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ABSTRACT
Small nucleolar RNAs (snoRNAs) are non-coding RNAs vital for ribosomal RNA (rRNA) maturation. The U8 
snoRNA, encoded by the SNORD118 gene in humans, is an atypical C/D box snoRNA as it promotes rRNA 
cleavage rather than 2′–O–methylation and is unique to vertebrates. The U8 snoRNA is critical for 
cleavage events that produce the mature 5.8S and 28S rRNAs of the large ribosomal subunit. 
Unexpectedly, single nucleotide polymorphisms (SNPs) in the SNORD118 gene were recently found 
causal to the neurodegenerative disease leukoencephalopathy, brain calcifications, and cysts (LCC; aka 
Labrune syndrome), but its molecular pathogenesis is unclear. Here, we will review current knowledge 
on the function of the U8 snoRNA in ribosome biogenesis, and connect it to the preservation of brain 
function in humans as well as to its dysregulation in inherited white matter disease.
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Introduction

Ribosomes are essential cellular machinery that translate mes-
senger RNA (mRNA) into proteins. Making ribosomes, 
known as ribosome biogenesis (RB), is expectedly a highly 
coordinated and energy-demanding process. In eukaryotes, 
RB accounts for over 60% of energy used in the cell [1] and 
takes places in the nucleolus (or nucleoli), a membrane-less 
organelle within the nucleus [2,3]. Deficits in RB results in 
a class of human diseases known as ribosomopathies [4] and 
may affect RB steps such as: rDNA transcription by RNA 
polymerase I (RNAPI), serial processing of the primary 47S 
rRNA into the mature 28S, 5.8S, and 18S subunits, and 
exportation to the cytoplasm for assembly (with the 5S 
rRNA) into the mature 40S and 60S subunits [5–7].

The cascade of primary 47S rRNA processing into the 
mature ribosomal subunits is multi–step and produces tran-
sient pre-rRNA intermediates [8]. These intermediates are 
shuttled through the refinement process with the help of 
multiple protein and small nucleolar RNA (snoRNA) co- 
factors that cleave, chemically modify, and fold the rRNA. 
SnoRNAs are between 60 and 300 nucleotides (n.t.) in length 
and are divided into two classes based on conserved nucleo-
tides: H/ACA box and C/D box [9]. Generally speaking, H/ 
ACA box and C/D box snoRNAs direct the pseudouridylation 
and 2′–O–methylation of rRNA nucleotides, respectively 
[10–12].

The 140 n.t. U8 snoRNA, transcribed from the 
SNORD118 gene in humans, is classified as a C/D box 
snoRNA as it contains the conserved C box (RUGAUGA, 
R = purine) and D box (CUGA) motifs, but U8 is unique as 
it does not participate in 2′–O–methylation of rRNA. 
Instead, U8 is required for cleavage of immature rRNA to 
provide 28S and 5.8S rRNAs that comprise the mature 60S 

subunit. Interestingly, the U8 snoRNA is not found in 
yeast, as are many other RB trans-acting factors, but is 
limited to vertebrates. Recently, Jenkinson et al. determined 
that mutations in the SNORD118 gene/U8 snoRNA tran-
script cause the rare inherited white matter disorder 
(IWMD) known as leukoencephalopathy with brain calcifi-
cations and cysts (LCC; aka Labrune Syndrome) [13].

In this work, we will review the early work identifying and 
defining the role of the U8 snoRNA as well as more recent 
work that has shed new light onto the U8 snoRNA, pre-U8 
snoRNA processing, and its role in LCC. Overall, we will raise 
critical questions that remain, including: What is the function 
of the U8 snoRNA? What are its protein and RNA binding 
partners necessary for function? How do mutations in the U8 
snoRNA lead to LCC pathology? Why is the U8 snoRNA not 
conserved in non-vertebrates? With this review, we hope to 
bring together the works of geneticists, biochemists, and clin-
icians to provide a comprehensive picture of what is known 
about the U8 snoRNA.

The U8 snoRNA is a C/D box snoRNA involved in 
maturation of the 5.8S and 28S rRNA

The snoRNA U8 was first identified in 1985 by Reddy et al. in 
rat Novikoff hepatoma cells as a small nuclear RNA (snRNA) 
and initially called 5.4S RNA as it migrated between 5S RNA 
and 5.8S RNA on a denaturing acrylamide gel [14] (Fig. 1). 
Using a trimethylguanosine (TMG) antibody and nuclear/ 
nucleolar fractionation, Reddy et al. showed that U8 has 
a TMG cap and is found in the nucleolus but not the nucleus. 
Sequencing gels and nuclease probing gels provided the first 
sequence and secondary structure model of U8, respectively. 
Kato and Harada had previously identified a mouse 5.4S RNA 
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[15], to which there was 90% sequence conservation [14]. The 
RNA was later renamed U8.

Four years later, Tyc and Steitz defined the human U8 
snoRNA sequence and structure in HeLa cells [16]. Tyc and 
Steitz immunoprecipitated U8–along with U3 and U13–using 
a monoclonal antibody directed against the nucleolar protein, 
fibrillarin [17,18]. These three RNAs were designated a new 
class of small RNA, small nucleolar RNA (snoRNA). Tyc and 
Steitz further classified U8 as a C/D box RNA due to the 
conserved C box (RGAUGA, R = purine) and D box (CUGA) 
sequences. These boxes serve as recognition sequences for 
nucleolar-localized fibrillarin [19]. Prior to the discovery of 
the U8 snoRNA, however, the U3 snoRNA had been the only 
known nucleolar C/D box-containing snoRNA.

In 1993, Peculis and Steitz demonstrated the first func-
tional role for the U8 snoRNA in pre-60S rRNA processing. 
They used RNAase H depletion of U8 in Xenopus laevis 
oocytes activated by microinjection of antisense deoxyoligo-
nucleotides (ASOs) and found that RNA processing at both 
internal transcribed spacers and at the 3′–end of the 28S 
rRNA coding region were reduced by U8 snoRNA depletion 
[20]. This resulted in newly identified pre-rRNA intermedi-
ates, suggesting that alternate processing pathways are avail-
able but typically disfavoured. Follow-up work from Peculis 
and Steitz (1994) confirmed that 5′–end processing of 5.8S 
and 3′–end processing of 28S are linked via U8 [21].

The U8 snoRNA is thus one of a small group of C/D box 
snoRNAs that are required for pre-rRNA cleavage and not for 
2′–O–methylation of the pre-rRNA ribose even though it 
associates with the nucleolar methyltransferase protein fibril-
larin: U3, U8, U13, and U22 [12,22,23]. Peculis (1997) com-
pleted mutagenesis studies on the conserved 5′–end of U8 and 
found that disruption of the 5′–most 15 nucleotides of U8 
inhibited pre-rRNA processing, but that this region alone was 
not sufficient for rRNA processing. She did show that this U8 
snoRNA:pre-rRNA interaction is important to modulate 

rRNA:rRNA interaction and folding, and to allow for pre- 
rRNA processing to proceed. Supporting these results, 
Srivastava et al. (2010) found that the DEAD box helicase 
Ddx51 is critical for dissociation of the U8 snoRNA from the 
pre-rRNA. Expression of a dominant negative Ddx51 (S403L) 
resulted in persistent U8 association with the pre-rRNA and 
disruption in pre-ribosome processing in mouse LAP3 cells 
[24]. This work is consistent with the model Brenda Peculis 
proposed where a tightly synchronized exchange of base-pairs 
among rRNA and U8 snoRNA is necessary for proper proces-
sing and folding of the rRNA.

Lu et al. recently developed a psoralen-based cross- 
linking method called Psoralen Analysis of RNA 
Interactions and Structures (PARIS) that identifies RNA: 
RNA interactions in the cell [25]. Using PARIS, Lu et al. 
found that the 5′–end of U8 snoRNA may in fact directly 
interact with the 3′–end of 28S as opposed to the 5′–end as 
suggested by prior genetic work [26] and computational and 
phylogenetic modelling [27]. Follow up work from Zhang 
et al. using PARIS2–the next iteration of the PARIS method– 
found a novel U8:U13 interaction, which they suggest may 
coordinate the maturation of the 18S and 28S rRNA [28]. 
However, in this work and others [20,21,26,29] depletion of 
U8 snoRNA reduced mature 28S rRNA levels, but did not 
lead to reduced levels of mature 18S, as would be expected if 
this interaction coordinates synthesis and assembly of both 
subunits [30]. As dimer interactions between full-length, 
endogenously expressed transcripts–U8 and the U13 
snoRNAs or between U8 and the 28S 3′–end–were investi-
gated computationally and not biochemically, future studies 
would benefit from testing LCC-relevant U8 snoRNA var-
iants in human cells for their ability to interact with the U13 
snoRNA and the 28S 3′–end. Additionally, previous work 
from Peculis et al. found tolerated sequence variation in 
Xenopus laevis U8, which may serve to attenuate rRNA 
processing [31]; whether these naturally occurring, 
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Figure 1. Timeline overview of SNORD118/U8 snoRNA discovery, annotation, and implication in LCC.
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functional variants are also found in humans and how these 
sequence variants would tolerate LCC-associated SNPs has 
yet to be determined.

Because PARIS and PARIS2 are limited to RNA:RNA 
duplex interactions, we are also missing important informa-
tion regarding in-cell protein binding partners. The network 
of in-cell U8 RNA:RNA interactions initiated by Zhang et al. 
would be further enriched using RNA:protein methods such 
as RNP-MaP [32] as previous work has shown a dynamic 
protein interaction network during U8 small nucleolar ribo-
nucleoprotein particle (snoRNP) formation [33]. The mature 
U8 snoRNP is known to contain multiple proteins including: 
fibrillarin [20], multiple LSm proteins (Xenopus) [34], 15.5 K/ 
SNU13 [35], NOP56 and NOP58 [35], Xenopus X29 
(NUDT16 in humans) [36], and Ddx51 [24] all with varying 
degrees of functional annotation. However, these experiments 
pulled down proteins of interest under varying salt conditions 
and then looked for U8 snoRNA, whereas a targeted U8 
snoRNA pull-down followed by protein identification has 
yet to be carried out.

SNORD118/U8 snoRNA is mutated in 
Leukoencephalopathy, Brain calcifications and cysts 
(LCC; Labrune syndrome)

LCC, also known as Labrune Syndrome, was first described by 
Labrune et al. in 1996 (Fig. 2) [37]. Initially, Labrune et al. 
found that LCC only presented in early infancy to adoles-
cence, but was later found in patients as late as 60 years of age 

[38]. LCC belongs to a class of diseases known as leukody-
strophies or inherited white matter disorders (IWMD) [39]. 
IWMD are genetic disorders primarily affecting central ner-
vous system (CNS) white matter. LCC is exclusively 
a neurological Mendelian disease with unknown population 
frequency that follows a degenerative course. Clinically, the 
disease presents with general decline of cognitive abilities and 
motor abilities due to advancing growth of cysts in one or 
both hemispheres of the brain [40]. LCC is distinguishable 
from Coats disease, another IWMD with similar presenta-
tions, as mutations in the conserved telomere maintenance 
component 1 (CTC1) had been found causal to Coats disease 
but not LCC [41]. Interestingly, although a rare autosomal 
recessive disease, there is no known enrichment for consan-
guinity [42]. The disease was classically diagnosed with histo-
pathological, neuroradiological, and clinical findings and had 
no known genetic cause or biomarker [37]. Unfortunately, 
there are no known cures for LCC, only treatments to alleviate 
symptoms. Some success in ameliorating gait, range of motion 
and disease progression has been attained through the admin-
istration of bevacizumab [43].

Although human U8 snoRNA was identified in 1985, it 
was only in 2016 where Jenkinson et al. identified biallelic, 
autosomal recessive mutations in the SNORD118 gene encod-
ing the U8 snoRNA as a cause of LCC (Fig. 1) [13]. LCC is 
thus the first human disease that can be ascribed to mutations 
in a gene encoding a C/D box snoRNA. Jenkinson (2016) 
sequenced the exomes of 12 LCC patients used linkage and 
haplotype analysis to identify a single region >1 Mb, located 
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Figure 2. Pathologies of LCC (purple) are mapped alongside genetic information (yellow) and cartoon of brain disease (green).
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on chromosome 17. Focusing on chromosome 17, they used 
capture sequencing to find two rare variants in a single 199 
base-pair (b.p.) region of DNA that encompassed the gene 
SNORD118. Sanger sequencing confirmed these variants. 
They extended their approach to 33 families with 40 affected 
individuals, finding compound heterozygosity for variants in 
SNORD118 for each of the LCC-affected individuals. In total, 
there were 36 rare putative pathogenic variants identified in 
SNORD118 with 29 variants occurring in the U8 snoRNA 
sequence itself.

Functional analysis confirmed that some of the variants 
present in LCC-affected individuals were deleterious for 
maintaining either U8 snoRNA levels or function [13]. 
A variant present in the predicted SNORD118 promoter 
sequence reduced reporter-gene expression by 109-fold. 
Interestingly, 10 of the variants occurred in either the C or 
D box sequence or in the LSm binding site, conserved 
sequences known to be critical for protein binding (Fig. 3). 
Indeed, testing four variants in the U8 snoRNA C box 
sequence for association with the 15.5 K/SNU13 protein in vi-
tro revealed significantly reduced protein binding. 
Furthermore, four variants in the pre-U8 snoRNA, which 
contains an extended 3′–end as compared to mature U8 
snoRNA, caused reduced 3′–end processing in HeLa cell 
extracts. Lastly, LCC fibroblasts from four patients demon-
strated reduced U8 snoRNA levels by qRT-PCR and were 
found to grow more slowly, consistent with reduced ribosome 
biogenesis. Thus, it is likely that the described variants are 
pathogenic and cause loss-of-function mutations.

Since LCC primarily affects brain development, and the U8 
snoRNA has been so far found only in vertebrates, Badrock 
et al. [42] pursued a vital zebrafish model to test the signifi-
cance of the putative pathogenic LCC-associated U8 variants 
identified by Jenkinson et al. (2016), as well as to sort the null/ 
severe from the milder/partial functional mutant alleles. 
Importantly, they initially demonstrated that the presence of 
the U8 snoRNA is required for normal organismal develop-
ment and survival, as zebrafish with a CRISPR/Cas9 disrup-
tion in the U8-3 gene locus showed defective brain 
development with death occurring from 6 to 9 days post 
fertilization. As expected, the 28S/18S rRNA ratio was 
reduced and pre-28S rRNAs accumulated. Many of the gross 
morphological phenotypes conferred by the disrupted U8-3 
genes could be ‘rescued’ by the presence of the 3′–extended 
human pre-U8 snoRNA. This made it possible to test U8 
snoRNA and gene LCC variants in the context of a whole 
organism during brain development for the first time.

A series of LCC variants in human pre-U8 snoRNA were 
tested for their ability to function when expressed in zebrafish 
[42]. Interestingly, all mutations that had exhibited reduced 
binding to the 15.5 K/SNU13 protein in vitro [13] failed to 
complement the disrupted U8-3 gene, and were labelled null. 
Although we have no experimentally determined pre-U8 
snoRNA structure, the investigators found that RNAfold pre-
dicted base-pairing of the 5′–end of the U8 snoRNA with a 3′– 
end extension that would be present in the pre-U8 snoRNA 
(Fig. 3A). Intriguingly, 29/33 LCC individuals harboured 
a mutation that would affect this novel intramolecular 

Figure 3. Structure of U8 snoRNA. A) Secondary structure of mature U8 snoRNA. Sequence and structure taken from [21]. Orange circles refer to naturally occurring 
SNPs found in [13]. Orange triangles refer to nucleobase insertions. Yellow circle is trimethylguanosine cap. Green box and black box refer to C and D box motifs, 
respectively. Purple hexagons are LSm motif. Boxed nucleotides refer to pre-U8 snoRNA 3′–extension from [42]. Image generated using Varna [44]. B) Three- 
dimensional computational model of U8 snoRNA. Sequence and secondary structure from [21]. Model generated using RNAComposer [45,46]. Colour scheme 
corresponds to those mapped onto A.
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interaction. In contrast to the mutations that conferred 
reduced binding to the 15.5 K protein, 3 variants in the 
proposed 3′–extension of pre-U8 snoRNA all fully rescued 
the gross morphological defects. These were labelled hypo-
morphic by default. Missing from rigorous proof that these 
are partially functional alleles is assessment of U8 snoRNA 
levels and U8 3′–end processing in the rescued zebrafish. 
These mutations are outside regions of known prior U8 
snoRNA functional importance, e.g. C/D box motifs, but 
demonstrate that there are many unresolved steps to LCC 
development, including the maturation of U8 snoRNA itself.

Stabilization of the p53 protein is a hallmark of the nucleo-
lar stress response where an increase in free uL5 and uL18 
sequester MDM2, an E3 ubiquitin-protein ligase, resulting in 
an increase in p53 protein levels [47]. This is thought to be the 
molecular basis of the craniofacial dysmorphology present in 
the ribosomopathy, Treacher-Collins syndrome [48]. It has 
also been modelled in zebrafish and Xenopus tropicalis upon 
depletion and disruption of additional proteins required for 
RNAPI transcription [49,50], indicating a conserved mechan-
ism. Similarly, U8-3 gene disruption in developing zebrafish 
indicates an increase in levels of the downstream effectors of 
p53 [42]. Interestingly, a reporter gene system for p53 down-
stream effectors in the developing embryo reveal the eye, the 
central nervous system (CNS) and somites as most fluorescent 
24–48 hours post-fertilization [42]. Crossing of a disrupted 
U8 snoRNA gene zebrafish with those genetically inactivated 
for p53 partially rescues angiogenic sprouting and ventricular 
swelling [42], indicating a role for p53 stabilization in some of 
the phenotypic abnormalities. However, the embryos do 
remain shorter, and with reduced 28S rRNA levels, as 
expected for defective ribosome biogenesis.

Shortly thereafter, a companion paper from the same 
group [51] presented a comprehensive collection detailing 
the genetic variance and phenotypic presentation of LCC in 
a patient cohort of 64 LCC patients from 56 families. 
Remarkably, Crow et al. report that there are no obvious 
correlations between genetic variance and age and/or severity 
of disease presentation. This genotype-phenotype disparity 
remains one of the questions about LCC pathology.

Conclusions

The history of U8 snoRNA discovery and function stretches 
back to 1984 [15]. It is one of the few C/D box snoRNAs that 
is important for pre-rRNA cleavage and not for 2′–O–methy-
lation, and is so far found only in vertebrates. A yeast homo-
log has not been identified but a putative candidate has been 
identified in C. elegans, CeR-2 [52]. These unique character-
istics were brought into focus when, in 2016, mutations in 
SNORD118/U8 were found to cause LCC (aka Labrune syn-
drome). How exactly mutations in the SNORD118 gene and 
resultant U8 snoRNA are related to the formation of calcifica-
tions and cysts remains unidentified. Recently, white matter 
disease similar to LCC has been observed in a new Alopecia 

Neuro Endocrine disease patient, also a ribosomopathy [53], 
suggesting at least some common presentation of disease.

While we are not sure why the U8 snoRNA is not found 
outside of vertebrates, evidence is accumulating that there are 
significant differences between ribosome biogenesis in human 
cells and the model organism, S. cerevisiae, which has been the 
workhorse organism for understanding nucleolar function. 
Recent work from Cao et al. has found a nucleolar micro-
protein that regulates biogenesis of the large ribosomal sub-
unit (LSU) in mammalian cells but so far has not found 
genetic or biochemical evidence of this microprotein in yeast 
[54]. Although ribosome biogenesis is generally a highly con-
served process among eukaryotes, unique differences among 
organisms are being uncovered.

To date, functional analyses of U8 in Xenopus laevis oocytes 
[20,21,26] or model organisms [42] has been limited by its lack of 
conservation outside of vertebrates. As all of the genetic and 
biochemical studies regarding U8 snoRNA were completed dec-
ades before U8 was implicated in LCC, there is a need to 
integrate the recently LCC-associated variants with future func-
tional genetic and biochemical studies to better understand the 
disease pathogenesis. While a zebrafish model is extant [42], 
a mouse model of LCC to connect the LCC-associated 
SNORD118 variants with the signs and symptoms of patient 
presentation is a much-needed approach to determine the patho-
physiology of U8 snoRNA-variants during brain development.
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