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Abstract

Motivation: Recent advances in long-read sequencing technologies led to rapid progress in centromere assembly in
the last year and, for the first time, opened a possibility to address the long-standing questions about the architec-
ture and evolution of human centromeres. However, since these advances have not been yet accompanied by the
development of the centromere-specific bioinformatics algorithms, even the fundamental questions (e.g. centro-
mere annotation by deriving the complete set of human monomers and high-order repeats), let alone more complex
questions (e.g. explaining how monomers and high-order repeats evolved) about human centromeres remain open.
Moreover, even though there was a four-decade-long series of studies aimed at cataloging all human monomers
and high-order repeats, the rigorous algorithmic definitions of these concepts are still lacking. Thus, the develop-
ment of a centromere annotation tool is a prerequisite for follow-up personalized biomedical studies of centromeres
across the human population and evolutionary studies of centromeres across various species.

Results: We describe the CentromereArchitect, the first tool for the centromere annotation in a newly sequenced
genome, apply it to the recently generated complete assembly of a human genome by the Telomere-to-Telomere
consortium, generate the complete set of human monomers and high-order repeats for ‘live’ centromeres, and
reveal a vast set of hybrid monomers that may represent the focal points of centromere evolution.

Availability and implementation: CentromereArchitect is publicly available on https://github.com/ablab/stringdecom
poser/tree/ismb2021

Contact: abzikadze@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since centromeric satellite repeats are among the longest and most
difficult-to-assemble tandem repeats in the human genome, the
problem of human centromere assembly was viewed as intractable
until recently. As a result, most previous studies of associations be-
tween sequence variations and genetic diseases ignored �3% of the
human genome. This is unfortunate since centromeres play crucial
roles in chromosome segregation and a large component of genetic
disease results from aneuploidies arising during meiosis (Nagaoka
et al., 2012). In addition, variations in centromeres are linked to
cancer and infertility (Miga, 2019; Smurova and De Wulf, 2018;
Zhu et al., 2018). Centromere sequencing is also important for
addressing open problems about centromere evolution (Alkan et al.,
2007; Lower et al., 2018; Shepelev et al., 2009; Suzuki et al., 2020)
and the Centromere Paradox (Henikoff et al., 2001), a surprising
contrast between the highly conserved function and extremely fast
evolution of centromeres. Other evolutionary puzzles are the broad
range in centromere complexity, from simple point centromeres to
long multi-megabase arrays (Malik and Henikoff, 2009), and the

role of non-coding centromeric RNAs that are conserved across
multiple species (Arunkumar and Melters, 2020). Moreover, the re-
cent discovery of large archaic blocks of Neanderthal DNA span-
ning human centromeres reveals the potential of centromeres for
studies of human population history (Langley et al., 2019).

Alpha satellite arrays in ‘live’ centromeres (that we refer to sim-
ply as centromeres) are extra-long tandem repeats that are formed
by units repeating thousands of times with extensive variations in
copy numbers in the human population (Black and Giunta, 2018)
and limited nucleotide-level variations. Each such unit (referred to
as a high-order repeat or HOR) represents a tandem repeat formed
by smaller repetitive building blocks (referred to as monomers), thus
forming a nested tandem repeat (Fig. 1). Each human monomer is of
length ffi171 bp and each HOR is formed by multiple monomers
that differ from each other. For example, the vast majority of HORs
units on the centromere of the human X chromosome (referred to as
cenX) consist of 12 monomers. Although different HOR units on
cenX are highly similar (95–100% sequence identity), the 12 mono-
mers forming each HOR are rather diverged (65–88% sequence
identity). In addition to standard 12-monomer HOR units, some
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units on cenX have a non-canonical monomer structure: 35 out of
1510 units are formed by a smaller or larger number of monomers
than the canonical 12-monomer HOR (Bzikadze and Pevzner,
2020). The tandem repeat structure of human centromeres may be
interrupted by retrotransposon insertions (for example, cenX has a
single insertion of a LINE element).

Recent advances in long-read sequencing technologies and bio-
informatics algorithms led to rapid progress in centromere assembly
in the last year (Bzikadze and Pevzner, 2020; Miga et al., 2020;
Nurk et al., 2020) and, for the first time, opened a possibility to ad-
dress the long-standing questions about the architecture and evolu-
tion of human centromeres. Recent evolutionary studies of
centromeres (Bzikadze and Pevzner, 2020; Suzuki et al., 2020;
Uralsky et al., 2019) revealed the importance of partitioning
them into monomers, the problem that was recently addressed by
the StringDecomposer algorithm (Dvorkina et al., 2020).
StringDecomposer takes a monomer-set and a genomic segment and
partitions this segment into (monomeric) blocks (each block is simi-
lar to one of the monomers). For each monomer M, it generates the
set of M-blocks in the centromere (that are more similar to M than
to other monomers) and translates the centromere from the nucleo-
tide alphabet into the alphabet of monomers.

StringDecomposer opened a possibility to generate the complete
set of human HORs, the problem that remains unsolved despite
multiple studies in the last four decades (Alexandrov et al., 2001;
Alkan et al., 2007; McNulty and Sullivan, 2018; Paar et al., 2005;
Sevim et al., 2016; Shepelev et al., 2015; Uralsky et al., 2019; Waye
and Willard, 1985). However, the challenge of properly defining the
set of all human monomers remained outside the scope of the String
Decomposition Problem. As a result, many questions about centro-
mere architecture and evolution remain unanswered, e.g. it remains
unclear how to define the complete set of human monomers (a pre-
requisite for launching StringDecomposer) and HORs, moreover,
the rigorous algorithmic definitions of these concepts are still lack-
ing. Since the Human Pangenome Reference Consortium (https://
humanpangenome.org) aims to generate 100s of complete
human genomes in 2021, there is an urgent need for a fully
automated centromere annotation (monomer and HOR inference)
in newly sequenced complete genomes. We developed the
CentromereArchitect tool that addressed the monomer and HOR in-
ference problems described below.

Monomer inference problem. Although Sevim et al. (2016) con-
structed a large set of human monomers, this set is still missing some
monomers, particularly rare monomers. Moreover, Uralsky et al.
(2019), Bzikadze and Pevzner (2020) and Dvorkina et al. (2020)
have shown that the evolution of centromeres often results in still

underexplored hybrid monomers (that represent a concatenate of a
suffix of one known monomer with a prefix of another known
monomer) and hypothesized that they represent the driving force for
the ‘birth’ of new monomers. We describe the MonomerGenerator
algorithm for identifying all monomers in the human genome and
construct a comprehensive set of human monomers for live centro-
meres that includes many rare and hybrid monomers that evaded
identification in previous studies.

HOR inference problem. Human centromeres are formed by
complex HORs, that are in turn formed by chromosome-specific
monomers. Although previous studies derived lists of the most abun-
dant human HORs (McNulty and Sullivan, 2018; Shepelev et al.,
2015), there are still many HORs that remain to be discovered.
Moreover, previous studies often derived HORs using heuristic/
manual approaches and have not even defined a rigorous computa-
tional concept of a HOR. Below we define the concept of a HOR
and reveal that HORs are organized into even more complex repeat
structures that we refer to as superHORs. We describe the
HORDecomposer algorithm for inferring HORs and superHORs,
infer them from live centromeres of the entire human genome, and
reveal many previously unknown HORs. We further define the no-
tion of a HOR-graph and show how a selection of a single HOR in
each connected component of this graph (called a primary HOR)
parallels decades of previous research (Alexandrov et al., 2001;
Alkan et al., 2007; Paar et al., 2005; Sevim et al., 2016; Uralsky
et al., 2019).

2 Materials and methods

Datasets. We extracted the satellite arrays from the assembly (public
release v1.0) of the haploid CHM13 cell line (https://github.com/
nanopore-wgs-consortium/chm13#v10) constructed by the
Telomere-to-Telomere (T2T) consortium (Logsdon et al., 2021;
Miga et al., 2020; Nurk et al., 2021). Supplementary Note
‘Information About Human Centromeres’ presents the coordinates
of extracted regions for all live human centromere arrays.

Monomer Inference Problem. Given a string Centromere and a
string-set Monomers, the StringDecomposer tool (Dvorkina et al.,
2020) decomposes the Centromere into (monomeric) blocks [we
refer to the resulting block-set as Blocks(Centromere, Monomers)].
For each block Block, StringDecomposer assigns the value
div1(Block) [div2(Block)] that represents the divergence between this
block and its most similar monomer (its second-most similar mono-
mer). The divergence between a pair of strings is defined as the edit
distance between them divided by the length of the longest string.

Given a monomer M from the monomer-set Monomers, we refer
to a block from Blocks(Centromere, Monomers) as an M-block if M
is a most similar monomer to this block (ties are broken arbitrarily).
The M-consensus is defined as the consensus of the multiple align-
ment of all M-blocks. Given monomers M and M0, we denote the
edit distances between the M-consensus and the M0-consensus as
distance(M, M0). The separation of a monomer M [referred to as
separation(M)] is defined as the shortest distance between M and all
other monomers. The radius of a monomer M [referred to as
radius(M)] is defined as the maximum edit distance between its M-
consensus and all M-blocks. The separation ratio of a monomer M
is defined as separationRatio(M) ¼ separation(M)/radius(M).

The count of a monomer M [referred to as count(Centromere,
M)] is defined as the number of M-blocks in Blocks(Centromere,
Monomers). A monomer is classified as frequent if its count exceeds
the threshold jBlocks(Centromere, Monomers)j/FreqCeiling (default
value FreqCeiling ¼ 40), and infrequent, otherwise. An infrequent
monomer is classified as rare if its count does not exceed a threshold
rareMonomerCount (default value rareMonomerCount ¼ 5).

We classify a block Block as resolved if div1(Block) is below the
threshold maxResolvedDivergence (default value maxResolved
Divergence ¼ 5%). We refer to the Block as non-monomeric if
div1(Block) exceeds the threshold maxDivergence (default value
maxDivergence¼40%). Finally, a Block is unresolved if it is neither
resolved nor non-monomeric.

Fig. 1. Architecture of centromere on chromosome X. The recently assembled

centromere of chromosome X (cenX) consists of �18 000 monomers of length

ffi171 bp each, as well a single copy of a LINE repeat based on the cenX assembly in

Bzikadze and Pevzner (2020) [the latest T2T assembly (Nurk et al., 2021) represents

a minor change to this assembly]. These monomers are organized into �1500 high-

order repeats (HORs). Five HORs in the Figure are coloured by five shades of blue

illustrating HOR variations. Each HORs is a nested tandem repeat formed by vari-

ous monomers. The vast majority of HORs on cenX, referred to as canonical

HORs, are formed by 12 monomers (shown by 12 different colors). Figure on top

represents the dot plot of a canonical HOR that reveals 12 monomers. While HORs

are 95–100% similar, monomers are only 65–88% similar. In addition to the canon-

ical 12-monomer HORs, there is a small number of non-canonical HORs with vary-

ing numbers of monomers
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We say that a monomer-set Monomers resolves a centromere
Centromere if the fraction of resolved blocks in this centromere
exceeds the threshold FractionResolvedBlocks and all other blocks
are non-monomeric (default value FractionResolvedBlocks ¼ 0.95).
Given an integer Length, we say that a monomer-set is Length-uni-
form if all monomers in this set have a length similar to Length, i.e.
that differs from Length by at most MaxLengthDivergence, where
MaxLengthDivergence is a parameter (the default value is
0.01*Length).

Monomer Inference Problem.
Input. A string Centromere and parameters maxResolved

Divergence, Length, MaxLengthDivergence and FractionResolved
Blocks.

Output. A Length-uniform monomer-set Monomers that
resolves Centromere and has a minimum number of monomers
among all Length-uniform monomer-sets that resolve Centromere.

Previous attempts to generate monomers used a single consensus
monomer M (e.g. a consensus of all human alpha satellites) to parti-
tion a centromere into M-blocks and further cluster these blocks
using single-linkage clustering (Sevim et al., 2016). Although this ap-
proach succeeded in deriving many human monomers, it does not
necessarily resolve a centromere, particularly in the case of clusters
that result in monomers with large radius. Below we describe a sim-
ple MonomerGenerator algorithm for an approximate solution of
the Monomer Inference Problem.

MonomerGenerator algorithm. In addition to a string
Centromere, MonomerGenerator has two input parameters: a
threshold maxResolvedDivergence, and a string InitialMonomer
(note the difference with the Monomer Inference Problem with re-
spect to parameters). It is an iterative algorithm that gradually
extends the monomer-set, starting with the monomer-set that con-
sists of a single monomer InitialMonomer. In the case of the human
genome, it sets InitialMonomer ¼ ConsensusMonomer, where
ConsensusMonomer is specified in Supplementary Note ‘Consensus
monomer and reference monomers.’

Given a string Centromere and a monomer-set Monomers,
MonomerGenerator launches StringDecomposer to generate the
block-set Blocks(Centromere, Monomers) and constructs the block-
graph where vertices are unresolved blocks and edges connect unre-
solved blocks with divergence below maxResolvedDivergence/2
(Fig. 2). Since the block-set for the entire human genome contains
nearly 300 000 blocks, the brute-force construction of the block-
graph (that requires computing the edit distance between all pairs of
blocks) faces the running time bottleneck. Supplementary Note
‘Constructing connected components of the block-graph’ describes a
fast algorithm for constructing connected components of the block-
graph.

MonomerGenerator selects a largest connected component (with
a maximum number of vertices) in the constructed block-graph and
computes its consensus newMonomer by constructing the multiple
alignment of all blocks (vertices) in this component using Clustal
Omega (Sievers et al., 2011). Afterward, MonomerGenerator
extends the monomer-set by adding newMonomer and iterates until
the monomer-set resolves Centromere. It also removes a monomer
from the monomer-set if it does not represent the most similar
monomer for any block in Blocks(Centromere, Monomers).

Before launching the next iteration, MonomerGenerator recom-
putes the sequence of each monomer in the monomer-set by substi-
tuting it with the consensus of all blocks resolved by this monomer.
In the resolved centromere, the M-consensus coincides with each
monomer M in the generated monomer-set. Even though the final
monomer-set is not guaranteed to be Length-uniform, it is not an
issue for human centromeres, since most monomers in the human
genome have a rather conserved length of ffi171 (Table 1).
Supplementary Note ‘Pseudocode and complexity analysis for
MonomerGenerator and HORDecomposer’ presents the pseudo-
code and complexity analysis for MonomerGenerator.

Identification of hybrid monomers. Given a string, we refer to a
string formed by its first (last) i nucleotides as its i-prefix (i-suffix).
We refer to a hybrid monomer formed by concatenating the i-prefix
of a monomer X and the j-suffix of a monomer Y as the X(i)þY(j),

or simply XþY, when omitting the indices i and j does not cause
confusion. Hybrid monomers, albeit relatively infrequent, have been
identified in several human centromeres (Dvorkina et al., 2020). For
each infrequent monomer M, MonomerGenerator identifies the
most similar hybrid candidate generated by a pair of frequent mono-
mers (X, Y) and reports M as a hybrid monomer if div(M, XþY)
does not exceed MaxHybridDivergence (default value 1%).

Shifted monomer-set. A unit of a tandem repeat is defined up
to a cyclic shift. For example, AGGT, GGTA, GTAG and
TAGG represent four cyclic shifts for a tandem repeat

. . .AGGTAGGTAGGT. . .. However, in the case of a nested tandem
repeat, the situation is more complex. For example, consider a
nested tandem repeat . . .AGGTAACTTGGTAGGTAACTTGGT. . .,
formed by three similar ‘monomers’ AGGT, AACT and TGGT
(organized into a ‘HOR’ AGGTAACTTGGT). Shifting the starting
positions of these monomers by two nucleotides results in a new
monomer-set: GTAA, CTTG and GTAG. Note that the shifted
monomers do not represent cyclic shifts but rather hybrids of the
original monomers. Moreover, information about the original
monomer-set is not sufficient for generating the shifted monomer-
set in the case of a centromere with multiple HORs since informa-
tion about the entire centromere is required to generate the shifted
monomer-set.

Unfortunately, various studies of human centromeres used
monomers with varying shifts (Bzikadze and Pevzner, 2020;
Shepelev, 2015; Uralsky, 2019; Miga, 2020), making it difficult to
compare the results and emphasizing the importance of selecting the
standard representation of human monomers. To facilitate the com-
parison of the arbitrary monomer-sets (possibly with different shifts)

Fig. 2. CentromereArchitect pipeline. As an Input, CentromereArchitect takes the

nucleotide sequence Centromere of a centromere (or nucleotide sequences of all cen-

tromeres) and a consensus alpha satellite sequence Monomer. CentromereArchitect

consists of two modules MonomerGenerator and HORDecomposer.

MonomerGenerator constructs the block-graph and extracts each monomer from a

connected component of this graph. It further uses the constructed monomer-set to

partition the centromere into M-blocks using StringDecomposer. This partitioning

transforms centromere into monocentromere. HORDecomposer infers the set of

HORs and partitions the monocentromere into these HOR. As an optional input,

HORDecomposer can incorporate known HORs in its Output. Finally,

HORDecomposer infers superHORs in the resulting HOR decomposition and con-

structs the HOR-graph. Each connected component of that graph depicts a HOR-

component and the vertex with the purple border corresponds to the primary HOR

of that HOR-component
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MonomerGenerator has the MonomerGraph module that, given a
monomer-set and a centromere, generates a shifted monomer-set.

Monomer-graph. Given a string Centromere and a monomer-set
Monomers, StringDecomposer transforms it into a string
monoCentromere over the alphabet of monomers and the ‘?’ sym-
bols that represent non-monomeric blocks (Dvorkina et al., 2020).
A directed monomer-graph is constructed on a vertex-set of all
monomers and the edge-set formed by all pairs of consecutive mono-
mers in monoCentromere. The weight of an edge (M, M0) in the
monomer-graph is defined as the number of times the monomer M0

follows the monomer M in monoCentromere.
Given a monomer-graph constructed for monomer-set

Monomers, MonomerGraph generates a new i-shifted monomer-set
Monomers(i) by shifting the start of all monomers by i nucleotides.
Each edge (M, M0) in the monomer-graph corresponds to a shifted
monomer MþM0 formed by concatenating the i-suffix of M with the
j-prefix of M0, where j ¼ jM0j-i. However, since different edges may
result in identical (or similar) shifted monomers, we merge two
shifted monomers into a single one if the divergence between them
does not exceed maxResolvedDivergence/2 threshold.
MonomerGraph also constructs the monomer-graph on shifted
monomer by generating an edge between shifted monomers MþM0

and M0þM00 for each triple of consecutive monomers M, M0, M00 in
the monocentromere (the weight of this edge equals to the number
of such triples).

Identifying non-monomeric regions. Most centromeres contain
non-monomeric segments (e.g. Alu and LINE repeats) as well as
highly diverged and truncated monomers that MonomerGenerator
classifies as non-monomeric blocks. Supplementary Note
‘Identifying non-monomeric regions’ describes Centromere
Decomposer—an extension of StringDecomposer that adds these
non-monomeric regions as additional strings to the initial monomer-
set, and generates a new string decomposition that takes into ac-
count these new non-monomeric strings. For example,
CentromereDecomposer identified Alu repeats and partial

monomers of length 113 in cen8 (Longsdon et al., 2020;
Supplementary Note ‘Non-monomeric regions in human
centromeres’).

HOR inference problem. Despite four decades of HOR studies,
we are not aware of a computational definition of a HOR that
would allow one to rigorously derive all HORs in the human gen-
ome. Although Paar et al. (2005), Alkan et al. (2007) and Sevim
et al. (2016) described various HOR inference heuristics
(ColorHOR, HORdetect and Alpha-CENTAURI, respectively),
these studies have not specified what is the exact objective function
of these algorithms and have not formally defined the concept of a
HOR. As a result, most attempts to derive HORs were based on
manual effort rather than HOR inference algorithms, e.g. (McNulty
and Sullivan, 2018) listed 36 human HORs, while Shepelev et al.
(2015) listed 66 human HORs. Below we formulate the HOR
Inference Problem, describe a simple greedy algorithm for its solu-
tion, and infer �100 frequent as well as �500 infrequent human
HORs. We further introduce a concept of a superHOR and describe
the decomposition of centromeres in superHORs.

Even though previous studies defined a HOR as a nucleotide se-
quence (such as DXZ1 HOR for cenX), we define a HOR as an arbi-
trary string in the monomer alphabet, moreover, a monomer may be
repeated multiple times within a HOR (for example, this happens
for HORs in human centromeres 4, 18, 20, 21). We argue that
defining a HOR as a string in a monomer alphabet is a computation-
ally more elegant and scalable approach that enables intra- and in-
ter-species HOR comparison.

We denote the length of a string S as jSj, the number of elements
in a set A as jAj and the total length of strings in a string-set Strings
as length(Strings). Given a string-set Strings, an arbitrary concaten-
ate of strings from this set is called a String-word. For example, if
Strings ¼ fAB, CD, BDg, ABBDCDAB is a Strings-word. We refer
to the total number of strings from Strings that form a Strings-word
w as orbit(w). For a Strings-word w ¼ ABBDCDAB, jwj ¼ 8 and
orbit(w) ¼ 4.

Table 1. Information about the MonomerGenerator results on cenX

Iter. No. of resolved blocks No. of unres. blocks No. of non-mon. blocks j largest comp j radius sep. monomer-length

0 0 18 108 37 1507 8 32 171

1 1507 16 601 37 1506 8 47 171

2 3015 15 093 36 1505 6 35 171

3 4521 13 587 37 1501 9 26 171

4 6023 12 085 37 1499 7 44 171

5 7525 10 583 37 1500 7 30 171

6 9029 9079 37 1499 7 23 171

7 10 533 7575 37 1498 9 42 167

8 12 036 6072 37 1497 8 30 171

9 13 536 4572 37 1496 6 39 186

10 15 035 3073 37 1494 8 31 167

11 16 535 1573 37 1490 9 25 169

12 18 032 76 37 8 1 14 168

13 18 040 68 37 5 0 17 171

14 18 045 63 38 3 0 22 171

15 18 048 60 39 3 1 9 169

16 18 052 56 39 3 1 24 163

17 18 055 53 39 2 0 9 168

18 18 057 51 39 2 0 9 167

19 18 059 49 40 2 0 12 167

20 18 061 47 40 2 0 9 171

21 18 063 45 39 2 3 11 171

22 18 065 43 39 2 4 21 171

23 18 067 41 38 1 – – –

Each row corresponds to an iteration of the algorithm. At each iteration, the consensus of the blocks in the largest connected component in the block-graph

is added to the monomer-set. At the 0th iteration, the monomer-set consists of the single ConsensusMonomer. The first three columns show the number of

resolved, unresolved and non-monomeric blocks after running String Decomposer on the monomer-set at the corresponding iteration. In this Table, separation of

a monomer generated at each iteration refers to the minimum distance to the previously generated monomers (rather than all generated monomers).

CentromereArchitect i199

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab265#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab265#supplementary-data


A Strings-word w is called a Strings-decomposition of a string S
if w¼ S. The score of this Strings-decomposition score(Strings, w) is
defined as orbit(w)þlength(Strings). Given a string S, a string-set
Strings is called S-minimal if there exists a Strings-decomposition w
of S that minimizes score(Strings, w) over all string-sets Strings and
over all Strings-decompositions of S. The elements of the S-minimal
string-set are called HORs. We formulate the following HOR infer-
ence problem and note that it may have multiple solutions.

HOR Inference Problem.
Input. A string S.
Output. An S-minimal string-set Strings.
String substitutions. A string S over an alphabet A defines an A-

decomposition w of S with score(A, w) ¼ jSjþjAj. Given a substring
h of a string S, we define countS(h) as the number of non-overlap-
ping occurrences of h in S. There may be multiple ways to select
countS(h) non-overlapping occurrences of h in S, e.g.
countAABBCAAAD(AA) ¼ 2 and there are two ways to select two non-
overlapping occurrences of AA in AABBCAAAD: AABBCAAAD
and AABBCAAAD. HORDecomposer selects the set of the ‘left-
most’ occurrences, i.e. AABBCAAAD over AABBCAAAD.

A string is called a monorun if it is made of a single symbol. A
substring of a string is called a run if it is a maximal monorun, i.e. is
not a substring of another monorun. For example, ABBCAAAD has
two runs of A. The run-length encoding of a string S (denoted as S*)
is defined as the substitution of each run of a symbol X of length n
by an expression Xn that we count as a single symbol. For example,
the run-length encoding of S ¼ ABBCAAAD is S* ¼ AB2CA3D, jSj
¼ 8 and jS*j ¼ 5.

Given a substring h of a string S, we define its h-substitution as a
string S(h) resulting from substituting each of countS(h) non-over-
lapping occurrences of h in S by a new symbol h. For example, if
h¼AB, g¼EGF and S ¼ CABDEGFABEGFBDEGFABDEGFDAB
ABDD with jSj¼30, S(h) ¼ ChDEGFhEGFBDEGFhDEGFDhhDD
¼ ChDEGFhEGFBDEGFhDEGFDh2D2 and S(g) ¼ CABDgABgBDg
ABDgDABABDD. Note that jS(h)j ¼ 25, and jS(h)*j ¼ 23, while
jS(g)j ¼ 22 and jS(g)*j ¼ 21.

Adding h to the alphabet A forms a string-set Strings with jAjþ1
elements and length(Strings) ¼ jAjþjhj. The h-substitution operation
results in a Strings-decomposition w of S(h) with orbit(w) ¼ jSj-
countS(h)*(jhj-1), score(Strings, w) ¼ orbit(w) þ length(Strings) ¼
(jSj—countS(h)*(jhj—1)) þ (jAj þ jhj) ¼ score(A, w) -
countS(h)*(jhj-1) þ jhj.

Thus, a sensible greedy strategy for solving the HOR Inference
Problem is to find a substring h of a string S maximizing
countS(h)*(jhj-1), perform the h-substitution and iterate. Below we
describe the HORDecomposer algorithm that uses a slightly modi-
fied greedy strategy to generate an approximate solution of the
HOR decomposition problem.

Heavy substrings. A substring h of a string S is called recurrent if
countS(h) exceeds a threshold MinCount (default value MinCount ¼
5). A string is called short if its length does not exceed a threshold
MaxLength (the default value is 30). Below we limit attention to
short recurrent strings h and consider their h-substitutions. We de-
fine the weight weight(S, h) of a substring h as jS*j-jS(h)*j. A string
h is called heavy if its weight exceeds a threshold MinWeight (de-
fault value MinWeight ¼ 5).

HORDecomposer algorithm. A string is called non-trivial if it
consists of at least two different symbols. We define a HOR in a
string S as its recurrent heavy non-trivial substring h that minimizes
run-length encoding of h-substitution of S over all recurrent heavy
non-trivial substrings with at least one symbol (monomer) from the
initial string S (ties are broken arbitrarily). The restriction that a
new HOR has to include at least one monomer implies that we do
not consider HORs formed by the previously constructed HORs
(such HORs will be classified as superHORs at the follow-up stage).
The HORDecomposer algorithm iteratively selects a heavy HOR h
at each step, performs the h-substitution, and stops when there are
no heavy HORs left. The resulting string is called the HOR decom-
position of the string S (Fig. 2). Supplementary Note ‘Pseudocode
and complexity analysis for MonomerGenerator and
HORDecomposer’ presents the pseudocode for HORDecomposer.

Below we illustrate how HORDecomposer with parameters
MaxLength ¼ 30, minCount ¼ 1 and minWeight ¼ 10 works on a
string S¼CABDEGFABEGFBDEGFABDEGFDABABDD. HOR
Decomposer first selects a HOR a ¼ EGF and transforms S into S0 ¼
S(a) ¼ CABDaABaBDaABDaDABABDD. Afterward, it selects a
HOR b ¼ AB, resulting in a string S00 ¼ S0(b) ¼ CbDabaBDabDaDb
bDD. Afterward, it selects a HOR c ¼ Da, resulting in a string S000 ¼
S00(c) ¼ CbcbaBcbcDbbDD ¼ CbcbaBcbcDb2D2. Note that HOR
Decomposer does not select d ¼ bc as a HOR at the follow-up step
since it does not contain monomers from the initial string S. Instead,
this string will be identified as a superHOR as described below.

Frequency of HORs. A HOR in HORDecomposition ¼
HORDecomposition(Monocentromere, HORs) is classified as fre-
quent if its count exceeds the threshold jHORDecompositionj/
HORFreqCeiling (default value HORFreqCeiling ¼ 40), and infre-
quent, otherwise. An infrequent HOR is classified as rare if its count
does not exceed a threshold rareHORCount (default value
rareHORCount ¼ 10).

superHORs. Each element in the HOR decomposition has a
form Hn, where H is a HOR and n is its degree, i.e. the number of
tandem repeats of this HOR starting at a given position in a mono-
centromere (like in the HOR decomposition CbcbaBcbcDb2D2). To
derive a superHORs decomposition, we ignore all degrees in the
HOR decomposition (e.g. a string CbcbaBcbcDb2D2 is transformed
into CbcbaBcbcDbD) and apply the HORDecomposer algorithm to
the resulting string (albeit with the changed default parameters
MinCount ¼ 2, and MinWeight ¼ 2). The resulting HORs are classi-
fied as superHORs (e.g. a superHOR bc in CbcbaBcbcDbD; Fig. 2).
An example of a string ga3ga15ga6ga4ga5ga39 (a substring of the
HOR decomposition of cenX) explains why we ignore the degrees in
the definition of a superHOR. Indeed, gnam (for all possible values
of n and m) is a compact representation of all six strings ga3, ga15,
ga6, ga4, ga5 and ga39.

Modifying HORDecomposer to incorporate known HORs.

Previous studies manually inferred some human HORs that we refer
to as canonical HORs (McNulty and Sullivan, 2018; Shepelev et al.,
2015). For example, the canonical HOR for cenX is represented by
a 12-monomer HOR (shown in the first row in Table 2), while the
canonical HOR for cen6 is represented by an 18-monomer HOR
(we represent it as a HOR b formed by concatenating a 14-monomer
HORs a and 4 monomers M, N, O, P; see Supplementary Note
‘HOR and superHOR decomposition of cen6 and cen8’). Since the
HORDecomposer is ‘blind’ with respect to canonical HORs, it may
not include them in the list of inferred HORs (like in the case of
cen6). However, to provide consistency with previous studies, it
may be beneficial to force HORDecomposer to include canonical
HORs. Supplementary Note ‘Modifying HORDecomposer to in-
corporate canonical HORs’ describes how HORDecomposer incor-
porates canonical HORs.

HOR-graph. Let Monomers, HORs and Monocentromeres be
the set of all monomers, HORs and monocentromeres in a genome,
respectively. We construct an undirected HOR-graph with the ver-
tex-set HORs and the edge-set formed by all pairs of HORs that
share at least a single monomer (Fig. 2). We refer to a connected
component of the HOR-graph as a HOR-component, to the most
frequent HOR in each HOR-component as the primary HOR (ties
are broken arbitrarily), and to all other HORs in a HOR-class as
secondary HORs (also referred to as structural variants of HORs or
HOR StVs, Miga et al., 2020). Interestingly, some monomers in pri-
mary HOR for centromeres 4, 18, 20, 21 are repeated multiple times
within the HORs. In most cases (15 out of 23), primary HORs in
the HOR-graph of the human genome correspond to the canonical
HORs inferred in previous studies (see Results, Table 3).

3 Results

3.1 Generating the monomer-set for cenX
Table 1 presents information about 23 monomers inferred by
MonomerGenerator on cenX. Twelve (eleven) of these monomers
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are frequent (infrequent) and all infrequent monomers but two are
rare.

We follow Shepelev et al. (2015) in the selection of the cyclic
shift for the initial alpha-satellite consensus that defines the

reference monomers inferred in previous studies (Supplementary
Note ‘Consensus monomer and reference monomers’). Monomer
alignments revealed that the reference monomers are shifted by 94
nucleotides as compared to the monomers generated by the

Table 2. Eight HORs in cenX (top), the HOR decomposition of cenX into these HORs and monomers (middle), and the superHOR decompos-

ition of cenX into eight superHORs ada, BAf, af, ahKJ, ag, eah, eab and EDCBAf (bottom)

HOR name HOR length HOR Count Weight Run-length

a 12 GFDECBALKJIH 1482 17 789 343

b 19 aGFDECBA 20 1611 219

c 16 KJIHa 18 1527 163

d 22 bLKJ 8 1482 136

e 3 NIH 8 1474 120

f 17 Lc 9 1469 109

g 17 Gc 8 1468 101

h 20 bL 7 1459 94

HOR

decomposition

fa114da180GFECBAfa33f3a2fa59hKJBAfa144ga3ga15ga6

ga4ga5ga39bebea12hea7hea18hea7hea17hea7bea239bFED

CBAfa223ga3ga5da10d4a10dada127b_LINE_ca133GEDCBAfa21hKJ

superHOR

decomposition

fadaGFECBAfafahKJBAfagabebeaheabFEDCBAf

agadab_LINE_caGEDCBAfahKJ

Powers in the HOR decomposition represent the length of a run, i.e. a117 stands for a. . .a repeating 117 times. Different colors represent different

superHORs. The length of the run-length encoding of the HOR (superHOR) sequence for cenX is 94 (31).

Table 3. Information about monomers and HORs inferred by CentromereArchitect on all human centromeres. Each row represents informa-

tion about the alpha satellite array on a single chromosome. The second (third) column shows the number of frequent (hybrid) monomers

generated by MonomerGenerator for each chromosome. The fourth column shows the total number of monomers generated by

MonomerGenerator including frequent, hybrid, and infrequent monomers. The fifth (six) column shows the maximum radius (minimum

separation ratio) for frequent monomers from the corresponding chromosome. Rows with separation ratios exceeding (not exceeding) 1

are highlighted in green(red). The seventh (eighth, ninth) column shows the total number of distinct HORs (frequent HORs, H-blocks) for

each chromosome. The tenth column shows the most frequent HOR in each chromosome and their frequencies (chromosomes, where

most frequent HOR is equal to canonical HOR, are shown in bold).

Chr No. of freq

mn-s

No. of hybr

mn-s

Tot.

mn-s

Max

rad-s

Min.

Sep-Ratio

No. of

HORs

No. of freq.

HORs

No. of

H-bl-s

Most freq. HOR

(#H-bl-s)

1 10 7 22 20 0.1 161 5 3874 12-mer(230)

2 4 0 9 13 0.615 37 7 2816 4-mer(1348)

3 17 0 23 9 1.5 13 5 532 17-mer(312)

4 17 3 22 13 0.833 44 9 1616 19-mer(692)

5 8 5 14 20 0.1 32 8 1704 4-mer(607)

6 18 1 19 10 1.286 7 2 953 18-mer(643)

7 6 1 14 17 0.765 12 2 3108 6-mer(2852)

8 11 1 12 10 1.857 6 3 1517 7-mer(646)

9 9 5 23 13 0.615 45 8 2264 11-mer(578)

10 8 6 36 12 1.11 39 6 1753 6-mer(585)

11 5 1 13 13 1 8 2 3898 5-mer(3642)

12 8 5 20 16 0.562 38 5 1956 8-mer(1083)

13 10 1 14 10 1.375 4 3 1323 7-mer(698)

14 8 1 12 18 1 12 1 1822 8-mer(1701)

15 12 0 16 10 1.125 11 6 486 15-mer(290)

16 10 0 16 20 0.1 15 4 1239 10-mer(952)

17 16 2 43 14 1.5 26 4 1567 16-mer(985)

18 11 2 20 12 0.89 42 4 2868 12-mer(896)

19 6 2 26 20 0.1 86 11 4421 4-mer(757)

20 15 0 17 13 0.615 13 4 836 16-mer(628)

21 10 1 14 10 1.375 5 5 185 11-mer(151)

22 8 1 13 18 1 14 2 2063 8-mer(1819)

X 12 2 14 9 1.625 8 1 1489 12-mer(1444)

Tot. 220 33 375 20 0.1 671 107 44 290 –
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MonomerGenerator. After shifting by 94 nucleotides and merging
similar monomers, we generated 12 frequent monomers and sixteen
infrequent monomers (Fig. 3). The frequent monomers correspond
to reference monomers that form the abundant DXZ1 HOR in
cenX (Waye and Willard, 1985). The infrequent monomers include
9 hybrid monomers and 7 variants of frequent monomers with large
indels. 11 out of 16 infrequent monomers are rare.

Supplementary Note ‘Comparing monomers generated by
MonomerGenerator with the reference monomers’ compares the ref-
erence monomers with the monomers generated by
MonomerGenerator. The frequent monomers are the first to be gen-
erated by MonomerGenerator (Table 1) and are very similar to the
corresponding reference monomers. Three frequent monomers coin-
cide with the reference monomers, two monomers have an insertion
of a single nucleotide, one monomer has a single mismatch, and six
monomers have a few small gaps either at the start or at the end. A
few mismatches can be explained by inaccuracies in the previously
derived reference monomers and/or centromere polymorphism
across the population. Indels at the start and end of monomers are
due to minor inconsistency of the shift selection between some refer-
ence monomers and frequent monomers.

Below we discuss MonomerGenerator results on cenX
(Supplementary Note ‘Monomer inference for cen6 and cen8’
benchmarks MonomerGenerator on cen6 and cen8). One of the
cenX monomers inferred by MonomerGenerator [G-K(G-F/L-K) in
Supplementary Note ‘Comparing monomers generated by
MonomerGenerator with the reference monomers’] represents a
monomer M that corresponds to a K(68)þF(103) hybrid of the fre-
quent monomers K and F identified in Bzikadze and Pevzner (2020)
and Dvorkina et al. (2020). The locations of the M-blocks are
flanked by J-blocks on the left and G-blocks on the right. Since the
canonical 12-monomer HOR in cenX is ABCDEFGHIJKL, the
KþF hybrid has likely arisen from a deletion in
ABCDEFGHIJKLABCDEFGHIJKL that removed a suffix of an F-
block and a prefix of a K-block. Similarly, the K-M(K-J/I-H) (H-
V(H-G/A-L) monomer is a G(129) þ I(42) (J(112) þ E(55)) hybrid
that has likely arisen from a deletion in ABCDEFGHIJKL
(ABCDEFGHIJKLABCDEFGHIJKL). Also, MonomerGenerator
inferred 5 rare hybrids in cenX.

3.2 Inferring HORs and superHORs for cenX
The monolength of the centromere is defined as the total number of
(monomer) blocks in its monocentromere. For example, if one
ignores infrequent monomers, cenX, cen8 and cen6 are written in
the alphabets of 14 (12þ2 hybrid), 12 (11þ1 hybrid) and 16
(15þ1 hybrid) frequent monomers, respectively, and have mono-
lengths 18 145, 12 251 and 16 315, respectively. For monocenX,
HORDecomposer infers 8 HORs (single frequent and 7 rare HORs)
and generates a HOR decomposition of cenX into a string with the
length of its run-length encoding equal to 94 (Table 2). It further
infers seven superHORs and generates a superHOR decomposition
of cenX of length 31. Interestingly, many superHORs occupy long
contiguous segments of the centromere, providing insights into
centromere evolution. We refer to each symbol H in the HOR de-
composition of a centromere as an H-block. Table 3 summarizes the
number of different HORs and H-blocks for each centromere.
Supplementary Note ‘HOR and superHOR decomposition of cen6
and cen8’ presents HOR decompositions of cen6 (7 HORs and 11
superHORs) and cen8 (6 HORs and 9 superHORs).

3.3 Generating monomers and HORs for the entire set

of live human centromeres
Previous studies of human alpha satellite HORs were based on the
centromeric Reference Models (RMs) incorporated in the hg38 as-
sembly of the human genome. These models are collections of all
Sanger reads that match a certain HOR, (combined into a single se-
quence by the stochastic Markov process) that do not represent the
correct sequences of centromeres (Miga et al., 2014; Rosenbloom
et al., 2014). Thus, it is not surprising that our study revealed a
much larger set of human HORs.

Generation of RMs includes two steps: (i) inferring HOR con-
sensus sequences from a set of Sanger reads and (ii) generating the
stochastically simulated alpha satellite arrays from the read-set for
each HOR using the reconstructed consensus HOR as a seed. The al-
gorithm for HOR reconstruction and the method of anchoring them
in the simulated assembly remain unpublished, but the protocol for
generating an RM using a seed sequence was published in Miga
et al. (2014). Based on RMs, Shepelev et al. (2015) reconstructed 66
human HORs, the largest human HOR-set reconstructed so far. Of
these, 18 unique models represent 22 live centromeres of autosomes,
as chromosomes 13/21, 14/22 and 1/5/19 share the same live refer-
ence models. Two additional models represent live centromeres of
sex chromosomes. Sevim et al. (2016) have used this set of HORs to
annotate human PacBio reads and Uralsky et al. (2019) have used it
to extend the HOR classification in a single alpha satellite supra-
chromosomal family (see Supplementary Note: ‘HOR hierarchy’) by
manually curating it and adding a new class of low-copy divergent
HORs. CentromereArchitect inferred 107 frequent, 566 infrequent
and 327 rare HORs.

Table 3 presents results of MonomerGenerator on all human
centromeres (see Supplementary Note ‘Information about human
centromeres’). In total, MonomerGenerator inferred 220 frequent,
33 hybrid, 155 infrequent and no rare monomers in human
centromeres.

Figure 4 presents the distribution of radius and separation of all
frequent human monomers. We used the separation ratio to assess
the quality of the generated monomers (monomers with high separ-
ation ratio rarely result in ambiguous assignments of their M-blocks)
and analyzed separationRatio(Centromere) defined as the minimum
separation ratio of all monomers from this centromere. For ex-
ample, cen8 has the highest separationRatio(cenX)¼1.9, while cen1
has the smallest separationRatio(cen1)¼0.1.

Twelve human centromeres have separation ratios exceeding 1.
Most centromeres with a separation ratio below 1 contain mono-
mers with an unusually high radius that may reflect ‘old’ monomers
that significantly diverged from their consensus. Also, nearly all cen-
tromeres with a separation ratio below 1 (except for cen7 and
cen13) contain monomers shared with other centromeres. The ra-
dius of such shared monomers may be larger than the radius of other
monomers because they are formed by ‘submonomers’ from various

Fig. 3. The monomer-graph for cenX for the initially generated monomers (left) and

shifted monomers (right). The red cycle corresponds to the most frequent 12-mono-

mer HOR in cenX (DXZ1). Edges with a weight exceeding 3 are shown in bold.

(Left) The monomer-graph has 23 vertices and 41 edges. (Right) After shifting by 94

nucleotides, the monomer-graph has 28 vertices and 44 edges. Vertices correspond-

ing to 12 frequent monomers are colored by 12 different colors. Hybrid monomers

X/Y are represented by bicolored vertices, where two colors correspond to frequent

monomers X and Y. A vertex labeled as X–Y corresponded to a shift of the initially

generated monomers X and Y
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centromeres (with slightly different consensuses) that were clustered
together by MonomerGenerator. Further sub-clustering of mono-
mers into monomer subfamilies may be a sensible approach to ad-
dress such over-clustering (see Supplementary Note ‘Generating
submonomers for cenX’).

3.4 Cross-chromosome HOR and monomer comparison
Alpha satellite HORs present a complex hierarchy of sequences with
different levels of divergence between different HORs and between
copies of the same HOR within a centromere (Alexandrov et al.,
2001; Bzikadze and Pevzner 2020; McNulty and Sullivan 2018;
Miga, 2020; Shepelev et al., 2015; Uralsky et al., 2019).
Supplementary Note ‘HOR hierarchy’ describes different levels of
this hierarchy.

Out of 671 total HORs in the live centromere arrays of the
human genome, only six are shared between several chromosomes.
These shared HORs consist of monomers that are shared between
chromosomes 1, 5, 16 and 19. For simplicity, we refer to the mono-
mer D1/5/16/19 as D, and monomer E1/5/16/19 as E, and monomer
F1/5/16/19 as F. Six shared HORs include: FDF in chromosomes 1,
5 and 19; DEDE, DFDE, FDE, FDFD, FDFDF in chromosomes 1
and 19.

The HOR-graph generated for the set of all 671 human HORs
consists of 15 HOR-components with sizes ranging from 6 to 287.
All but 5 HOR-components represent HORs from a single chromo-
some. HOR-components of size 287 (92, 89, 26 and 9) combine
HORs that originated from chromosomes 1,5,16,19 (2,18,20; 4,9;
14,22; and 13,21).

Each row represents information about the alpha satellite array
on a single chromosome. The second (third) column shows the num-
ber of frequent (hybrid) monomers generated by
MonomerGenerator for each chromosome. The fourth column
shows the total number of monomers generated by
MonomerGenerator including frequent, hybrid and infrequent
monomers. The fifth (six) column shows the maximum radius (min-
imum separation ratio) for frequent monomers from the correspond-
ing chromosome. Rows with separation ratios exceeding (not
exceeding) 1 are highlighted in green(red). The seventh (eighth,
ninth) column shows the total number of distinct HORs (frequent
HORs, H-blocks) for each chromosome. The tenth column shows
the most frequent HOR in each chromosome and their frequencies

(chromosomes, where most frequent HOR is equal to canonical
HOR, are shown in bold).

4 Discussion

Recent advances in long-read sequencing technologies and genome
assembly algorithms opened new horizons for human centromere
genomics. For the first time, structural and evolutionary studies of
human alpha satellite arrays can be based on complete centromere
assembly rather than individual reads or satellite reference models
(Miga et al., 2014). We introduced the computationally rigorous
definitions of monomers and HORs and developed
CentromereArchitect, the first centromere annotation tool that con-
tains MonomerGenerator for inferring monomers and
HORDecomposer for inferring HORs. Applying
CentromereArchitect to the nearly complete human genome assem-
bly by the T2T consortium resulted in the first comprehensive data-
base of human monomers and HORs in live centromeres. The
development of CentromereArchitect is an important prerequisite
for future centromere research, including population-wide analysis
of human monomers and HORs, evolutionary studies of centro-
meres across primates and other species, biomedical studies of diver-
sity of human centromere sequences and their associations with
genetic diseases, and other important applications.

Since both MonomerGenerator and HORDecomposer are heur-
istic algorithms, we benchmarked their running time performance
on real data. Running MonomerGenerator on cenX takes less than
an hour of clock time when executed in 30 threads. The most com-
putationally intensive stage is running StringDecomposer to generate
the decomposition of centromeres into blocks. Running
MonomerGenerator on all live human centromeres takes approxi-
mately a week of clock time. Such seemingly extensive runtime is ac-
ceptable because MonomerGenerator needs to be done once for a
genome. However, the computational challenge of optimizing
MonomerGenerator will become prominent as complete assemblies
of multiple human genomes emerge. HORDecomposer does not pre-
sent a computational bottleneck as it takes minutes to run on all live
centromeres.

CentromereArchitect assumes that the quality of the centromere
assemblies is exceptionally high. Since live centromeres are extra-
long tandem repeats, generating accurate centromere assemblies is a
difficult computational challenge that was unresolved for almost
two decades since the completion of the Human Genome Project
(Bzikadze and Pevzner, 2020; Miga et al., 2020; Nurk et al., 2020,
S.Nurk et al., submitted for publication). However, the public re-
lease of the Telomere-to-Telomere assembly v1.0 (that is used in this
paper) has been evaluated by the TandemQUAST tool (Mikheenko
et al., 2020). This evaluation showed no structural errors and no
regions with deteriorated accuracy of base-calling. Ultimately, we
will update the set of monomers and HOR decomposition as
improved versions of the assembly become available.

Since there is only a single complete human genome assembly
available to date, the selection of defaults for CentromereArchitect
parameters is particularly challenging. Supplementary Note:
‘Parameters of CentromereArchitect’ describes our rationale for tun-
ing these parameters.

Even though CentromereArchitect successfully extracted human
monomers and HORs, it has certain limitations that we plan to ad-
dress in a follow-up study and that are outlined below.

Divergent monomeric and HOR layers. Biologists distinguish be-
tween homogeneous HOR domains that the kinetochore binds to and
that feature small divergence that does not exceed 10% (Uralsky et al.,
2019) and divergent HOR domains that are covered by very diverged
HOR-blocks (more than 10% divergence) or formed by monomers that
do not form well-defined HORs. Although CentromereArchitect suc-
cessfully extracts monomers and HORs for homogeneous HOR
domains, further algorithmic developments are needed to extend
Centromere Architect to divergent HOR domains. The layers with di-
vergent HOR domains are the oldest among all alpha satellite domains
in the human genome and their annotation may help to provide insights

Fig. 4. Information about the radius (x-axis) and separation (y-axis) of all 220 fre-

quent human monomers. Only for 21 out of 220 frequent human monomers,

located below the black line separation¼radius, the separation ratio is below 1

(only 4 of them, located below the red line separation¼0.5*radius, have separation

ratio below 0.5). Each circle corresponds to a single frequent monomer. For a clear-

er picture, the circles have a slight random offset. The colors of the points corres-

pond to specific chromosomes except for black circles that represent monomers

shared between several chromosomes. The light pink circle with radius 10 and sep-

aration 1 corresponds to centromere 1

CentromereArchitect i203

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab265#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab265#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab265#supplementary-data


into the development of centromeres in primates and understanding of
the Centromere Paradox.

Genome-wide submonomer detection. Since some centromeres
share very similar monomers (Uralsky et al., 2019), Monomer
Generator typically over-cluster such shared monomers into a single
cluster. Even though CentromereArchitect provides initial insights into
submonomer detection (see Supplementary Note ‘Generating submono-
mers for cenX’) further developments are needed to optimize submono-
mer identification with the goal to subpartition all monomers with high
separation ratios into submonomers.

Diploid centromeres. Although the T2T consortium generated
the first nearly complete assembly of the effectively haploid CHM13
cell line, centromere assembly in diploid genomes remains an open
problem (Cheng et al., 2021). CentromereArchitect will face add-
itional algorithmic challenges when applied to diploid human gen-
ome assemblies.

The HOR Decomposition Problem is closely related to the clas-
sical Data Compression Problem (Storer, 1987). Since centromeres
are extra-long tandem repeats (with small variations between the re-
peat copies), the existing data compression algorithms can be
applied to centromeres. Since MonomerGenerator clusters similar
blocks into monomers, the monomer decomposition is lossy and ir-
reversible. On the other hand, the HOR decomposition of a mono-
centromere is lossless and reversible. The HOR decomposition of
the cenX monocentromere (18 145 blocks) results in a run-length
encoding with only 147 characters (two orders of magnitude com-
pression). Even though this encoding is rather short, more efficient
encodings might exist.

We introduced computational definitions of a monomer (M-
block), HOR (H-block), HOR-graph (HOR-component) and pri-
mary (secondary) HORs. Since some of these definitions differ from
the previously introduced (and often only informally defined) con-
cepts, Supplementary Note ‘Summary of centromeric building
blocks’ provides intuition behind each of these concepts in the hope
to establish a bridge with previous studies of centromeres.
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