems to play an important role in
the maintenance of the gut barrier function.

After their production, SCFA will be absorbed and used in
different biosynthetic routes by the host (Den Besten et al.,
2013b). During the intestinal absorption process part of the
SCFA, mainly butyrate, will be metabolized by the colonocytes
(Pryde et al., 2002) whilst the rest will be transported by
the hepatic vein and go into the liver, where they will be
metabolized (Den Besten et al., 2013b). These SCFA will enter
diverse CHO and lipid metabolic routes; propionate will mainly
incorporate into gluconeogenesis whilst acetate and butyrate
will be mostly introduced into the lipid biosynthesis. The
involvement of SCFA in energy and lipid metabolism attracted
the attention of researchers toward the potential role of SCFA
in the control of metabolic syndrome. A reduction in obesity
and insulin resistance in experimental animals on high-fat diet
after dietary supplementation with butyrate has been observed
(Gao et al., 2009). This protective effect of SCFA on the high-
fat diet-induced metabolic alterations seems to be dependent
on down-regulation of the peroxisome proliferator-activated
receptor gamma (PPARγ), therefore promoting a change from
lipid synthesis to lipids oxidation (Den Besten et al., 2015).
Interestingly although the three main intestinal SCFA have a
protective effect on diet-induced obesity, butyrate and propionate
seem to exert larger effects than acetate (Lin et al., 2012). Different
mechanisms have been proposed to explain these effects, the
activation of signaling pathways mediated by protein kinases,
such as AMP-activated protein kinase (Gao et al., 2009; Peng
et al., 2009; Den Besten et al., 2015) or mitogen-activated protein
kinases (MAPK; Jung et al., 2015), being a common observation.
Butyrate and propionate, but not acetate, have been reported
to induce the production of gut hormones, thus reducing food
intake (Lin et al., 2012). Acetate has also been found to reduce
the appetite, in this case through the interaction with the central
nervous system (Frost et al., 2014). However, in spite of these
promising animal data, controlled human intervention studies
are still needed before drawing firm conclusions (Canfora et al.,
2015).
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TABLE 1 | (A) Epidemiological studies, carried out since 2010, showing the impact of diet on SCFA produced by the gut microbiota. The shaded areas

indicate a change in the populations analyzed in terms of their health status. D, days; y, year. (B) Intervention studies, carried out since 2010, showing the

impact of diet on SCFA produced by the gut microbiota. The shaded areas indicate a change in the populations analyzed in terms of their health status.

D, day; w, week; m, month; y, year.

(A)

Subjects, age (n) Parameters determined Main results References

•European children, 1–6 y (15)

•Burkina Faso (BF) (rural) children

(15)

3-d dietary questionnaire (from EU parents) and

interview on diet (from BF mothers), fecal

samples

BF children: ↑SCFA;↑Bacteroidetes,

↓Firmicutes, ↓Enterobacteriaceae; unique

Prevotella, Xylanibacter (lacking in EU)

De Filippo et al., 2010

•Healthy African Americans, 50–65

y (12)

•Healthy South Africans (12)

Fresh fecal samples, microbiota and SCFA

analysis, cancer biomarkers

Native Africans: ↑SCFA, total bacteria,

major butyrate-producing groups, dominance

of Prevotella

African-Americans: dominance of

Bacteroides

Ou et al., 2013

•Healthy elderly, 76–95 (32) Food frequency questionnaire, fecal SCFA

analysis

Correlation fiber and SCFA: Potato intake

with total SCFA and apple with propionate

Cuervo et al., 2013

•Overweight (OWO) (11)

•Lean (11)

3-d diet record, fresh fecal sample, SCFA

absorption measure

OWO: ↑Age-adjusted fecal SCFA

concentration, not due to higher absorption

rate

Rahat-Rozenbloom et al., 2014

•Overweight (OWO) (42)

•Lean (52)

3-d diet records, physical activity

questionnaires, fecal samples

OWO: ↑ SCFA; dietary intakes and physical

activity levels did not differ

Fernandes et al., 2014

•Indian individuals, 21–62 y (20):

lean (5), normal (5), obese (5),

surgically treated obese (5)

Fresh fecal samples, microbiota, and SCFA

analysis

Obese: ↑ SCFA,↑Bacteroides

Treated-obese: ↓SCFA ↓Bacteroides

Patil et al., 2012

•Advanced colorectal adenoma

patients (A-CRA) (344)

•Healthy control (344)

Dietary fiber intake, fecal SCFA, and microbiota

analysis

A-CRA group: ↓SCFA production, ↓butyrate

and butyrate-producing bacteria

Chen et al., 2013

•Celiac disease (CD) patients:

normal diet, 13–60 y (10) and

gluten-free, 21–66 y (11)

•Healthy, 24–42 y (11)

Fresh fecal samples, microbiota, and SCFA

analysis

Untreated CD and treated CD: ↑ SCFA

than healthy

Treated CD patients: ↓Lactobacillus and

Bifidobacterium diversity

Nistal et al., 2012

(B)

Subjects, age (n) Intervention diet (period) Main outcomes References

•Healthy African Americans, 50–65

y (20)

•Healthy South Africans, 50–65 y

(20)

Own diet (2 w) followed by exchange to

high-fiber, low-fat African-style (2 w)

Own diet (2 w) followed by high-fat, low-fiber

Western-style (2 w)

African style diet: ↑ butyrate; reciprocal

changes in colon cancer risk biomarkers

O’keefe et al., 2015

•Healthy volunteers (23) Cross-over: high red meat (HRM) diet vs. HRM

plus butyrylated high-amylose maize starch

(HAMSB) (4/4 w wash-out)

HRM+HAMSB diet:↑ excretion of SCFA and

microbiota composition changes

Le Leu et al., 2015

•Healthy active volunteers (51) Parallel-groups: butyrylated high amylose

maize starch (HAMSB) vs. low-AMS (28 d)

HAMSB diet:↑free, bound and total butyrate

and propionate

West et al., 2013

•Healthy volunteers, 20–50 y (17) Cross-over: whole-grain (WG) vs. refined grain

(2/5 w wash out)

WG diet: ↑acetate and butyrate Ross et al., 2013

•Healthy volunteers, 18–85 y (63) Cross-over: wheat bran extract (WBE) (3 or 10

g WBE) vs. placebo (0 g WBE; 3 w, 2 w

wash-out)

Daily intake of 10 g WBE:↑bifidobacteria;↑

fecal SCFA and ↓ fecal pH

Francois et al., 2012

•Healthy volunteers, 18–24 y (60) Parallel-groups: xylo-oligosaccharide (XOS) vs.

inulin-XOS mixture (INU-XOS) vs. placebo

(maltodextrin; 4 w)

XOS: ↑bifidobacteria and butyrate, and

↓acetate

INU-XOS: ↑SCFA and propionate, and

maintain acetate level

Lecerf et al., 2012

•Ulcerative colitis (UC) remission

patients (19)

•Healthy volunteers (10)

Cross-over: Australian diet vs. plus wheat

bran-associated fiber and high

amylose-associated resistant starch (8 w)

Intervention diet: did not correct the low

gut fermentation in patients with UC

James et al., 2015

•Irritable bowel syndrome (IBS) with

constipation woman, 20–69 y (32)

Parallel-groups: Milk acidified product (MP) vs.

Fermented Milk product (FMP) (4 w)

FMP:↑potential butyrate producers, and

↑Total SCFA in vitro↑butyrate

Veiga et al., 2014

(Continued)
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TABLE 1 | Continued

(B)

Subjects, age (n) Intervention diet (period) Main outcomes References

•IBS patients (27)

•Healthy volunteers (6)

Cross-over: Australian diet vs. low FODMAP

(Fermentable Oligo-, Di-, Mono-saccharides

And Polyols) diet (21/21 d wash-out)

Australian diet:↑ relative abundance

Clostridium cluster XIVa (butyrate-producer)

Low FODMAP diet:↓total bacterial

abundance

Halmos et al., 2015

•Cow’s milk protein allergy infants

(16)

Healthy infants (12)

Cross-over:hydrolysed whey protein formula

(eHF) without lactose vs. eHF containing 3.8%

lactose (2 m)

Addition of lactose: ↑SCFA; ↑LAB and

bifidobacteria; ↓Bacteroides/clostridia

Francavilla et al., 2012

•Obese women 18–65 y (30) Parallel-groups: ITF vs. placebo (maltodextrin)

(3m)

ITF:↓ total SCFA, acetate and propionate;

↑bifidobacteria

Salazar et al., 2015

•Obese men, 27–73 y (14) Cross-over: high type III resistant starch (3 w)

or high in wheat bran (3 w) and ended with

weight-loss (low fat and carbohydrate, high

protein, 3 w)

Diet: only explain 10% total variance in

microbiota; amount of propionate correlated

with Bacteroidetes

Salonen et al., 2014

•Obese volunteers, 45–77 y (6) Cross-sectional: strict vegetarian diet (1 m) ↓SCFA;↓Firmicutes/Bacteroidetes ratio;

↑Clostridium clusters XIVa-IV;

↓Enterobacteriaceae

Kim et al., 2013

•Obese men, 21–74 y (17) Cross-over: high-protein

moderate-carbohydrate (HPMC) vs.

high-protein low-carbohydrate (HPLC)

(maintenance diet 7 d, 4 w)

HPMC and HPLC diets: ↑BSCFA (respect

maintenance diet)

HPLC diet: ↓butyrate and

↓Roseburia/E.rectale

Russell et al., 2011

•High Metabolic Syndrome risk

volunteers (88)

Parallel-groups: High saturated fat (HS) vs. high

monounsaturated fat (MUFA)/high glycaemic

index (GI) (HM/HGI) vs. high MUFA/low GI

(HM/LGI) vs. high carbohydrate (CHO)/high GI

(HC/HGI) vs. and high CHO/low GI (HC/LGI)

(24 w)

High carbohydrate diets (regardless

GI):↑saccharolytic bacteria (including

Bacteroides and Bifidobacterium)

High fat diets:↓bacterial numbers

High saturated fat diet:↑excretion of SCFA

Fava et al., 2013

•Hospitalized patients under enteral

nutrition (41)

Parallel-groups: standard enteral formula vs.

standard formula enriched FOS and fiber (12 d)

FOS/fiber-enriched formula: ↑butyrate Majid et al., 2011

It has also been observed that SCFA protect against the
development of colorectal cancer (CRC), with most studies
focusing on butyrate (Canani et al., 2011; Keku et al.,
2015). Butyrate promotes colon motility, reduces inflammation,
increases visceral irrigation, induces apoptosis, and inhibits
tumor cell progression (Zhang et al., 2010; Canani et al.,
2011; Leonel and Alvarez-Leite, 2012; Keku et al., 2015), all
of these properties being beneficial in CRC prevention. In
cancerous colonocytes, due to the Warburg effect, butyrate
accumulates, which increases its activity as inhibitor of
histone deacetylation, promoting apoptosis of CRC cells.
Interestingly, a recent animal study suggests that the protective
effect of dietary fiber upon CRC is dependent on the
production of butyrate by the microbiota (Donohoe et al.,
2014).

In addition, butyrate and propionate have also been
reported to induce the differentiation of T-regulatory
cells, assisting to control intestinal inflammation; this effect
seems to be mediated via inhibition of histone deacetylation
(Donohoe et al., 2014; Louis et al., 2014). This control of
intestinal inflammation may result beneficial in terms of
gut barrier maintenance, reducing the risk of inflammatory
bowel disease or CRC. Unlike what happens with the three
main intestinal SCFA, acetate, propionate, and butyrate,

little is known about the potential health effects of other
SCFA.

CONCLUDING REMARKS

The main role of diet is to provide enough macro- and
micronutrients to fulfill daily requirements and well-being.
However, during the last decades the association between
dietary intake and physiology has been increasingly-recognized,
although many of the molecular and immunological aspects
by which dietary components could influence human health
remain still largely unknown. Bacterial fermentation of CHO
and proteins produces SCFA which emerge as major mediators
in linking nutrition, gut microbiota, physiology and pathology.
Many biological effects seem to be mediated by these bacterial
metabolites but a conclusive proof is not available for many
of the health claims made for SCFA. Promising in vitro and
animal studies have been published but they cannot be easily
extrapolated to the human situation. The design of improved
approaches combining in vitro, in vivo, and “omics” technologies
should be carried out, with emphasis in human intervention
trials, to explore the mechanisms of production and action
of SCFA, thus opening the possibility to find strategies for
developing personalized nutrition.
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