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A B S T R A C T   

Electronic toll collection (ETC) system records a large number of travel trajectories of vehicles on 
expressways, and it has a great potential application value. However, the current simulation 
system mainly focuses on simulating the characteristics of traffic flow while ignoring the real-time 
flow conditions of the road is difficult to calculate and display quantitatively, and the overall 
optimization cost is also notably substantial. Currently, there is a lack of a simulation system 
tailored for the ETC environment, which addresses the challenge of real-time traffic flow 
computation and holistic optimization, fulfilling the requisites of pertinent research. According to 
the topological structure inherent to an actual provincial road network on expressways, this paper 
devises a framework for a simulation system that conforms to the current ETC environment. We 
solved the critical problem of generating simulation data in the simulation system by establishing 
a Feature Extraction Algorithm for spatio-temporal features derived from ETC transaction data 
(Edata). Then we put forward Traffic Control Strategy Algorithm in ETC simulation system, which 
can provide decision indicators for simulating the control of traffic flow of the expressway. At the 
same time, we optimized the improved Multi-Task Scheduling Algorithm (ETC_MTS) based on the 
application scenario of real-time parallelism of multi-task on expressways, which provides better 
execution performance compared with the current mainstream algorithms such as Shortest Job 
First Scheduling Algorithm (SJFS), Priority Scheduling Algorithm (Priority), First Come First 
Serve Scheduling Algorithm (FCFS) and Round Robin Scheduling Algorithm (RR).   

1. Introduction 

As the contradiction between the increasing mileage and the low operational efficiency of China’s expressways has garnered 
heightened attention, informatization and intelligence become the major trend in the development of expressways. Notably, our 
country also encourages and supports the intelligent development of expressways in terms of policies [1]. A myriad of data corrob-
orates the assertion that the ETC network has emerged as a pivotal digital infrastructure underpinning traffic operation and man-
agement in the contemporary digital epoch. However, quantitatively calculating and presenting real-time traffic conditions on 
expressways poses challenges, and the cost of optimizing ETC construction is also substantial in practical research and analysis. 
Therefore, some experiments and related studies have been conducted at home and abroad on the architecture of simulation 
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verification system mainly using virtualization technology. However, these researches can not meet the demand for virtual test 
environment in ETC environment, so a set of simulation system based on ETC environment has great practical significance and 
application value to improve the level of management and service quality of expressway. 

At present, scholars at home and abroad have carried out a series of research on the related topics of intelligent expressway based 
on these Edata, mainly including several aspects such as identification of the maximum speed limit of expressway [2], traffic flow 
prediction [3,4], travel time of the vehicle as well as time prediction [5,6], expressway service areas, ETC gantries and other related 
research [7–12]. These studies are mainly based on vehicle-road cooperation technology to analyze the basic parameters of vehicle 
driving behavior, roadway capacity, and traffic operation delays. These efforts have promoted the development of intelligent ex-
pressways to some degree. However, the following challenges are still faced: 1) The framework of the current simulation system is 
mainly designed and researched surrounding traditional traffic models and Intelligent Transportation Systems (ITS). However, ETC 
systems have their unique characteristics, such as high speeds, large-scale traffic flow, and complex traffic scenarios, which lead to the 
fact that current simulation systems are not applicable to expressways; 2) Efficiently and accurately mining and extracting crucial 
information from Edata remains a persistent challenge.; 3) Existing simulation systems have difficulties in simulating massive 
in-transit traffic flow conditions on expressways, resulting in the inability to optimize traffic flow control on expressways; 4) Task 
scheduling scenarios are not considered in simulation systems. 

In order to tackle the challenges as mentioned earlier, this paper proposes a framework of multi-task real-time parallel simulation of 
ETC of intelligent expressway. It defines the related service components in the simulation system about the existing research results. 
The main contributions of this paper are as follows.  

1. Based on the needs of the simulation system of Edata, we propose a framework of multi-task real-time parallel simulation;  
2. We mine and analyze different dimensional information in Edata by establishing a feature extraction model, which provides the 

basis for generating ETC data for simulation;  
3. To effectively simulate the massive traffic flow conditions on expressways, we propose a traffic flow control strategy algorithm to 

achieve optimal control of the real-time traffic flow of the road network.  
4. To improve the execution performance of the task analysis of the simulation system, we construct a multi-task scheduling algorithm 

based on the minimum cost flow algorithm and the established cost function, which conforms to the traffic flow of the simulation 
system. 

The remainder of this paper is organized as follows: Section 2 provides an exposition on traffic simulation softwares and the 
traditional research on the calibration of the parameters of the simulation model. Next, the related methods are presented in Section 3, 
including the overall architecture of the system, Feature Extraction Algorithm, Traffic Control Strategy Algorithm, and ETC_MTS for 
traffic flow. The introduction of data sources and the experimental analysis are carried out in Section 4. Finally, we give the conclusion 
of this paper and provide an outlook for future research work. 

2. Related work 

2.1. Traffic simulation softwares 

Traffic simulation technology plays a vital role in urban road management and control. It not only effectively reduces the 
occurrence of traffic accidents but also efficiently addresses issues of traffic congestion. Moreover, it assists in managing the traffic flow 
of a significant number of vehicles on primary roads and optimizing the complexity of road network infrastructure [13]. Most studies 
and research on the architecture of simulation systems at home and abroad use virtual technology. The current virtual test tools mainly 
include vehicle simulation, communication simulation, traffic simulation and driver simulation [12]. These virtual test simulation 
tools usually utilize pre-set parameters in the system to simulate the state and trajectory of a virtual vehicle during actual operation. 
The traffic flow data in the system presents a relatively desirable state during the simulation run, with relatively simple rules of 
interaction between traffic participants and clear priorities for various traffic behaviors. 

The traffic simulation software currently used in the market mainly includes Corsim [13], TransModeler [14], Vissim [15], 
Paramics [16], Aimsun [17], Cube [18], and SUMO [19]. Traffic simulation software is primarily categorized into two main types: 
macroscopic simulation and microscopic simulation, where macroscopic simulation software is mainly applied to describe the overall 
characteristics of the traffic system, represented by Cube and TransCAD; microscopic traffic simulation software focuses on analyzing 
the actual operating characteristics of vehicles, which can more realistically reflect the microscopic behavior of the vehicle on the road, 
such as following, overtaking and lane change, represented by Corsim, Vissim and Paramics. Corsim of the United States integrates all 
the functional advantages of NETSIM and FRESIM which can ensure that it has the technical ability to dynamically simulate and 
display the changes of the actual road conditions in real-time urban traffic and dynamic road traffic simulation. TransModeler of 
Caliper Company of the United States is a multi-functional traffic simulation software, which displays vehicle operation and traffic 
conditions through a GIS-T graphical interface. Vissim of PTV company in Germany is a product designed based on a traffic behavior 
model, which can be employed to simulate traffic conditions within diverse social contexts, facilitating intelligent simulation and 
analysis of real-time urban traffic control models. Paramics, originating from Britain, has gained widespread adoption in road traffic 
planning and strategic management research, which can not only simulate road traffic networks, but also facilitate vehicle control 
through vehicle-road coopertative simulation. Aimsun, a simulation software developed in Spain, is primarily utilized for urban and 
road simulations on expressways. The time step of the simulation scene is 1~10 s, which can provide various models, such as 
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following, lane change and headway interval. In addition, the simulation system can also meet a series of particular environments in 
the complex scenarios of real-time simulation, including complex signal transmission control and traffic accident scene rescue. Cube, 
developed by Citilabs, stands as one of the most extensively employed professional software systems in the field of traffic system 
planning and analysis, both domestically and internationally, which includes more than ten types of control software, such as Cargo 
flow forecasting and prediction, Voyager passenger flow forecasting, and Avenue transportation planning and control software. SUMO 
is an open-source, microscopic, and multimodal traffic simulation software developed by Deutsches Zentrum für Luft-und Raumfahrt 
(DLR). It can be controlled individually for each vehicle and is commonly used for the development of traffic control models. 

However, the above simulation software is mainly applied to the theoretical and empirical study of the parameters of the dynamic 
operation and control of the relevant systems in vehicle-road coordination, such as the ability of vehicle diversion control in section 
[15], the assessment of traffic collision [18], and the speed of vehicle traffic [19]. However, these software solutions cannot generate 
and simulate the optimized and improved system architecture based on the ETC environment, nor can they provide the traffic flow 
environment under the safety-assisted driving and interaction situations, which in turn leads to the effect of the virtual test often fails 
to meet the demand for the realism of the virtual test environment of the vehicle-road cooperative in the ETC environment. 

2.2. Traffic simulation models 

The parameter calibration of the vehicle-road coordination simulation model in the intelligent expressway environment aims to 
optimize the combination of parameters in the ETC environment by establishing a complete calibration framework and combining it 
with specific traffic simulation software. Currently, research on traffic simulation models, both domestically and internationally, 
primarily encompasses three crucial aspects: the model selection and parameter setting in the design phase, the scene selection and 
parameter setting in the use phase, and parameter calibration of the model. 

Firstly, researchers delve into the characteristics of various simulation models and their suitability for specific scenarios during the 
model selection and design phase of parameter configuration. This is to meet the needs of specific projects and lay a solid foundation 
for subsequent simulation experiments. Burger et al. [20] considered the process of applying traffic simulation software based on 
simulation modeling and proposed the design phase refers to the choice between using macroscopic, mesoscopic and microscopic 
simulation models around the research problem, the level of detail of the research unit and the requirements of computational effi-
ciency. Chao et al. [21] started with a discussion on three classes of traffic simulation models applied at different levels of detail. Then, 
they discussed how traffic simulations can benefit the training and testing of autonomous vehicles. Burghout et al. [22] presented a 
framework for implementing meso-micro hybrid models, offering a unified representation of traffic dynamics. Furthermore, the 
chapter presented a new loading method that demonstrated a superior performance as compared to existing approaches. 

Secondly, the key in the stage of the model selection and parameter setting in the design phase is to use the existing information to 
check and verify the traffic simulation software based on the requirements of specific scenes, so as to effectively carry out simulation 
experiments. Shangguan et al. [23] proposed a new three-layer simulation test architecture based on the modeling of traffic subjects, 
the simulation of group behavior, and the analysis of test results. They conducted experiments on the control methods of different 
groups of intelligent decisions by selecting typical traffic scenarios such as intersections and road sections, which effectively improved 
the efficiency, scale, and coverage of mixed traffic simulation tests in vehicle-road coordination. Van Lint [24] proposed a generic 
multilevel microscopic traffic modeling and simulation framework that provides endogenous mechanisms for behavioral differences 
among and within drivers, and it can generate multiple plausible HF mechanisms to explain the same observable traffic phenomena 
and congestion patterns due to distractions. Huang et al. [25] constructed a C–V2X application scenario for ramp convergence and 
intersection passage, and established an evaluation simulation model for controlling vehicle-road cooperation in low and medium 
densities in traffic flow situations by modeling the scenario. Zheng et al. [26] proposed a simulation analysis and modeling method 
based on VISSIM for the impact of emergency traffic events on the traffic operation of expressways in mountainous areas. The proposed 
prediction model can predict 80 % of the maximum queue length variation with good engineering applicability. Mullakkal-Babu et al. 
[27] integrated lateral vehicle dynamics and yaw movements into a traffic simulation framework that has been used to simulate 
multi-lane traffic flows consisting of human-driven vehicles. 

Finally, during the model parameter calibration stage, the complexity of the parameter space in traffic simulation poses a sig-
nificant challenge in determining how to calibrate traffic model parameters based on available data. This process introduces a 
multitude of uncertainties, including factors such as heterogeneous driver behavior [28] and measurement data errors [29]. Many 
researchers have put forth various approaches for calibrating parameters in traffic simulation models, aiming to enhance the efficiency 
of model evaluation and attain more accurate simulation results. Yin et al. [30] proposed a multivariate distribution of traffic flow 
model parameters calibration method based on clustering based on the vehicle trajectory model, and the advantage of the proposed 
method is mainly in the description of the discrete nature of the turning traffic passage trajectory compared with the previous traffic 
flow parameters calibration methods. Ciuffo et al. [31] proposed a parameter calibration method for traffic simulation models with 
multi-step sensitivity analysis, which improved the efficiency of model evaluation by 80 %, considering the asymmetry in the degree of 
influence of the input parameters on the output results. Wang [32] established an analytical system for the calibration of VISSIM 
parameters of urban road traffic based on the principle of the orthogonal test method. A traffic simulation model was constructed using 
static traffic data gathered from an actual field survey, and the dynamic calibration of the parameters of the dynamic intersection 
model was realized. Zhang et al. [33] selected VISSIM and used the urban expressway interweaving area as a simulation case, with the 
following model and the lane change model, and applied the improved LH-OAT algorithm (ILH-OAT) for sensitivity analysis of the 
model parameters, and then applied GA to calibrate the key parameters, which made the simulation result closer to the real road traffic 
operation. 
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3. Methodology 

3.1. The overall architecture design 

The architecture design of the ETC data simulation system of intelligent expressway is divided into two parts, which are ETC 
Simulation Data Center and ETC Simulation Application System, as shown in Fig. 1. These two parts together form a comprehensive 
simulation platform to support the research and decision-making of intelligent expressways. ETC Simulation Data Center is responsible 
for responding to real-time traffic flow data on expressways and identifying features of real Edata through machine learning and other 
technologies. In the feature recognition process, toll booths, car models, road sections, and other factors are considered for modeling to 
generate simulated Edata suitable for each application scenario on the system. However, it is crucial to emphasize that the effec-
tiveness and accuracy of the simulation system rely significantly on the quality of the Edata. If there are incomplete or abnormal 
situations in the collection of Edata, it will directly affect the authenticity and reliability of the simulation effect. In addition, ETC 
Simulation Data Center, as a data governance center, has the function of self-inspection and self-diagnosis, which is used to inspect and 
repair the abnormal data in Edata. This process holds immense significance for refining and optimizing the feature model algorithm, 
ultimately enhancing the accuracy and credibility of the generated simulation Edata. 

In ETC Simulation Application System, although the system is capable of simulating the concurrent situations of multiple 
concurrency on expressways and providing support for multitasking debugging techniques (such as traffic flow and single-vehicle-in- 
transit supervision) at the micro level, it is worth pointing out that the current simulation system mainly focuses on simulating the 
characteristics of the traffic flow, while there is a limitation of the impact of the traffic incidents on the traffic flow. This limitation may 
affect the simulation and validation of response strategies for specific traffic events. 

In order to solve these limitations, ETC Simulation Application System adopts three key algorithms: Feature Extraction Algorithm, 
Traffic Control Strategy Algorithm, and ETC_MTS for traffic flow, which are described as follows: 

Firstly, Feature Extraction Algorithm plays a crucial role in the ETC Simulation Data Center to mine and analyze the information of 
different dimensions by establishing a feature extraction model. This provides the basis for generating simulated ETC data, which 
makes the simulated data more realistic and credible. However, Feature Extraction Algorithm itself faces the impact of Edata quality on 
its accuracy. The output of Feature Extraction Algorithm may be affected if there are incomplete or abnormalities in the input Edata. 

Secondly, Traffic Flow Control Strategy Algorithms are introduced to achieve optimal control of the massive in-transit traffic flow 
conditions in the road network. This helps to better simulate the traffic flow control on expressways and makes the simulation results 
closer to the real situation. However, the implementation of these algorithms may demand a significant amount of computational 

Fig. 1. Components of ETC simulation system of intelligent expressway.  
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resources, potentially posing challenges in environments with limited computational power due to resource constraints. 
Finally, ETC_MTS is optimized to improve the execution performance of task analysis in the simulation system. Compared with the 

current mainstream algorithms, such as SJFS, Priority, FCFS and RR algorithms, the algorithm has better execution performance. It 
helps to process large amounts of simulation data more efficiently. However, the optimization of the algorithm may also have an 
impact on the complexity and resource requirements of the system, which needs to be weighed against its performance and resource 
overhead in real-world applications. 

The following section will focus on several core algorithms of the ETC simulation system. 

3.2. ETC feature extraction algorithm 

Feature Extraction Algorithm based on Edata is the core algorithm of ETC Simulation Data Center on the simulation platform. The 
algorithm extracts the features of real Edata according to the platform’s interface, including the extraction and analysis of vehicle type, 
driving behavior, space, time, and other features. The flow chart of the feature extraction algorithm is shown in Fig. 2. Considering the 
expansibility of the simulation platform, we have implemented the responsibility chain mode. In this mode, each independent feature 
recognition component can complete its feature extraction calculation work. Furthermore, processing components within the chain 
can seamlessly integrate into the chain sequence. Each processing component carries out its designated calculation and recognition 
tasks. Simultaneously, data beyond the scope of a particular component’s capabilities is seamlessly passed on to the subsequent 
receiving component for further processing. 

Edata include the passage information and toll information of vehicles, which can be used to reconstruct the trajectory of vehicles 
and estimate the position and speed of each vehicle through the fields of vehicle ID, toll station ID or gantry ID, and transaction time, so 
as to obtain the traffic operation situation of each section of the expressway. Edata have the characteristics of large scale and high 
density, and the data is composed of discrete points obtained by sampling, which has discrete and continuous mathematical char-
acteristics. The algorithm uses the spatial and temporal distribution characteristics of traffic flow on expressways and its cyclical 
changes to establish a base feature library of cross-section flow, driving speed, driving preferences, and other basic features of traveling 
vehicles in different times and spaces on expressways. According to these basic information features library, the system can generate 
simulation transaction data in line with different scenarios, and meanwhile provide data guarantee for the research of intelligent 
driving assistance decision-making of ETC simulation system. In order to facilitate the research on feature recognition of Edata, we 
define Edata as follows: 

Block: Two adjacent gantries on the expressway form a block. 

Block={Node1,Node2} (1) 

Fig. 2. Flowchart of feature extraction algorithm.  
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where Node1 and Node2 are two adjacent gantries in the road network on expressways. The schematic diagram of Block is shown in 
Fig. 3. The length of Block varies from a few kilometers to more than 10 km. The simulation platform can add or adjust the deployment 
of gantries in different scenarios according to the service requirements of the information from intelligent driving assistance decisions 
on the expressway. 

Features of Edata (F): According to the trajectory of Edata and the gantry topology of passing places, we get independent and 
different features through functions of different dimensions. For instance, in the process of extracting speed features, flow features, and 
other attributes for different vehicle types, denoting the features as F1,F2,F3…Fn, the following relationships can be deduced: 

∑n

i=1
P(Fi)= 1 (2)  

where P(Fi) is the prior probability of the feature of Edata. 
Constraints (C): The characteristics of Edata are closely related to the vehicles on the expressway in a particular environment, such 

as the number of vehicles on the roadway at that time and the maximum speed limit. We denote the relevant constraints as C and 
obtain the following equation. 

P(Fi|C)=P(Fi) × P(C|Fi) (3) 

On the basis of considering from the constraint C, we use P(Ni|C) to denote the probability of occurrence of the situations that meet 
the constraint C, where N denotes the number of cases that satisfy the constraint C. The following equation can be derived. 

P(Ni|C)=
P(Ni|C)

1 − P(Ni|C)
(4) 

Since P(Ni|C) and P(Fi) are equivalence relations, we combine Bayes’ theorem and let LS(Ni|C) =
P(C|Ni)
P(Fi |C)

, we can derive the following. 

P(Ni|C)=LS(C,Ni) × P(Ni) (5) 

We add all the feature conditions that need to be extracted into the recognition component of the feature library for recognition and 
realize the sub-feature recognition of Edata by traversing the responsibility chain. The above example pertains to the extraction of sub- 
features, such as vehicle speed, specific to vehicle types within Edata. Feature Extraction Algorithm for Edata is implemented as Al-
gorithm 1. The core part of this algorithm has three parts: the main program, the doTask program and the proceed program. The main 
program initiates feature extraction of Edata by registering the chain of responsibility. After loadRegisterFeatureParams reads the 
existing feature extraction components within the system, it proceeds to register these components within the environment through 
the register function. Following this registration process, the doTask program is executed to commence the preparatory work for 
feature analysis. During the doTask session, it initiates by employing the translate method to transform EData into spatio-temporal 
object data, referred to as featureData. Subsequently, it utilizes various FeatureAnalyzer components to perform feature extraction 
on featureData across different dimensions. The core part of the analyzer is proceeding, which filters the transaction data set con-
taining the selected section according to the featureData, and then extracts the featureData according to three sets of parameters of the 
analyzer: type, vehClassSet, and timeSliceSet. The algorithm uses the mode of responsibility chain to make the simulation platform 
more flexible in extending the feature extraction components and reducing the coupling of data processing.  

Fig. 3. Schematic diagram of Block.  
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3.3. Traffic flow control strategy algorithm 

In the Traffic Flow Control Strategy Algorithm, the core objective of the simulation platform is to minimize the degree of congestion 
on the expressway to improve the overall traffic operation efficiency. In order to achieve this goal, the platform adopts the integrated 
traffic flow as the optimization index, and carries out dynamic scheduling and optimal control of the traffic flow on different road 
sections. Specifically, Traffic Flow Control Strategy Algorithm performs information-driven control calculations by obtaining infor-
mation on various traffic flows generated by road sections on expressways in real-time during a specific period. During the calculation 
process, the platform performs dynamic coordination and optimization based on each section’s traffic flow to reduce congestion and 
improve the capacity of sections. During the scheduling optimization process, the platform comprehensively considers the traffic flow 
situation at the diversion merging points on the expressway and identifies the toll stations and service areas that need to be coordinated 
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and optimally controlled to minimize traffic bottlenecks and improve the road section’s capacity and traffic efficiency. 
The constraint relationship of road network traffic on expressways is as follows. 

ΔS=
∑M

i=1
ΔFt

in −
∑M

i=1
ΔFt

out +
∑N

i=1
ΔFt

i (6)  

where ΔS is the incremental traffic flow of the expressway; M is the number of toll stations; N is the number of Blocks; ΔFt
in is the inflow 

from the toll station at time t, ΔFt
out is the outflow from the toll station at time t, and ΔFt

i is the flow rate at time t in the section. The 
cross-sectional flow rate of F is constrained as follows. 

0 ≤ Ft
i ≤ Ft

block mins (7)  

where Ft
block mins is the traffic degree of each Block at time t. 

Because the expressway is a closed road scenario, when congestion occurs on a road section, vehicles can only drive away through 
the nearest toll station or wait until the flow rate returns to normal. Therefore, we need to optimize the flow control plan for each 
section of the simulated road network. The model of road network optimization is as follows. 

maxF =
∑T

t=1

∑N

k=1
ΔFt

kΔT (8)  

In Equation (8), maxF is the increment of traffic in the optimized road network, N is the number of Blocks, T is the total number of 
periods during the scheduling period, ΔFt

k is the increment of traffic at time t in the section, and ΔT is the duration of each period. 
The algorithm controls the traffic at the associated intersection toll stations by finding the equilibrium value of F at time t. 
With the control of the traffic flow control strategy module, the simulation platform runs as follows.  

5. According to the traffic control demand on expressways, ETC data center generates operational data for the road network and 
control plans for traffic flow optimization every 15 min, based on the parameters configured for specific scenarios;  

6. The system supervision module starts the heartbeat monitoring mechanism with every 15 min as a cycle and 96 times a day;  
7. ETC data center generates traffic flow calculation model and in-transit vehicle generation plan operating parameters in the 

current 96 time periods of the road network;  
8. The in-transit vehicle simulation module extracts vehicle characteristic data and related vehicle data, and calls traffic flow 

simulation calculation program to calculate and analyze in-transit traffic flow of the network on expressways.  
9. ETC data center stores the traffic flow calculation results of the current scenario.  

10. The in-transit vehicle simulation module adopts the current in-transit vehicle flow optimization control calculation model to 
carry out coordinated optimization calculation. This process generates a control strategy for the current road network traffic for 
a time step of 15 min.  

11. The in-transit vehicle simulation generates the current coordinated optimization control strategy of vehicle flow and sends the 
relevant road section data to ETC data center for storage and display. 

3.4. Traffic multi-task scheduling algorithm 

In the ETC simulation system for intelligent expressways, simulating real-time multi-task scheduling of in-transit vehicles is a 
crucial challenge. The platform needs to process data from a large number of independent vehicles, calculate and update road con-
ditions and vehicle status information in real time. At the same time, in order to keep the system performance stable, the expired data 
needs to be released in time. The current mainstream system architectures provide multi-thread scheduling algorithms to solve the 
throughput rate of the system through multiple concurrent operations, but the exclusive use of computing resources by multiple 
threaded tasks and the shared operation of data by multiple tasks will inevitably lead to the problem of data consistency. At the same 
time, the existing architectures generate thread locks when processing multiple tasks, which reduces the execution performance. 

In order to meet the demand for simulation and parallel computation of a large number of vehicles for traffic simulation on ex-
pressways to achieve real-time updates of traffic flow and road state, this paper adopts concurrent execution to improve the 
computational efficiency of the system. The platform can more accurately simulate the concurrency of traffic flow on the expressway 
and realistically reflect the complex traffic situation through concurrent computation. 

In order to optimize multi-task scheduling, this paper proposes ETC_MTS. ETC_MTS is based on the minimum cost flow algorithm 
and constructs a task cost function based on the task pool’s processing time, thread utilization and waiting time of the tasks. This cost 
function is used to evaluate the priority of each task in order to better allocate computational resources to tasks with higher execution 
efficiency. With such a scheduling strategy, the algorithm effectively solves the problem of thread wait deadlocks during multi-task 
execution. It improves the utilization of the system’s multi-threaded tasks, thus significantly improving the execution performance 
and efficiency of the simulation system. 

In order to meet the system’s goal of achieving multi-task and multi-threaded operation, we split the sections on expressways and 
supervised the overall Blocks according to the topology between the gantries. The system decomposes the road network into N Blocks 
based on the topology of the gantries. Whenever a vehicle travels into or out of a Block, that Block needs to identify, update, and 
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compute the state of the section. Precisely, assuming that when a vehicle enters or exits a block, the system’s kernel function will 
allocate a set of M computation tasks to different threads based on factors such as the vehicles within the block and the road conditions, 
including aspects like traffic flow, saturation, congestion, and average speed. These independent tasks all compete for the use of 
computational resources. The goal of task allocation is to effectively distribute the computational tasks triggered by these N in-transit 
vehicles to these M threads for execution to minimize the overall completion time. To achieve this goal, the platform employs a thread 
management structure, which is shown in Fig. 4. 

In Fig. 4, Grid represents the storage area of the dynamic allocation management section, which adaptively allocates Block in the 
road network. The execution time of a computational task on each computational thread is determined by the prediction algorithm and 
the historical processing. EET is an N × M matrix of estimated execution times, and eetij in the matrix is the estimated execution time of 
computational task i on computational thread j.The execution time R(Tj) of the computed thread Tj is the cumulative sum of the 
execution times of all tasks on that thread, it is specifically expressed as follows. 

R
(
Tj
)
=

∑N

i=1
eetij (9) 

The completion time K of the task is specifically expressed as follows. 

K =max
i=1

(R(Ti)) (10) 

The execution completion time E of tasks in the thread describes the running efficiency of submitted tasks of calculation, which are 
assigned to the best or nearly the best thread in the simulation system. The smaller the value of the execution completion time of tasks 
in the thread, the more tasks are assigned to run on the more desirable threads, which can be expressed as follows. 

E=
∑M

i=1
R(Ti) (11) 

Load Balance (LB): LB is used to measure the balance degree of load pressure inside the thread pool. The higher the LB’s stability, 
the better the state of LB in the pool, as defined below. 

LB= 1−
∑M

i=1
(K − R(Ti)) / (M ×K) (12) 

ETC_MTS is implemented as shown in Algorithm 2. ETC_MTS firstly calculates the processing time Tproc, waiting time Twait, thread 
utilization variation V, task priority Wtask, etc. Of all tasks by traversing eetList, secondly gets the resource matching matrix , load 
balancing matrix L, task fairness matrix F by regularization, then uses the matrix constructor buildMatrix to build job task matrix N to 
get the preliminary estimated task decision time set matrix S. Finally, the load balance and comprehensive matching in the set are 
judged according to the algorithm decision to determine whether the scheduling decision conflicts with the final thread task decision 
set D. If there is no conflict, the algorithm can add the task decision to the final thread task decision set D.  

Fig. 4. The management structure of system’s threads.  

F. Zou et al.                                                                                                                                                                                                             



Heliyon 9 (2023) e21532

10

Through this mechanism of task allocation and thread management, the system can effectively realize concurrent simulation and 
computation on expressways. Tasks within each Block can be executed in parallel among multiple threads. This fully utilizes the 
computational resources and improves the computational efficiency and throughput of the system. At the same time, the reasonable 
decomposition of topology and task allocation enable the system to accurately simulate and monitor the changes in traffic flow and 
status on expressways, which provides strong support for the technical research and application of intelligent expressway. 
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4. Results and discussion 

4.1. Experimental settings and data description 

In order to ensure the stability of real-time simulation and verification while meeting the demand for high-performance computing, 
this paper adopts the cluster mode to build the ETC simulation system. According to the laboratory allocation, we chose three servers as 
the hardware environment to build, of which the specific configuration of a single server is shown in Table 1. 

Three servers work together in cluster mode. This can realize distributed computing and load balancing, thus ensuring the efficient 
and stable operation of the platform in large-scale traffic simulation scenarios. Cluster mode also enhances the reliability and fault 
tolerance of the system. Even if a node fails, other nodes can continue to provide services, ensuring the continuity and reliability of 
real-time simulation verification. ETC simulation system based on the cluster mode can better deal with the parallel computing needs 
of traffic data on expressways, real-time updates of road conditions and vehicle status information, and provide high-performance 
simulation results. 

In addition, the simulation part of the experiment is based on the scenario laid out by 384 toll stations and 957 gantries in a 
province. The topology of toll stations and gantries on the expressway is shown in Fig. 5. 

The dataset for the experiments in this paper is the Edata. Edata is obtained from more than 1000 gantries deployed in the whole 
road network on the expressway in a province. The collection period is from June 1 to June 5, 2021, and a total of 18, 726, 700 data are 
obtained, containing multiple information such as the identification of the vehicle, the time of the transaction, the number of the 
gantry, and the type of the vehicle after the transformation of the desensitization rules, partially shown in Table 2 below. Specifically, 
each transaction data contains all field information. The total number of vehicles in the data set is about 3.59 million. 

4.2. Experimental analysis of ETC feature extraction algorithm 

Edata contains the type of vehicles, the spatial characteristics of each toll station, the traffic volume of each toll station, the spatial 
characteristics of each road section and the speed characteristics. This experiment verifies and analyzes the traffic characteristics of 
vehicle type and time dimension, the traffic characteristics of each toll station space, and the speed distribution characteristics of 
vehicle type, respectively. In order to obtain the characteristics of the traffic flow on expressways in the time dimension, so as to 
accurately obtain the traffic flow evolution pattern by vehicle type, we used the dataset from June 1 to June 5, 2021 for our exper-
iments. However, it should be made clear that the feature extraction conclusions obtained in this study are only applicable to the region 
where the data source is located, that is, the region of a southeastern province. Because of the driving habits of drivers, road network 
structure, and other factors, there may be differences in traffic flow characteristics in different regions. 

The feature extraction experimental analysis is done based on a dataset of 384 toll stations and 957 gantry paving scenarios in a 
southeastern province. In this dataset, the statistics of the number of different types of vehicles are shown in Table 3. Among them, 
Class I of passenger vehicles accounted for a relatively large proportion, accounting for 76.54 % of the total number of vehicles, and 
Class I of trucks were the second largest, accounting for 10.92 %. Considering the different travel purposes of drivers, the vehicle types 
of mixed traffic flow have substantial uncertainty and randomness, and the traffic flow of different types of vehicles in the same toll 
station also shows different regularity. Therefore, it is difficult to accurately extract the flow characteristics of each toll station by only 
considering the mixed traffic flow at the toll station. 

However, it should be noted that the obtained conclusions are only applicable to the region where the data source is located, and 
there may be differences in traffic flow characteristics in other regions. Therefore, Feature Extraction Algorithm should be applied 
cautiously in different regions and validated and analyzed in conjunction with local traffic data. This experiment divides the vehicle 
type features into three classes: passenger cars, trucks and work trucks, and extracts the traffic flow features in the time dimension 
based on these three dimensions for Edata. Edata is a kind of time series data that changes dynamically in continuous time, and the 
traffic flow shows regular changes within the same day. The traffic flow at each Block is counted by using 15 min as time slices through 
a time-based Feature Extraction Algorithm by vehicle type. A total of six different blocks are selected for the experiment to be analyzed, 
and these blocks have sufficient data samples to better reflect the trend of traffic flow corresponding to each time slice over time. The 
experimental results are shown in Fig. 6. 

As can be seen from Fig. 6, there is a more significant percentage of traffic from passenger cars in each of the six blocks. Because the 
flow of passenger cars accounts for a large proportion of all traffic, resulting in a mixed traffic flow can only roughly reflect the trend of 
traffic flow changes in passenger cars. In contrast, the proportion of trucks and work trucks is relatively small, so it is difficult to extract 
features from the mixed traffic flow to obtain the travel pattern of each model, only by analyzing a single vehicle model can certain 

Table 1 
Configuration of the environment.  

Systematic Hardware System Configuration 

CPU i9-10900 K 
Hard Disk 4 TB Mechanical Hard Drive 

512 GB Solid State Drive 
Random Access Memory (RAM) 64 GB 
Operating System CentOS 7.9  
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regularity be obtained. From Fig. 6, it can be seen that the daily traffic variation of each single vehicle has a certain regularity. Among 
them, the variation of the flow of passenger cars shows two clear peaks with higher flows. The traffic flow is low before 5:00. Traffic 
volumes proliferate after 5:00, and usher in the morning peak from 8:00 to about 10:00 a.m. The traffic flow starts to decline after 
10:00, and shows periodic recurring changes from 11:45 to 18:30. The traffic flow decreases rapidly from about 18:30. The change in 

Fig. 5. The topology of toll stations and gantries on the expressway in a province.  

Table 2 
The attribute table of the field information contained in Edata.  

No. Field Name Description Example 

1 VehID Vehicle identification S0***1(位) 
2 TRADETIME Transaction time 2021/6/4 00:00:00 
3 FLAGID Gantry ID 3502** 
4 OBUID Device MAC 66AD40** 
5 ENTIME Entrance time 2020/9/3 7:48:39 
6 ENSTATION Entrance toll station 46** 
7 LNG Longitude 118.56** 
8 LAT Latitude 24.85*** 
9 VEHCLASS Vehicle type 1  

Table 3 
Statistics on the number of different types of vehicles.  

Vehicle Type Class Code Name Number Percentage 

Passenger Car Class I [’1’] 2,748,084 76.54 % 
Class II [’2’] 24,372 0.68 % 
Class III [’3’] 25,859 0.72 % 
Class IV [’4’] 23,819 0.66 % 

Truck Class I [’11’] 392,388 10.92 % 
Class II [’12’] 79,685 2.22 % 
Class III [’13’] 29,285 0.82 % 
Class IV [’14’] 43,674 1.22 % 
Class V [’15’] 19,448 0.54 % 
Class VI [’16’] 195,834 5.45 % 

Work Truck Class I [’21’] 3464 0.10 % 
Class II [’22’] 3761 0.10 % 
Class III [’23’] 331 0.01 % 
Class IV [’24’] 210 0.00 % 
Class V [’25’] 16 0.00 % 
Class VI [’26’] 1 0.00 %  
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the flow of trucks was relatively flat and the flow was small. Traffic has been increasing rapidly since 5:00, with a temporary peak at 
6:30. Then the flow showed periodic recurrent changes, the traffic flow fluctuated constantly within a specific range, and after 17:30 
the traffic flow was generally downward. The flow of work trucks changes exceptionally smoothly, with an average daily flow of about 
10 vehicles, and the travel time is concentrated between 9:00 a.m. and 8:00 p.m. The experiments can identify the differences in traffic 
flow variation trends through the extraction of temporal features by vehicle type. 

Due to the differences in the location of toll stations as well as their functions and drivers’ travel preferences, the capacity of toll 
stations shows different regular characteristics according to the changes in the daily traffic flow of various vehicle types. The flow 
characteristics of the toll station will be closely related to the changes in the flow of vehicles, such as the existence of factories, living 

Fig. 6. Traffic flow characteristics based on time dimension by vehicle types in different Block.  

Fig. 7. Traffic characteristics of toll stations with different spatial types.  
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areas and scenic spots around the toll station have a particular impact on the travel of vehicles, mastering the relevant traffic flow 
patterns can provide the basis for expressway traffic control and prediction. In order to identify the traffic characteristics of toll 
stations, we extracted the traffic characteristics of ETC data set in a time step of 15 min. We prioritized toll stations located near 
factories, living areas and scenic spots, and selected from them those that showed significant advantages in terms of data volume. 
Finally, we analyze the traffic characteristics of six groups of toll stations with different spatial types, and the experimental results are 
shown in Fig. 7. 

Based on the analysis results presented in Fig. 7, it is evident that the traffic flow characteristics of toll stations are influenced by 
their geographical surroundings. In Fig. 7, (a) and (b) belong to toll booths around factories, (c) and (d) belong to toll booths near living 
areas, and (e) and (f) belong to toll booths around scenic spots. We analyze them one by one below: The traffic flow at toll stations (a) 
and (b) peaked around 9:00 a.m., then slowly declined, and the traffic flow reached a small trough at noon, and the traffic flow 
fluctuated within a specific range in the afternoon and lasted for 5–7 h. The traffic starts to drop layer by layer at 17: 00 and 19: 00. The 
traffic flow at toll stations (c) and (d) began to decline after reaching the top at 9:00 a.m., the traffic flow reached the bottom at 12: 00, 
then the traffic flow began to rise, reaching the peak at 14 o’clock, and the traffic flow fluctuated within a certain range in the following 
hour, and then and fell in a “precipitous” manner. The traffic flow at toll stations (e) and (f) in non-working days is significantly more 
than in working days. On weekdays, the first traffic peak of the day is reached at 9 a.m. with about 199 vehicles. From 9 a.m. to 12 p.m., 
the traffic flow decreases slowly, then increases slightly and temporarily reaches a new peak at 2 p.m. The traffic flow decreases 
slightly from 2:00 to 4:00 p.m., then the traffic flow increases and reaches a new peak at 6:00 p.m. After that, the traffic flow gradually 
decreases to the bottom. In the non-working days, the traffic flow increased at all times, with a peak of 245 vehicles at 18:00 that day. 
This experiment provides a reference basis for the simulation of toll station traffic flow in the ETC simulation system feature library by 
realizing the extraction of the traffic flow features of each toll station. 

There are also differences in the driving speed characteristics of different vehicle types in different sections. The experiment 
extracted and analyzed the driving speed characteristics of different models for the two blocks with significantly superior performance 
in traffic flow, and we sorted the experimental results in the order from smallest to largest and counted them at intervals of 5 km/h to 
obtain the histograms of the frequency distribution of speeds in different road sections. At the same time, in order to facilitate the 
comparison and analysis of the speed distribution characteristics of different models, we used Origin software to perform single-peak 
or double-peak fitting of Gaussian distribution. The R2 values of the fitting results of all models are greater than 0.9, indicating that the 
fitting effect is quite reliable. The speed frequency statistics of some models of the two blocks and the corresponding fitting results are 
shown in Figs. 8 and 9. 

From the analysis results in Figs. 8 and 9, it can be seen that the speed distribution curves of each vehicle model are generally 
distributed in a “mountain” shape in Block B. In contrast, some vehicle models are distributed in an “M" shape in Block A, which 
indicates that there are differences in the speed distributions of different vehicle models on different road sections, and that road 
conditions and vehicle performance have different impacts on the speed distribution. Road conditions and model performance have 
different effects on the speed distribution. The specific analysis is as follows. 

Fig. 8. Speed characteristics of some vehicle types in Block A.  
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1. The speed distribution of Class I of passenger cars in Block A and Block B are approximately normally distributed, and the maximum 
speed is concentrated at about 80 km/h; 

2. The speed distribution of Class IV of passenger cars in Block A is more concentrated in (70,75], with a notable decrease in fre-
quencies below or above this interval. Conversely, in Block B, the speed distribution is more focused around the (75, 80] range, and 
the speed distribution of Class IV of passenger cars in Block B is close to the standard normal distribution, while there is a significant 
decrease in the frequency of speeds below or above the speed interval in Block A;  

3. The speed distribution of Class I of trucks in Block A and Block B are approximately standard. The driving speed of Class I of trucks in 
Block A is affected by the road conditions making more vehicles drive at low speeds. 

Fig. 9. Speed characteristics of some vehicle types in Block B.  

Fig. 10. Percentage of traffic flow for different orders of magnitude of simulation data versus actual traffic data.  
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4. The speed distribution of Class II of trucks in Block A and Block B have an enormous difference. As can be seen from Fig. 8, the speed 
distribution of Class II of trucks in Block A is hump-shaped, and the frequency reaches the maximum near 65 km/h and 80 km/h. In 
contrast, the speed distribution closely approximates a normal distribution in Fig. 9. Moreover, there are more vehicles in Block A 
driving at higher speeds. 

Through the feature extraction of Edata, such as traffic characteristics of vehicle types and time dimensions, traffic characteristics 
of each toll station space, and speed distribution characteristics of vehicle types, the characteristic parameters of Edata are mined, 
which provides a reference for simulation data generation of the simulation platform. 

In order to verify the accuracy and authenticity of the generated dataset in the simulation system, the experiment analyzes and 
compares one day’s Edata of key road sections in Fuxia, generated by the system, with the actual traffic condition data. In order to more 
comprehensively assess the similarity between the simulation data and the real data, different orders of magnitude of simulation data 
were generated, including 1000, 2000 and 3000 data. In this paper, we summarize the previous research results [34,35], and 
comprehensively compare and analyze the three aspects of traffic flow, vehicle speed distribution and vehicle model distribution to 
verify that the simulation data can effectively reflect the actual traffic conditions. The comparison results are shown below.  

(1) Comparison of Traffic Flow 

The percentage of traffic flow for different orders of magnitude of simulation data compared to actual traffic data is compared in 
Fig. 10. The results show that both the real data and the generated simulation data of different orders of magnitude have a relatively 
low traffic flow percentage before 6:00 a.m., thus presenting the characteristic of lighter traffic load; the traffic flow percentage starts 
to increase gradually from 6:00 a.m. and reaches the first short-time peak of the day at about 7:45 a.m. In the following period, the 
traffic flow percentage continued to fluctuate slightly. Until about 5:30 p.m., the traffic flow reaches the highest peak value of the day. 
It then gradually decreases, thus indicating that the generated simulation data matches well with the real data. Simultaneously, the 
experiment conducted a Pearson correlation coefficient analysis between actual and simulated data traffic flow proportions. The 
calculated correlation coefficients for 1000 simulated data, 2000 simulated data, and 3000 simulated data compared with actual data 
are 0.915809, 0.907352, and 0.889066, respectively. These series of correlation coefficient results indicate high similarity in the traffic 
flow proportion trends between the generated simulated data and the actual data.  

(2) Comparison of vehicle speed distribution 

In order to compare the speed distribution characteristics of different orders of magnitude of simulated and actual data, we plotted 
the frequency histograms of speed distributions for the original data set and the simulated data set with different amounts of data. By 
fitting the histograms in Origin software using Gaussian distribution, we obtained R2 values greater than 0.95 for both the simulated 
and original data fits. These histograms show that the frequency distributions of vehicle speeds are all generally distributed, as shown 

Fig. 11. Comparison of speed distribution characteristics between simulated and original data of different orders of magnitude.  
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in Fig. 11. The first plot shows the frequency distribution of speeds for the original data, where more than 80 % of the vehicle speeds 
fall within the range [70, 100]. Similarly, the generated simulation data also shows this trend. Specifically, it can be observed that the 
frequency of the speed distribution of the simulated data is consistent with that of the real data: the highest frequency occurs in the 
range of [90, 95], followed by [85, 90], and the third highest frequency occurs in the range of [80, 85]. This similarity further validates 
the feasibility of our simulation data to match the original data.  

(3) Comparison of Vehicle Type Distribution 

The distribution of vehicle types for different orders of magnitude of the simulation data compared to the original data is presented 
in Fig. 12. In each different order of magnitude, we can observe a similar trend, in which the highest percentage of vehicle models is 
still [’1’], representing Class I of passenger cars, with a stable percentage of approximately 79 %, and the percentage of simulated data 
changes minimal from the original data, with a range of − 1.421 %–0.564 %; The following highest proportion is represented by [’11’], 
corresponding to Class I of trucks, accounting for around 9 %. Its share shows marginal variation from the original data, ranging from 
0.05 % to 0.758 %. Then, [’16’], representing Class VI of trucks, ranks third in terms of share, at approximately 7 %. Its proportion 
undergoes slight changes compared to the original data, within a range of − 0.85 %–0.291 %, essentially maintaining similarity to the 
original data share. The changes in the percentages of other vehicle types at different values are all relatively small, with the enormous 
difference being that the percentage of [’13’], which is around 0.331 % higher compared to the original data when the data volume is 
at 3000. The impact of smaller sample sizes may influence these variations. Generally speaking, when analyzing the percentage of 
models under the values of 1000, 2000 and 3000 compared with the original data, the trend of the percentage change of most models 
under different values is similar to that of the original data. 

In summary, the simulation data of different orders of magnitude show similarity with the original data in the three aspects of 
traffic flow, vehicle speed distribution and vehicle model distribution. The experimental results are as expected, further highlighting 
the effectiveness of the simulation system. 

4.3. Experimental analysis of Traffic Control Strategy Algorithm 

This experiment uses 384 entrance and exit toll stations in a province to form 147,072 driving OD paths for traffic flow control 
strategy simulation experiments. The experiment aims to help managers optimize overall traffic flow, reduce the number of congested 
roadways, and improve the overall efficiency of traffic flow. A certain number of vehicles are randomly driven at the entrance of each 
toll station in the province, and the traffic flow data of a particular time slice of the province’s expressway is randomly generated 
according to the vehicle type characteristics. According to Traffic Control Strategy algorithm, we identified the high-loaded road 
sections, that is, the road sections that are congested due to excessive flow, and the results are shown in Fig. 13. 

It shows the road sections in a province that need to handle high load traffic flow at a particular period in Fig. 13. In the figure, we 
can see the expressway network of the province as well as the key bolded road sections that are identified as high load road sections. 
These high-load road sections have high traffic flow and need to be optimally controlled to relieve congestion. 

The experiment generates one day’s simulation data through the system and uses Feature Extraction Algorithm to obtain the 
average speed, section flow and traffic density of each section every 15 min, and identifies the congested road sections according to 
Traffic Flow Control Strategy Algorithm. In this paper, we summarize the previous research results [36], and experimentally compare 
and analyze the congested road sections of real data and one-day simulation data, among which there are 4 sections with the most 
apparent congestion characteristics. We select 4 high load segments for comparison, and the comparison is shown in Table 4. 

From Tables 4 and it can be seen that the real-time data and simulation data show that the congestion period of the congested road 
section is consistent. In the congested road section, the flow rate, the average speed and the traffic density of the section are not 
different, in which Mean Absolute Error of the average speed is 1.075, Mean Absolute Error of the flow rate is 18.750, and Mean 
Absolute Error of the traffic density is 4.607. The experimental results are able to show the advantages of the simulation system in the 

Fig. 12. Comparison of vehicle type distributions of different orders of magnitude of simulated data with real data.  
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traffic prediction. 
In order to simulate the situation of high load on the expressway network caused by concurrent traffic flow data, this experiment 

randomly generates 1–5 times the transaction flow through the simulation data, and uses Traffic Flow Control Strategy Algorithm to 
identify the high-load road sections that require optimal flow control. Fig. 14 shows the traffic flow distribution of these high-load road 
sections. 

Fig. 14 shows the high-load road sections identified by the system. For each high-load road section, the system determines the toll 
stations and service areas that need to be coordinated and optimized for control, based on the road network topology map connection 
structure and considering the traffic flow at the expressway diversion convergence point. The system generates the current road 
network flow control strategy with a time step of 15 min to the manager. The manager can control the number of vehicles driving into 
and out of the road network according to the real-time traffic flow to optimize the overall traffic flow. These results provide valuable 
references for traffic management and planning of intelligent expressways, and are of great significance for improving traffic operation 
efficiency and service quality. It is worth noting that the optimization results obtained in this study are only applicable to a specific 
provincial area, and the strategy should be applied cautiously for other areas and verified and analyzed with local traffic data. 

4.4. Multi-task scheduling analysis for traffic flow simulation 

In order to effectively validate the performance of ETC_MTS in the simulation platform, we conducted experiments on three servers. 
Each server has eight computing nodes, each with 16 CPU cores and 32 threads. In our experiments, we set up task scenarios with 10, 
50, 100, 500, 1000, and 2000 groups, where each group of tasks contains 3 parallel subtasks, by comparing with SJFS [37], Priority 
[38], FCFS [39], and RR [40], we evaluate their performance. Fig. 15 illustrates the comparison of the time efficiency of each 
algorithm. 

The comparison of processing time and waiting time of each algorithm in multigroup tasks such as 10 groups, 50 groups, 100 
groups, 500 groups, 1000 groups and 2000 groups is shown in Fig. 15. It is clear from the figure that ETC_MTS proposed in this paper 

Fig. 13. Identification results of high-load road sections in a province at a certain time period.  

Table 4 
Comparison between simulated data and real data for some congested road sections.  

Section Data type Congestion time period Average speed Flow Traffic density 

Section a Actual 10:15:00–10:30:00 16.15 387 135.29 
Simulated 10:15:00–10:30:00 17.01 358 125.15 

Section b Actual 10:15:00–10:30:00 50.57 406 111.91 
Simulated 10:15:00–10:30:00 50.29 418 115.21 

Section c Actual 11:00:00–11:15:00 55.69 453 51.69 
Simulated 11:00:00–11:15:00 53.21 462 53.85 

Section d Actual 10:45:00–11:00:00 26.57 187 16.29 
Simulated 10:45:00–11:00:00 25.89 212 19.08  
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outperforms the other algorithms in terms of processing time and waiting time. 
Next, we show the algorithm’s advantages more visually by calculating the time efficiency between each algorithm, which is shown 

in Fig. 16. 
In Fig. 16, we can observe that with the increase of data volume, the combined processing time of multi-tasking algorithms such as 

SJFS, Priority, FCFS, and RR increases exponentially, while ETC_MTS shows higher time efficiency in comparison. Through the 
reasonable allocation and coordination of tasks, ETC_MTS can effectively reduce the execution time of tasks and the waiting time of 
multi-tasks, thus improving the efficiency of the overall simulation platform. These results verify the feasibility and practicality of 

Fig. 14. Traffic flow distribution on different high loaded road sections.  

Fig. 15. (a) Comparison of waiting time for each algorithm to process different groups; (b) Comparison of processing time for each algorithm to 
process different groups. 
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ETC_MTS in traffic simulation platforms on expressways. However, it should be noted that different data volumes and task combi-
nations may affect the performance of the algorithm, so it needs to be adjusted and optimized according to the specific situation in 
practical applications. 

When executing concurrent subtasks, ETC_MTS algorithm sets the initial priority of each subtask to 0. Since subtasks need to 
compete for computational resources, the system evaluates the subtasks in a concurrent task based on their processing time, thread 
utilization, and waiting time of subsequent tasks, and then upgrades the priority of the subtasks in the concurrent task, and allocates 
computational resources to the higher priority subtasks when processing. In order to demonstrate the execution of ETC_MTS algorithm 
in the process of task scheduling processing in terms of processing time, waiting time and priority adjustment, the experiment is 
designed with 4 groups of concurrent tasks, each concurrent task needs to process 3 independent computational tasks in turn, and the 
computational tasks include calculating the in-transit, flow, saturation, commission, and average speed of vehicles and road conditions 
within the Block. Their operation is shown in Fig. 17. 

In concurrent tasks, the system processes subtasks according to priority. According to the comprehensive evaluation results, the 
algorithm dynamically improves the execution priority of subtasks, so that subtasks can obtain resources first and complete tasks 
quickly. As shown in Fig. 17, when subtask 1 of concurrent task 1 is completed by 34 %, after the comprehensive evaluation of the 
system, computing resources are allocated to subtask 2 to make the system dynamically upgrade subtask 2. At this time, subtask 2 has 
higher priority than other subtasks, thus obtaining the execution privilege. When the subtask 2 is completed by 32 %, the system raises 

Fig. 16. (a) Comparison of efficiency ratio of waiting time; (b) Comparison of efficiency ratio of processing time.  

Fig. 17. Analysis of implementation of different concurrent task.  
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the priority of subtask 3, so that subtask 3 starts to be executed. Through continuous evaluation, the system preferentially allocates 
computing resources to subtasks with high execution efficiency until all three subtasks are completed. 

5. Conclusions 

In this paper, we propose a framework of multi-task real-time parallel simulation of ETC for intelligent expressway, which not only 
meets the demand of intelligent expressway simulation and verification system for ETC big data, but also realizes the quantitative 
calculation and display of real-time traffic and improves the intelligent management level of expressway. The following three key 
technologies are summarized in detail: 1) Considering multi-dimensional features such as vehicle type characteristics, traffic flow 
characteristics, toll station area location characteristics, time characteristics, and speed characteristics, we establish Feature Extraction 
Algorithm to realize the extraction of features in different dimensions of Edata., which can provide a basis for simulating Edata 
generation in the simulation and verification system. 2) Based on the real-time coordination of all kinds of traffic flow information 
generated by expressway in a certain period of time, and the demand of road network flow control, Traffic Control Strategy Algorithm 
is proposed, which can effectively simulate the situation of mass vehicles in the expressway network and provide traffic control 
recommendations for optimal control of real-time traffic flow. 3) Based on the concurrent task requirements of intelligent expressway 
simulation and verification system, ETC_MTS is established. Compared with the current mainstream multi-task allocation algorithms 
such as SJFS, Priority, FCFS and Round Robin, the execution performance of ETC_MTS in task analysis has been improved. 

However, there is also room for improvement in this study. We will further use machine learning algorithms to correct the pa-
rameters of the feature extraction algorithm in our future research work, so that the Edata simulated by the simulation system will be 
more in line with the laws of society and continuously improve the reliability of the data in the simulation. Our next plan is to delve 
deeper into the area of expressway traffic flow scheduling, with a particular focus on the collection and analysis of data, such as the 
capacity of service areas and the number of exit/entrance lanes. This will provide more specific guidance for traffic scheduling and help 
optimize strategy development. At the same time, we will continue to improve the ETC simulation application system, broaden the ETC 
application scenarios, optimize the functions of the simulation system, and expand the application scope of the ETC simulation and 
verification system. 

Funding 

This work is funded by the relevant scientific research projects: the Renewable Energy Technology Research institution of Fujan 
University of Technology Ningde, China (Funding number: KY310338), the 2020 Fujian “One Belt, One Road” Science and Technology 
Innovation Platform Project (2020D002), Provincial Candidate Project of Fujian Province Million Talents Project (GY-Z19113), Patent 
Grant Project ((Funding number: GY-Z18081, GY-Z19099, GY-Z20074), Crosswise project (GY-H-20077), Municipal level science and 
technology projects (Funding number: GY-Z-22006, GY-Z-220230), Fujian Provincial Department of Science and Technology Foreign 
Cooperation Project (Funding num-ber:2023I0024), Research Platform Open Project (Funding number: KF-X19002, KF-19-22,001). 

Institutional review board statement 

Not applicable. 

Informed consent statement 

Not applicable. 

Data availability statement 

The authors do not have permission to share data. 

CRediT authorship contribution statement 

Fumin Zou: Validation, Resources, Funding acquisition, Formal analysis, Conceptualization. Nan Li: Writing – review & editing, 
Writing – original draft, Visualization, Validation, Supervision, Software, Project administration, Methodology, Investigation, Formal 
analysis, Conceptualization. Feng Guo: Software, Project administration, Investigation, Data curation. Qiqin Cai: Software. Xinjian 
Cai: Investigation. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

F. Zou et al.                                                                                                                                                                                                             



Heliyon 9 (2023) e21532

22

References 

[1] C. Sun, Y. Huang, Y. Zhang, Thoughts on the development trend and construction of global smart expressway in the digital age, Highways (4) (2022) 237–242. 
[2] F. Zou, F. Guo, J. Tian, S. Luo, X. Yu, Q. Gu, L. Liao, The method of dynamic identification of the maximum speed limit of expressway based on electronic toll 

collection data, Sci. Program. 2021 (2021) 1–15, https://doi.org/10.1155/2021/4702669. 
[3] Z. Chen, F. Zou, F. Guo, Q. Gu, Short-term traffic flow prediction of expressway based on Seq2seq model, in: International Conference on Frontiers of Electronics, 

Information and Computation Technologies, 2021, pp. 1–5, https://doi.org/10.1145/3474198.3478239. 
[4] J. Tian, F. Zou, F. Guo, Q. Gu, Q. Ren, G. Xu, Expressway traffic flow forecasting based on SF-RF model via ETC data, in: International Conference on Frontiers of 

Electronics, Information and Computation Technologies, 2021, pp. 1–7, https://doi.org/10.1145/3474198.3478238. 
[5] F. Zou, Q. Ren, J. Tian, F. Guo, S. Huang, L. Liao, J. Wu, Expressway speed prediction based on electronic toll collection data, Electronics 11 (10) (2022) 1613, 

https://doi.org/10.3390/electronics11101613. 
[6] S. Luo, F. Zou, C. Zhang, J. Tian, F. Guo, L. Liao, Multi-view travel time prediction based on electronic toll collection data, Entropy 24 (8) (2022) 1050, https:// 

doi.org/10.3390/e24081050. 
[7] Q. Cai, D. Yi, F. Zou, Z. Zhou, N. Li, F. Guo, Recognition of vehicles entering expressway service areas and estimation of dwell time using ETC data, Entropy 24 

(9) (2022) 1208, https://doi.org/10.3390/e24091208. 
[8] H. Chen, F. Zou, F. Guo, Q. Gu, X. Yu, Y. Luo, J. Xu, A ETC gantry information calibration method based on trajectory data of special transportation vehicles, in: 

International Conference on Frontiers of Electronics, Information and Computation Technologies, 2021, pp. 1–7, https://doi.org/10.1145/3474198.3478242. 
[9] Y. Luo, F. Zou, F. Guo, Q. Gu, Z. Lin, Y. Lin, Spatial information extraction algorithm of ETC gantry based on trajectory mileage, in: International Conference on 

Frontiers of Electronics, Information and Computation Technologies, 2021, pp. 1–8, https://doi.org/10.1145/3474198.3478241. 
[10] J. Wu, F. Zou, F. Guo, Q. Gu, S. Huang, Y. Luo, Research on detection of outlier point of highway ETC gantry based on SegrDTW mode, in: International 

Conference on Frontiers of Electronics, Information and Computation Technologies, 2021, pp. 1–8, https://doi.org/10.1145/3474198.3478240. 
[11] F. Guo, F. Zou, S. Luo, H. Chen, X. Yu, C. Zhang, L. Liao, Positioning method of expressway ETC gantry by multi-source traffic data, IET Intell. Transp. Syst. 

(2022), https://doi.org/10.1049/itr2.12280. 
[12] F. Zou, F. Guo, S. Luo, L. Liao, N. Li, Y. Xing, Research and design of expressway ETC simulation platform, J. Syst. Simul. (2022) 1–17. 
[13] T. Alghamdi, S. Mostafi, G. Abdelkader, K. Elgazzar, A comparative study on traffic modeling techniques for predicting and simulating traffic behavior, Future 

Internet 14 (10) (2022) 294, https://doi.org/10.3390/fi14100294. 
[14] G. Chun, N. Rouphail, M.S. Samandar, G. List, G. Yang, R. Akcelik, Analytical and microsimulation model calibration and validation: application to roundabouts 

under sight-restricted conditions, Transport. Res. Rec. 2677 (3) (2023) 274–288, https://doi.org/10.1177/03611981221115071. 
[15] I.M. Septyaningrum, R.Y. Anindita, Traffic signalizing application at unsignalized intersection applying Vissim software microsimulation, RSF Conference 

Series: Eng. Technol. 2 (2) (2022) 294–306, https://doi.org/10.31098/cset.v2i2.583. 
[16] H. Qin, W. Zhang, H. Zhai, Cooperative control of multiple intersections combining agent and chaotic particle swarm optimization, Comput. Electr. Eng. 110 

(2023), 108875, https://doi.org/10.1016/j.compeleceng.2023.108875. 
[17] F. Forouzandeh, H. Arman, A. Hadi-Vencheh, A.M. Rahimi, A combination of DEA and AIMSUN to manage big data when evaluating the performance of bus 

lines, Inf. Sci. 618 (2022) 72–86, https://doi.org/10.1016/j.ins.2022.10.044. 
[18] Z. Cheng, L. Zhang, Y. Zhang, S. Wang, W. Huang, A systematic approach for evaluating spatiotemporal characteristics of traffic violations and crashes at road 

intersections: an empirical study, Transportmetrica: Transport. Sci. (2022) 1–23, https://doi.org/10.1080/23249935.2022.2060368. 
[19] S. Khaleghian, H. Neema, M. Sartipi, T. Tran, R. Sen, A. Dubey, Calibrating real-world city traffic simulation model using vehicle speed data, in: 2023 IEEE 

International Conference on Smart Computing (SMARTCOMP), 2023, pp. 303–308, https://doi.org/10.1109/SMARTCOMP58114.2023.00076. 
[20] M. Burger, M. Van Den Berg, A. Hegyi, B. De Schutter, J. Hellendoorn, Considerations for model-based traffic control, Transport. Res. C Emerg. Technol. 35 

(2013) 1–19, https://doi.org/10.1016/j.trc.2013.05.011. 
[21] Q. Chao, H. Bi, W. Li, T. Mao, Z. Wang, M.C. Lin, Z. Deng, A survey on visual traffic simulation: models, evaluations, and applications in autonomous driving, 

Comput. Graph. Forum 39 (1) (2020) 287–308, https://doi.org/10.1111/cgf.13803. 
[22] W. Burghout, H.N. Koutsopoulos, Hybrid traffic simulation models: vehicle loading at meso-micro boundaries, in: Transport Simulation, EPFL Press, 2019, 

pp. 27–41. 
[23] W. Shangguan, X. Li, L. Chai, Y. Cao, J. Chen, H. Pang, T. Rui, Research review on simulation and test of mixed traffic swarm in vehicle-infrastructure 

environment, J. Traffic Transport. Eng. 22 (3) (2022) 19–40, https://doi.org/10.19818/j.cnki.1671-1637.2022.03.002. 
[24] J.W.C. Van Lint, S.C. Calvert, A generic multi-level framework for microscopic traffic simulation—theory and an example case in modelling driver distraction, 

Transp. Res. Part B Methodol. 117 (2018) 63–86, https://doi.org/10.1016/j.trb.2018.08.009. 
[25] L. Huang, Research on Construction and Simulation of Typical Application Scenarios Based on Vehicle-Road Collaboration (Master’s Thesis, Chongqing 

University, 2022, https://doi.org/10.27670/d.cnki.gcqdu.2021.001581. 
[26] N. Zheng, W. Yang, L. Ma, H. Han, VISSIM simulation-based analysis and prediction of the effect of emergent traffic incidents on traffic operation of mountain 

highway, Saf. Environ. Eng. 27 (4) (2020) 223–230, https://doi.org/10.13578/j.cnki.issn.1671-1556.2020.04.030. 
[27] F.A. Mullakkal-Babu, M. Wang, B. van Arem, B. Shyrokau, R. Happee, A hybrid submicroscopic-microscopic traffic flow simulation framework, IEEE Trans. 

Intell. Transport. Syst. 22 (6) (2020) 3430–3443, https://doi.org/10.1109/TITS.2020.2990376. 
[28] V. Punzo, M. Montanino, A two-level probabilistic approach for validation of stochastic traffic simulations: impact of drivers’ heterogeneity models, Transport. 

Res. C Emerg. Technol. 121 (2020), 102843, https://doi.org/10.1016/j.trc.2020.102843. 
[29] M. Zhu, X. Wang, A. Tarko, Modeling car-following behavior on urban expressways in Shanghai: A naturalistic driving study, Transport. Res. C Emerg. Technol. 

93 (2018) 425–445, https://doi.org/10.1016/j.trc.2018.06.009. 
[30] Y. Yin, J. Zhao, Parameter calibration method of traffic flow model for traffic trajectory dispersion at intersections, J. Railw. Sci. Eng. (9) (2022) 2563–2573, 

https://doi.org/10.19713/j.cnki.43-1423/u.T20211073. 
[31] B. Ciuffo, C.L. Azevedo, A sensitivity-analysis-based approach for the calibration of traffic simulation models, IEEE Trans. Intell. Transport. Syst. 15 (3) (2014) 

1298–1309, https://doi.org/10.1109/TITS.2014.2302674. 
[32] H. Wang, Design and Implementation of VISSIM Simulation Parameter Calibration System for Urban Road Traffic Based on Orthogonal Test Method, (Master’s 

Thesis, Shijiazhuang Tiedao University), 2021, https://doi.org/10.27334/d.cnki.gstdy.2020.000319. 
[33] J. Zhang, X. Wang, Research on traffic simulation model correction based on parameter sensitivity analysis, Appl. Res. Comput. (6) (2022) 1790–1795, https:// 

doi.org/10.19734/j.issn.1001-3695.2021.11.0593. 
[34] Kai Ma, Research on Private Car Trajectory Data Generation Based on Spatio-Temporal Interaction (Master’s Thesis, Dalian University of Technology, 2021, 

https://doi.org/10.26991/d.cnki.gdllu.2020.001171. 
[35] X. Kong, Q. Chen, M. Hou, A. Rahim, K. Ma, F. Xia, RMGen: a tri-layer vehicular trajectory data generation model exploring urban region division and mobility 

pattern, IEEE Trans. Veh. Technol. 71 (9) (2022) 9225–9238, https://doi.org/10.1109/TVT.2022.3176243. 
[36] M.Z. Mehdi, H.M. Kammoun, N.G. Benayed, D. Sellami, A.D. Masmoudi, Entropy-based traffic flow labeling for CNN-based traffic congestion prediction from 

meta-parameters, IEEE Access 10 (2022) 16123–16133, https://doi.org/10.1109/ACCESS.2022.3149059. 
[37] R.K. Mondal, E. Nandi, D. Sarddar, Load balancing scheduling with shortest load first, Int. J. Grid and Distribut. Comput. 8 (4) (2015) 171–178, https://doi.org/ 

10.14257/ijgdc.2015.8.4.17. 
[38] S. Ghanbari, M. Othman, A priority based job scheduling algorithm in cloud computing, Procedia Eng. 50 (2012) 778–785. 
[39] N. Bansal, A. Maurya, T. Kumar, M. Singh, S. Bansal, Cost performance of QoS Driven task scheduling in cloud computing, Procedia Comput. Sci. 57 (2015) 

126–130, https://doi.org/10.1016/j.procs.2015.07.384. 
[40] P. Pradhan, P.K. Behera, B.N.B. Ray, Modified round robin algorithm for resource allocation in cloud computing, Procedia Comput. Sci. 85 (2016) 878–890, 

https://doi.org/10.1016/j.procs.2016.05.278. 

F. Zou et al.                                                                                                                                                                                                             

http://refhub.elsevier.com/S2405-8440(23)08740-6/sref1
https://doi.org/10.1155/2021/4702669
https://doi.org/10.1145/3474198.3478239
https://doi.org/10.1145/3474198.3478238
https://doi.org/10.3390/electronics11101613
https://doi.org/10.3390/e24081050
https://doi.org/10.3390/e24081050
https://doi.org/10.3390/e24091208
https://doi.org/10.1145/3474198.3478242
https://doi.org/10.1145/3474198.3478241
https://doi.org/10.1145/3474198.3478240
https://doi.org/10.1049/itr2.12280
http://refhub.elsevier.com/S2405-8440(23)08740-6/sref12
https://doi.org/10.3390/fi14100294
https://doi.org/10.1177/03611981221115071
https://doi.org/10.31098/cset.v2i2.583
https://doi.org/10.1016/j.compeleceng.2023.108875
https://doi.org/10.1016/j.ins.2022.10.044
https://doi.org/10.1080/23249935.2022.2060368
https://doi.org/10.1109/SMARTCOMP58114.2023.00076
https://doi.org/10.1016/j.trc.2013.05.011
https://doi.org/10.1111/cgf.13803
http://refhub.elsevier.com/S2405-8440(23)08740-6/sref22
http://refhub.elsevier.com/S2405-8440(23)08740-6/sref22
https://doi.org/10.19818/j.cnki.1671-1637.2022.03.002
https://doi.org/10.1016/j.trb.2018.08.009
https://doi.org/10.27670/d.cnki.gcqdu.2021.001581
https://doi.org/10.13578/j.cnki.issn.1671-1556.2020.04.030
https://doi.org/10.1109/TITS.2020.2990376
https://doi.org/10.1016/j.trc.2020.102843
https://doi.org/10.1016/j.trc.2018.06.009
https://doi.org/10.19713/j.cnki.43-1423/u.T20211073
https://doi.org/10.1109/TITS.2014.2302674
https://doi.org/10.27334/d.cnki.gstdy.2020.000319
https://doi.org/10.19734/j.issn.1001-3695.2021.11.0593
https://doi.org/10.19734/j.issn.1001-3695.2021.11.0593
https://doi.org/10.26991/d.cnki.gdllu.2020.001171
https://doi.org/10.1109/TVT.2022.3176243
https://doi.org/10.1109/ACCESS.2022.3149059
https://doi.org/10.14257/ijgdc.2015.8.4.17
https://doi.org/10.14257/ijgdc.2015.8.4.17
http://refhub.elsevier.com/S2405-8440(23)08740-6/sref38
https://doi.org/10.1016/j.procs.2015.07.384
https://doi.org/10.1016/j.procs.2016.05.278

	Research and design of simulation and verification system of intelligent expressway based on ETC big data
	1 Introduction
	2 Related work
	2.1 Traffic simulation softwares
	2.2 Traffic simulation models

	3 Methodology
	3.1 The overall architecture design
	3.2 ETC feature extraction algorithm
	3.3 Traffic flow control strategy algorithm
	3.4 Traffic multi-task scheduling algorithm

	4 Results and discussion
	4.1 Experimental settings and data description
	4.2 Experimental analysis of ETC feature extraction algorithm
	4.3 Experimental analysis of Traffic Control Strategy Algorithm
	4.4 Multi-task scheduling analysis for traffic flow simulation

	5 Conclusions
	Funding
	Institutional review board statement
	Informed consent statement
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	References


