
Heliyon 9 (2023) e20994

Available online 13 October 2023
2405-8440/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Performance analysis of digitally controlled nonlinear systems 
considering time delay issues 
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A B S T R A C T   

In this paper, a comprehensive investigation into discretization, effective sample time selection 
considering delays in the system, and time and frequency domain analysis of a DC-DC buck 
converter, which plays a vital role in photovoltaic (PV) systems, is conducted to enhance the 
understanding of their dynamic behavior, optimize control algorithms, improve system efficiency, 
and ensure reliable power conversion in photovoltaic applications. To effectively address the non- 
linear behavior and enhance digital control of a buck converter by selecting the best sample time, 
several approaches can be employed. These include accurate modeling and identification of non- 
linear elements, development of advanced control algorithms that account for non-linearities, 
implementation of adaptive control techniques, and utilization of feedback mechanisms to 
compensate for deviations from linearity. By considering and mitigating the non-linear behavior, 
digital control systems can achieve improved accuracy, stability, and transient behavior in 
regulating the buck converter’s output waveforms (voltage or current). The results of the study 
demonstrated that the trapezoidal integration method which is also known as bilinear approxi-
mation, or Tustin’s approach outperformed other commonly used discretization methods, such as 
first-order hold (FOH), zero-order hold (ZOH), impulse response matching (impulse invariant), 
and matched pole-zero (MPZ) technique, in dual-domain (both time and frequency) analysis. The 
key finding highlighting the superiority of the bilinear approximation was its ability to achieve 
the closest match in the frequency domain bridging the continuous-time and discrete systems. 
This finding emphasizes the significance of the bilinear approach in preserving the frequency 
characteristics of the original continuous-time system during discretization. By employing this 
method, the discrete system closely approximated the behavior of its continuous-time counter-
part, ensuring accurate frequency-domain representation.   

1. Introduction 

In the past few decades, there has been a significant emphasis on obtaining electrical energy from renewable sources due to the 
surge in energy requirements and the growing interest in sustainable energy production. This shift is driven by the need to reduce 
carbon emissions and mitigate the environmental impact of conventional power sources. Among the various sustainable energy op-
tions, solar power has emerged as a highly promising and environmentally friendly source of clean energy with tremendous potential. 
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To fully harness the benefits of solar energy, extensive research efforts have been dedicated to two key areas: maximum power point 
tracking (MPPT) applications and the integration of solar energy into smart grids. These research endeavors primarily revolve around 
evaluating the performance of PV systems, which play a critical role in effectively capturing and utilizing solar energy [1–3]. 

Switch mode power supplies (SMPS) play a crucial role in PV systems, contributing to their overall performance, efficiency, and 
reliability. SMPS devices, such as DC-DC converters and DC-AC inverters, efficiently convert the DC power produced by PV modules 
into the needed required AC power, optimizing energy conversion, and minimizing power losses. SMPS-based peak power tracking 
controllers dynamically adjust the voltage and current to extract the maximum available power from the PV modules, enhancing 
energy yield and system efficiency [3–6]. 

SMPS devices also provide voltage regulation and stabilization, ensuring a consistent voltage level for downstream components and 
loads, thereby maintaining reliable and stable power delivery. They incorporate various protection features, such as overvoltage, 
overcurrent, and short-circuit protection, safeguarding the PV system and its components. This enhances system reliability and safety. 
Additionally, SMPS devices facilitate the integration of PV systems with the grid and energy storage solutions. They enable efficient 
power transfer between the PV system, grid, and battery systems, optimizing energy flow and enabling functionalities like grid feed-in, 
load balancing, and energy management [7]. 

SMPS are devices that employ high frequency switching to efficiently and reliably convert electrical energy. Due to the nonlinearity 
and inherent delays within these systems, their analysis becomes complex and necessitates careful consideration [8]. In particular, 
delays can significantly impact the accuracy of control algorithms and result in undesirable outcomes. Consequently, it is imperative to 
employ suitable approaches and methods for the analysis and control of nonlinear systems [8]. In this context, it becomes crucial to 
investigate the dual-domain response of the system, assess both distorting and non-distorting delays, and evaluate discretization 
techniques that influence controller performance. 

The time response of a system provides valuable information about its behavior over time in response to input changes, shedding 
light on both transient and steady-state dynamics. It offers insights into how the system reacts, settles, and stabilizes following per-
turbations. Conversely, the frequency response of a system describes its ability to process signals at various frequencies, revealing 
crucial characteristics such as gain, phase shift, and resonance properties. These response characteristics are fundamental in assessing 
the performance and stability of nonlinear systems, aiding in the analysis, design, and optimization of control strategies and system 
parameters [9]. 

Delays are frequently encountered in practical applications due to factors like signal propagation, processing time, and system 
constraints. These delays can have a substantial impact on the performance of nonlinear systems, leading to challenges such as 
instability, oscillations, or reduced accuracy. Consequently, it is of utmost importance to thoroughly understand and analyze the 
effects of these delays on system performance. This understanding is crucial for designing robust control strategies that can effectively 
mitigate the adverse effects of delays and ensure the desired behavior of the system. By comprehensively examining the effects of 
delays, engineers can develop control systems that are resilient, accurate, and capable of achieving the desired system behavior in 
practical applications [10]. 

In the analysis of nonlinear systems, an additional crucial aspect to consider is discretization, which involves converting 
continuous-time systems into discrete-time representations [11]. Discretization becomes particularly significant when implementing 
systems on digital platforms, where continuous-time signals need to be sampled and computations must be performed at specific time 
intervals [12]. The selection of appropriate discretization techniques holds substantial implications for the accuracy, stability, and 
overall performance of nonlinear systems [13]. Various studies have demonstrated the impact of discretization methods on system 
behavior, emphasizing the need for careful evaluation and selection [14]. Moreover, the connection between discretization, control 
strategies, and real-world applications has been extensively discussed, further highlighting the critical role of this process in system 
design [15]. Therefore, a thorough understanding of discretization techniques and their effects is essential when analysing and 
designing nonlinear systems. 

Discretization serves as a bridge between the continuous and discrete domains, enabling the representation and processing of 
system dynamics in a time-discrete manner. By discretizing the system, continuous-time signals are transformed into a sequence of 
discrete values, which facilitates their representation and manipulation using digital algorithms. This becomes essential when 
implementing control systems, simulations, or numerical analyses on digital platforms [16]. The choice of discretization techniques 
can significantly impact the behavior and performance of nonlinear systems. Each technique introduces a certain level of approxi-
mation and truncation error due to the finite time step used in the discretization process. The accuracy of the discretized representation 
depends on factors such as the chosen discretization technique, the time step size, and the characteristics of the original 
continuous-time system [17]. Furthermore, the stability of the discrete-time system must be considered. Stability concerns arise due to 
the discretization process potentially introducing additional dynamics and amplifying certain frequency components, leading to 
instability issues. Therefore, it is essential to choose discretization techniques that preserve stability or employ additional stabilization 
methods to ensure the stable operation of the discrete-time system [18]. 

The objective of this study is to conduct a comprehensive comparative assessment analysis of nonlinear systems, specifically 
focusing on their time and frequency response, the influence of system delays, and the effectiveness of various discretization tech-
niques in the context of a commonly employed DC-DC buck converter in PV system applications. By means of thorough investigations, 
precise mathematical modeling, and simulation studies, the objective is to evaluate the performance of diverse nonlinear systems and 
provide insights into the ramifications of these factors on system behavior. 

The primary contributions of this study can be outlined as follows: 
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• Comprehensive comparative assessment analysis: This research undertakes an extensive comparative assessment analysis of 
nonlinear systems, with a specific focus on their time and frequency responses, the impact of system delays, and the efficacy of 
various discretization techniques. The goal is to provide a thorough understanding of how nonlinear systems behave under 
different conditions and how these behaviors compare.  

• Application to PV system buck converter: The study’s context is particularly relevant to practical applications as it examines the 
behavior of nonlinear systems in the context of a widely used DC-DC buck converter within photovoltaic (PV) system applications. 
This practical relevance bridges theoretical analysis with real-world applications.  

• Exploration of time and frequency responses: By scrutinizing the time and frequency responses of nonlinear systems, this research 
delves into the temporal and spectral characteristics of such systems. This investigation provides insights into how these systems 
behave over time and in various frequency ranges. 

• Analysis of system delay effects: The research investigates the influence of system delays on nonlinear system performance. Un-
derstanding how delays affect these systems can have significant implications for their real-world implementation and control.  

• Effectiveness of discretization techniques: The study evaluates the effectiveness of different discretization techniques when applied 
to nonlinear systems. This assessment is crucial for determining suitable methods for transforming continuous-time systems into 
discrete-time representations.  

• Utilization of mathematical modeling and simulation: Through precise mathematical modeling and simulation studies, the research 
seeks to accurately represent the behavior of nonlinear systems and assess their performance. These techniques offer a compre-
hensive way to analyze system dynamics. 

• Insights into system behavior ramifications: The overall objective of the study is to provide insights into how various factors in-
fluence the behavior of nonlinear systems. By doing so, the research aims to contribute to the broader understanding of nonlinear 
dynamics and its implications for system design and operation. 

By addressing these key aspects, the paper aims to enhance our understanding of nonlinear system behavior and its impact on 
practical applications, ultimately contributing to improved system analysis, design, and implementation. 

The remainder of this paper is organized as follows. Section 2 describes the derivation of the transfer function of the small-signal 
duty cycle to inductor current in PWM buck converter. Delays in digital control systems are presented in Section 3. The implementation 
of various discretization techniques for the proposed buck converter is given in Section 4. Section 5 focuses on PI controller design and 
performance analysis of the controller. The results of the study and some concrete discussions are mentioned in Section 6. Conclusions 
and future work are highlighted in Section 7. 

2. Transfer function of small-signal duty cycle to inductor current in PWM buck converter 

System analysis involves creating an accurate mathematical model that captures the real-world behavior of a plant. This process, 
known as system modeling, enables us to describe the system mathematically. A well-developed model allows us to predict and observe 
the plant’s response in both the time and frequency domains. The transfer function of the plant establishes the relationship between its 
input and output, providing valuable insights into its dynamics. A precisely derived transfer function is essential for designing effective 
controllers. Control systems are designed and implemented to improve crucial dynamic characteristics of the plant, including stability, 

Fig. 1. The general state-space representation.  

Table 1 
The diagram depicting the procedural steps of the state-space averaging method.  

1. Description of notations 2. ON and OFF states 3. Basic averaged model 

d ≡ duty ratio 
d′ ≡ 1 − d 
Ts ≡ switching period 

Interval dTs ẋ = A1x+ B1vin 

Interval d′Ts ẋ = A2x+ B2vin 

ẋ = Ax+ Bvin 

A = dA1 + d′A2 

B = dB1 + d′B2 

4. Perturbation 5. Steady-state DC model 6. AC small signal model 
d = D+ d̂ 

x = X+ x̂ 
y = Y+ ŷ 
vin = Vin + v̂in 

AX+ BVin = 0 
X = − A− 1BVin 

̂̇x = Ax̂ + Bv̂in +

[(A1 − A2)X + (B1 − B2)Vin ]d̂  
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response speed, steady-state error, and oscillations, encompassing both transient and steady-state responses [19]. 

2.1. State-space average modelling of switch mode power supplies 

The transfer function model of the desired buck converter is obtained through the application of the dynamic (AC small signal) 
state-space methodology [20–22]. In this procedure, the Laplace transform (with an initial condition of zero) is applied to both the 
state and output equations within the state-space representation of the buck converter [23,24]. Fig. 1 presents the most general and 
comprehensive state-space depiction of a system with p inputs, q outputs, and n state variables. 

Here A(.), B(.), C(.), and D(.) are state matrix with dim[A(.)] = n× n, input matrix with dim[B(.)] = n× p, output matrix with 
dim[C(.)] = q × n and feedforward matrix with dim[D(.)] = q× p, respectively. x(.), y(.), and u(.) are state vector with x(t) ∈ Rn, output 
vector with y(t) ∈ Rq, control vector with u(t) ∈ Rp, respectively. The process depicting the procedural steps of the state-space 
averaging method is presented Table 1. 

Fig. 2 illustrates the vector block diagram representing the state-space dynamics of a linear-time-invariant system, while Equation 
(1) presents the average state-space equation for the system. 

ẋ=Ax + Bvin (1)  

y=Cx 

Equation (1) characterizes the averaged performance of the SMPS, aiming to eliminate the inherent ripples present in the capacitor 
voltage and inductor current, which arise from the properties of the state variables. It is noteworthy that the matrices A and B can vary 

Fig. 2. The vector diagram representing the state-space of a linear system.  

Fig. 3. Switching configurations and waveforms of the inductor current and voltage in CCM (a) on-state, (b) off-state.  
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with the duty ratio (d), implying that the averaged equation may exhibit non-linear characteristics in relation to the duty ratio. 

2.2. Calculations of the proposed buck converter’s power stage 

The buck converter is a switching topology that takes a DC input voltage, Vin, and converts it to a lower DC output voltage, Vout . In 
an asynchronous buck converter, a diode serves as the lower switch, automatically turning on when the upper switch, implemented 
with a MOSFET or IGBT, is turned off. This operation occurs in continuous conduction mode (CCM), where the inductor current re-
mains positive to keep the diode forward biased. If this condition is not met, the equations governing the converter’s behavior will be 
altered. 

In CCM, the switched topology operates in two distinct states, illustrated in Fig. 3. In the high state, when the control signal is high, 
the controllable switch S is turned on, connecting the input voltage to the LC circuit and allowing the inductor current to flow. This 
state, known as the on-time ton, is maintained for a specific duration. Following that, the control signal transitions to the low state, 
causing the controllable switch to turn off, and the current is redirected through the diode. This state, known as the off-time toff , is 
sustained for a specific duration. 

The proposed buck converter is specifically designed to accept a 48-V input voltage and convert it to a 29-V output voltage. The 
converter functions at a switching frequency of 10 kHz. Under maximum load conditions, the minimum load resistance (Rmin) is 
determined to be 3.9465 Ω. During CCM operation, the inductor is permitted to have a maximum ripple equivalent to 20 % of the 
average inductor current and the maximum load. Similarly, the capacitor is allowed to exhibit a maximum ripple of ±2 % of the 
average output voltage. 

The steady-state duty cycle of the plant is represented as: 

D=
Vout

Vin
(2) 

The upper limit of the average inductor current is indicated as: 

IL,avg,max =
Vout

Rmin
(3) 

The maximum inductor ripple current, equal to 20 % of the average current, is indicated as: 

ΔIL = 0.2 × IL,avg,max (4) 

The inductance value, denoted as L, of the inductor is given by: 

L=
Vin(1 − D)D

fswΔIL
(5) 

The representation of the capacitor ripple voltage (ΔVC) or output voltage ripple (ΔVout) is expressed as follows, where it is equal to 

±2 % of the average output voltage: 

ΔVC =ΔVout = 0.04 × Vout (6) 

The capacitance value, denoted as C, of the capacitor is expressed as: 

C=
Vin(1 − D)D
8Lfsw

2ΔVC
(7) 

Table 2 presents the computed values for the parameters and components of the suggested buck converter. 

2.3. Deriving transfer function of the proposed buck converter 

In Section 2.1, a detailed and systematic analysis of the averaging-perturbation-linearization process of the SMPS is provided to 
derive the transfer function for the buck converter. The derivation considers the components of the converter such as input voltage 
(Vin), inductance (L), output capacitance (Cout), load resistance (RLoad), inductor current (iL), capacitor current (iC), inductor voltage 

Table 2 
The derived values for the parameters and components of the proposed buck 
converter.  

Variables and Constituents Values 

Duty cycle in steady state 0.6042 
Minimum load inductor current in average (A) 7.3483 
Minimum load inductor current ripple in average (A) 1.4697 
Inductance (mH) 0.781 
Output voltage fluctuation (V) 1.16 
Capacitance (μF) 15.837  
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(VL), capacitor voltage (VC), steady-state duty cycle (D), and small signal duty ratio (d). A step-by-step approach is followed to derive 
these equations. 

The Laplace transform of the state and output equations, assuming a zero initial condition, is represented as: 

sX(s)=AX(s) + BU(s) (8)  

Y(s)=CX(s) + DU(s)

The state equation is reformulated as follows: 

sX(s) − AX(s) = BU(s) (9)  

(sI − A)X(s)=BU(s)

Multiplying both sides of Eq. (9) by (sI − A)− 1 results in: 

X(s)= (sI − A)− 1BU(s) (10) 

Substituting Eq. (10) into the output equation of the plant yields: 

Y(s)=
[
C(sI − A)− 1B+D

]
U(s) (11) 

The system’s transfer function is expressed as: 

G(s)=
Y(s)
U(s)

= C(sI − A)− 1B + D (12) 

Analyzing converters using AC small signals requires deriving the averaged state-space equation of the converters and introducing 
AC variations (perturbations) around the steady-state condition. To find the system’s steady-state operating point, the time derivative 
in the state equation is set to zero, as shown in Eq. (1). The dynamic AC small signal model can be expressed as follows: 

x̂(s)= (sI − A)− 1
[(A1 − A2)X +(B1 − B2)Vin]d̂(s) (13)  

x̂(s)
d̂(s)

= (sI − A)− 1
[(A1 − A2)X +(B1 − B2)Vin]

The system’s state variables, which consist of iL and VC, are selected based on the capacitor and inductor being the primary energy 
storage components of the buck converter. Therefore, the system vector x for the buck converter is defined as: 

x=
[

iL
VC

]

(14) 

Table 3 presents the analysis of the buck converter’s operation in the CCM and the derivation of its averaged state-space equation. 
By assuming that all parasitic resistances are negligible, the state variable vector X at the steady-state operation point, as derived 

from Eq. (1), can be reformulated as follows: 

Table 3 
Circuit analysis of the proposed buck converter in ON and OFF states.   

On-state (time interval: 0 < t <
dTs) 

Off-state (time interval: dTs <

t < Ts) 
State-space averaging 

Derivation of state 
equations 

VL = L
diL
dt

= Vin − Vout 
diL
dt

=

Vin − Vout

L 
iL = iout + iC 

iL =
Vout

RLoad
+ Cout

dVC

dt 
dVC

dt
=

iL
Cout

−
Vout

RLoadCout 

VL = L
diL
dt

= − Vout 
diL
dt

=

− Vout

L 
iL = iout + iC 

iL =
Vout

RLoad
+ Cout

dVC

dt 
dVC

dt
=

iL
Cout

−
Vout

RLoadCout 

The averaged system 
matrix A =

⎡

⎢
⎣

0
− 1
L

1
Cout

− 1
RCout

⎤

⎥
⎦

System matrices 

A1 =

⎡

⎢
⎣

0
− 1
L

1
Cout

− 1
RCout

⎤

⎥
⎦ A2 =

⎡

⎢
⎣

0
− 1
L

1
Cout

− 1
RCout

⎤

⎥
⎦

The averaged input 
matrix B =

[D
L
0

]

Input matrices 
B1 =

[1
L
0

]
B2 =

[
0
0

]
Averaged state-space 
equation 
ẋ = Ax+ BVdc 

⎡

⎢
⎣

diL
dt

dVC

dt

⎤

⎥
⎦ =

⎡

⎢
⎣

0
− 1
L

1
Cout

− 1
RCout

⎤

⎥
⎦

[
iL
VC

]

+

[D
L
0

]

[Vin]
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X = − A− 1BVin = −

adj

⎡

⎢
⎢
⎣

0
− 1
L

1
Cout

− 1
RLoadCout

⎤

⎥
⎥
⎦

det

⎡

⎢
⎢
⎣

0
− 1
L

1
Cout

− 1
RLoadCout

⎤

⎥
⎥
⎦

⎡

⎣

D
L
0

⎤

⎦Vin =

⎡

⎢
⎣

Cout
2DVin

RLoad

DVin

⎤

⎥
⎦ (15) 

By substituting Eq. (15) and the averaged system and input matrices obtained from Table 3 into Eq. (13), the following equation is 
obtained: 

x̂(s)
d̂(s)

=

[
îL V̂ C

]

d̂(s)

=

⎡

⎢
⎢
⎢
⎣

Vin(CoutRLoads + 1)
CoutLRLoads2 + Ls + RLoad

VinRLoad

CoutLRLoads2 + Ls + RLoad

⎤

⎥
⎥
⎥
⎦

(16)  

By substituting the calculated values of the components for the desired buck converter into Eq. (16), the transfer function that relates 
the d to the iL can be derived, yielding the following expression: 

iL(s)
d(s)

=
Vin

L
s + 1

RLoad Cout

s2 + s
RLoad Cout

+ 1
LCout

= (6.1455e4)
s + 1.6e4

s2 + 1600s + 8.0841e7
(17)  

3. Delays in digital control systems 

Many encountered dynamic systems inherently possess a certain degree of time delay. When designing a controller for such sys-
tems, it becomes imperative to incorporate mechanisms that effectively address this delay. The duration of the delay may vary, ranging 
from insignificantly short intervals that can be disregarded to significantly longer durations that can severely impair system perfor-
mance and even lead to instability. 

Two primary categories of delay exist within dynamic systems:  

• Distorting delays: These delays introduce distortions or alterations to the system’s output signal, thereby impacting its overall 
behavior. Distorting delays can lead to phase shifts, amplitude variations, or other modifications that affect the system’s response 
characteristics. 

• Non-distorting delays: In contrast to distorting delays, non-distorting delays do not introduce any significant alterations or dis-
tortions to the system’s output signal. Although these delays may cause a temporal shift in the system’s response, they do not affect 
the fundamental properties or integrity of the output. 

Understanding and categorizing delays into these two types is essential for analyzing and developing appropriate control strategies 
tailored to the specific characteristics of the delay in question. The unity feedback configuration of the asynchronous buck converter 

Fig. 4. The control feedback configuration of the asynchronous buck converter incorporating delays.  
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system with both distorting and non-distorting delays is given in Fig. 4. 
The Bode plot of a generic second-order system provides valuable insights into its frequency response characteristics. In particular, 

the unity-gain frequency (crossover angular frequency) denotes the point at which the magnitude plot intersects the 0 dB line. This 
specific frequency allows you to assess the amount of phase margin present in the system when a feedback loop is established around it. 
By analyzing the phase response at the unity-gain frequency, it is possible to determine the phase margin, which signifies the extent of 
additional phase shift that the system can withstand before becoming unstable. The phase margin serves as an indicator of the system’s 
stability robustness, demonstrating its capacity to handle disturbances or variations without entering an unstable state. Analyzing the 
Bode plot, especially at the crossover frequency, enables engineers to make informed decisions regarding the design and tuning of the 
feedback loop, ensuring that the system remains stable and meets the desired performance specifications. The Bode plot of an arbitrary 
second-order system is given in Fig. 5. The visual representation provided in the figure demonstrates that if additional delay is 
introduced into the system, either through transport delays or by delaying frequencies around the crossover frequency, it will affect the 
phase plot. 

As a result, the phase margin will be diminished, potentially leading to an unstable closed-loop system. To mitigate this issue, one 
approach is to lower the bandwidth of the controller by shifting the crossover point to a lower frequency. By doing so, the phase margin 
can be restored. However, this adjustment comes at the cost of reducing the system’s speed and responsiveness. The system’s overall 
performance will be slower, resulting in decreased responsiveness to changes or disturbances. Thus, there is a trade-off between 
stability and system performance when addressing delay-related issues in the control design. 

Fig. 5. The bode plot of an arbitrary second-order system in the presence of delays.  

Fig. 6. Block structure of a digitally controlled nonlinear system with delays using various discretization techniques.  
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4. Implementation of various discretization techniques for the proposed buck converter 

Discretization, in the realm of applied mathematics, refers to the process of converting continuous equations, models, variables, 
and functions into their discrete counterparts. This transformation is typically undertaken as a preliminary step to facilitate numerical 
evaluation and implementation on digital computers. In the domain of digital control systems, the controller is implemented on a 
computerized digital platform, operating based on measurements acquired at specific discrete time intervals before issuing commands 
to actuators. However, during the transition from a continuous system to a discrete system, some information is unavoidably lost, 
potentially impacting the performance of the control system. Moreover, the inclusion of discrete systems in the feedback loop in-
troduces a delay that reduces the controller’s bandwidth. Fig. 6 presents the unity feedback control structure for nonlinear systems 
with delays and various discretization techniques. 

The selection of a suitable discretization approach becomes crucial due to the challenges posed by bandwidth, which represents the 
maximum frequency at which the control system can effectively respond. Various digitalization approaches or methods are commonly 
employed in control systems, including first-order hold (FOH), zero-order hold (ZOH), impulse response matching, and matched pole- 
zero (MPZ) technique, in dual-domain (both time and frequency) analysis). These techniques offer different trade-offs and charac-
teristics, and choosing the right discretization method is of paramount importance to ensure the desired control system performance. 

4.1. ZOH method 

A zero-order hold, assuming one sample per time interval Ts, reconstructs the following continuous-time waveform from a sample 
sequence x[n]: 

xZOH(t) =
∑∞

n=− ∞
x[n].rect

(
t − Ts/2 − nTs

Ts

)

(18)  

where rect(.) is the rectangular function which is a special case of the more general boxer function given as: 

rect
(

t − Ts/2
Ts

)

=H
(

t −
(

Ts

2
−

Ts

2

))

− H
(

t −
(

Ts

2
+

Ts

2

))

=H(t) − H(t − Ts) (19)  

where H(x) is the Heaviside step function; the function centred at T2 and has duration T, from 0 to Ts. The function rect
(

t− Ts/2
Ts

)
and 

xZOH(t) which is the piecewise-constant signal are depicted in Fig. 7(a) and (b), respectively. 
The effective impulse response of Eq. (18) is derived as follows: 

hZOH(t) =
1
Ts

rect
(

t
Ts

−
1
2

)

= f (x)=

⎧
⎪⎨

⎪⎩

1
Ts
, if 0 ≤ t < Ts

0, otherwise
(20) 

The effective frequency response is determined by the continuous Fourier transform of the impulse response, which can be 
expressed as follows: 

HZOH(f )=F {hZOH(t)}=
1 − e− i2πfTs

i2πfTs
= e− iπfTs sinc(fTs) (21)  

where, in digital signal processing, sinc(x) is the normalized sinc function (sin(πx)
πx ) that is commonly employed. Transfer function of the 

ZOH is derived by implementing Laplace transform and substituting s = i2πf as: 

HZOH(s)=L {hZOH(t)}=
1 − e− sTs

sTs
(22) 

The conversion of the continuous-time transfer function of the buck converter and the designed controller into discrete form using 
the ZOH method, with a sampling frequency that is ten times higher than the switching frequency (Ts = 1/10fsw), is represented as 

Fig. 7. The ZOH’s time-domain analysis (a) The time-shifted and time-scaled rect
(

t− Ts/2
Ts

)
function (b) Signal with piecewise constant xZOH(t).  

C. Yanarateş et al.                                                                                                                                                                                                     



Heliyon 9 (2023) e20994

10

follows: 

GBuck(ZOH)(z)=
0.3071z2 + 0.0454z − 0.2617

z2 − 1.845z + 0.8521
(23)  

4.2. FOH method 

As a tracking model from a measured (or sampled) value of the plant output signal, this type of signal holder employs the unit ramp 
function for the entire interval between two consecutive sampling points. The piecewise linear signal equation of the FOH is defined 
by: 

xFOH(t) =
∑∞

n=− ∞
x(nTs)tri

(
1 − nTs

Ts

)

(24) 

The solution of Eq. (24) results in effective impulse response given by: 

hFOH(t) =
1
Ts

tri
(

t
Ts

)

= f (x)=

⎧
⎪⎨

⎪⎩

1
Ts

(

1 −
|t|
Ts

)

, if |t| < Ts

0, otherwise
(25)  

where tri(x) is the triangular function, whose graph take the shape of a triangle unlike a rect(.) function of x used in the ZOH. The 
effective frequency response, which is obtained through the continuous Fourier transform of the impulse response in Eq. (25), can be 
represented as follows: 

HFOH(f )=F {hFOH(t)}=
(

eiπfTs − e− iπfTs

i2πfTs

)2

= sinc2(fTs) (26) 

Transfer function of the FOH is derived by implementing Laplace transform and substituting s = i2πf as: 

HFOH(s)=L {hFOH(t)}=
(

1 − e− sTs

sTs

)2

(27) 

Discretization of the continuous-time transfer function of the buck converter and the designed controller by using the FOH method 
with a sampling frequency that is ten times greater than the switching frequency (Ts = 1/10fsw), is expressed as follows: 

GBuck(FOH)(z)=
0.6137z − 0.5229

z2 − 1.845z + 0.8521
(28)  

4.3. Impulse-response matching method 

The impulse response of the continuous-time system, hc(t), is discretized through sampling to obtain the impulse response of the 
discrete-time system, h[n], with a sampling period of Ts, as expressed by the following equation: 

h[n] =Tshc(nTs) (29) 

The analogue and digital frequencies of the system are related by ω = ΩTs or ejω = ejΩTs or z = esTs with the following equation: 

H
(
ejω)=

1
Ts

∑∞

k=− ∞
Hc

(

j
ω
Ts

+ j
2π
Ts

k

)

(30)  

where Ω is the continuous-time angular frequency in the unit of rad/s and ω is the discrete-time normalized angular frequency rep-
resented in radians per sample frequency in Hz. Since z = ejω on the unit circle and s = jΩ on the imaginary axis, transformation from s- 
plane to z-plane is given by: 

HImpulse(z)=
1
Ts

∑∞

k=− ∞
Hc(s − j

2π
Ts

k

)

(31) 

The transfer function of the continuous-time buck converter and the designed controller are converted into the discrete-time 
domain using the impulse-response matching method. This discretization process is carried out with a sampling frequency that is 
ten times higher than the switching frequency (Ts = 1/10fsw). The resulting discrete representation is expressed as follows: 

GBuck(Impulse)(z)=
0.6145z2 − 0.5214z

z2 − 1.845z + 0.8521
(32)  
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4.4. Tustin method 

The Tustin method, also known as the bilinear approximation or trapezoidal integration method, offers a precise mapping from the 
s-plane to the z-plane. It utilizes a first-order Padé approximation of the natural logarithm function. When a discrete-time signal 
undergoes the Laplace transform, where each element of the discrete-time sequence is associated with a correspondingly delayed unit 
impulse, the outcome is the Z transform of the discrete-time sequence itself. By substituting z = esTs , this method shifts each pole and 
zero location across the z-domain and constructs the corresponding transfer function. 

Implementing this equality for the entire system is not unapplicable as it will result in a non-linear function. Hence, the lineari-
zation of t esTs is required by using Taylor’s series expansion of ex as given by: 

ex =
∑∞

n=0

xn

n!
(33) 

The implementation of Eq. (33) for the equality z = esTs is given by: 

z= esTs = 1+ sTs +
(sTs)

2

2
+
(sTs)

3

6
+
(sTs)

4

24
+ … (34) 

Discarding the higher-order terms in Eq. (34) results in the first order approximation for z given by: 

z≈ 1 + sTs (35) 

Eq. (35) is a linear first order approximation of esTs , but it can be improved by the implementation of a polynomial fraction in the 
form of: 

z=
a + bs
c + ds

(36) 

This polynomial fraction expansion gives better and closer results to esTs than the single polynomial given in Eq. (34). The poly-
nomial fraction expansion is implemented by splitting esTs into two exponentials given by: 

z= esTs =
(

e
sTs
2

)(
e

sTs
2

)
=

e
sTs
2

e− sTs
2
=

1 + sTs
2 +

(sTs)
2

8 + …

1 − sTs
2 +

(sTs)
2

8 + …
(37) 

Discarding the higher-order terms in Eq. (37) results in more accurate first order approximation to esTs given by: 

z ≈
1 + sTs

2

1 − sTs
2

(38) 

One way to interpret the bilinear transform equation is that they are the linear first order approximation of esTs and the dis-
cretization is carried out by replacing z with this approximation. To give an insight, the bilinear method can be explained by using 
trapezoidal integration method which is the integration of a given function as: 

y(x)=
∫ x1

x0

f (x)dx ≈ (x1 − x0)

[
f (x0) + f (x1)

2

]

(39) 

Adding another point x2 and extending the f(x) out, a second trapezoid between x1 and x2 is obtained. The approximated area for 
the whole section is given by: 

y(x)=
∫ x2

x0

f (x)dx =

∫ x1

x0

f (x)dx +
∫ x2

x1

f (x)dx (40)  

y(x)≈ (x1 − x0)

[
f (x0) + f (x1)

2

]

+ (x2 − x1)

[
f (x1) + f (x2)

2

]

(41) 

The generalized representation of the trapezoidal integration method to any point xk is given by: 

yk =Δx
[xk− 1 + xk

2

]
+ yk− 1 (42) 

Application of the trapezoidal integration for a system whose transfer function is 1/s performed by breaking it up by sample periods 
Ts represented by: 

y(kTs)=

∫ kTs

0
x(t)dt =

∫ kTs

kTs − Ts

x(t)dt +
∫ kTs − Ts

0
x(t)dt (43)  

y(kTs)≈ Ts

[
x(kTs) + x(kTs − Ts)

2

]

+ y(kTs − Ts) (44) 
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Arranging Eq. (44) and taking the z transform results in the following equation: 

Y(z)
(
1 − z− 1)=

Ts

2
X(z)

(
1+ z− 1) (45) 

Rearranging Eq. (45) is required to get the transfer function of Y(z)/X(z) as: 

Y(z)
X(z)

=
Ts

2
(1 + z− 1)

(1 − z− 1)
=

Ts

2
(z + 1)
(z − 1)

(46) 

Considering the starting s-domain transfer function 1/s, the resulting transformation including the connection between continuous 
and discrete time domains is represented by: 

Y(s)
X(s)

=
1
s
≈

Ts

2
(z + 1)
(z − 1)

(47) 

Solving Eq. (47) for s approximately yields: 

s ≈
2
Ts

(
z − 1
z + 1

)

(48) 

The equation for approximating the transfer function in the z-domain from its continuous form in the s-domain, considering a 
sampling time of Ts, can be represented as follows: 

z= esTs ≈
1 + sTs

2

1 − sTs
2

(49) 

The transfer function of the continuous-time buck converter and the designed controller is converted into discrete-time using 
Tustin’s method. This conversion is performed with a sampling frequency that is ten times higher than the switching frequency (Ts =

1/10fsw). The resulting equation for the discrete-time representation is as follows: 

GBuck(Tustin)(z)=
0.3067z2 + 0.0454z − 0.2613

z2 − 1.845z + 0.8521
(50)  

4.5. MPZ method 

The method known as the matched Z-transform, also referred to as pole-zero mapping or pole-zero matching, is a discretization 
technique that involves mapping the poles and zeros of the continuous-time system from the s-plane to the z-plane by substituting z =

esTs . This technique is commonly employed to transform a filter design in continuous time into a design for a digital filter with a sample 
interval of Ts = 1

fsw. 
A typical zero-pole-gain representation of an analogue filter transfer function is given by: 

H(s)= ka
(s − z1)(s − z2)…s − zM

(s − p1)(s − p2)…s − pN
= ka

∏M

i=1
(s − zi)

∏N

i=1
(s − pi)

(51) 

Transformation from continuous-time (s-plane) to discrete-time (z-plane) is given by: 

H(z)= kd
(1 − ez1Ts z− 1)(1 − ez2Ts z− 1)…(1 − ezM Ts z− 1)

(1 − ep1Ts z− 1)(1 − ep2Ts z− 1)…(1 − epN Ts z− 1)
H(z)= kd

∏M

i=1

(
1 − eziTs z− 1)

∏N

i=1

(
1 − epiTs z− 1)

(52) 

To normalize the desired gain, the gain kd must be set to match the gain of the analogue filter ka at DC by setting s = 0 and z = 1 and 
solving for kd. 

The complete four step process of the MPZ can summarized as:  

• z-plane mapping from each pole and zero  
• If necessary, adding zeros at infinity  
• If necessary, removing zeros at infinity to make a strictly proper function  
• Adjusting the gain 

In this method, it has been suggested that the digital system could be made more efficient by artificially adding zeros at z = -1, but 
this improvised solution is only a temporary solution. Hence, the MPZ is avoided in preference for impulse response matching or 
bilinear transformation. Although this method can be used to develop perfectly functional filters, it is not commonly employed because 
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it does not preserve any unique time or frequency-domain characteristics. 
The continuous-time transfer function of the buck converter and the designed controller is discretized using the MPZ method. This 

discretization is performed with a sampling frequency that is ten times higher than the switching frequency (Ts = 1/10fsw). The 
resulting equation for the discrete-time representation is as follows: 

GBuck(MPZ)(z)=
0.6141z − 0.5233

z2 − 1.845z + 0.8521
(53) 

A comparison table summarizing the discussed discretization techniques is given in Table 4. 
Table 5 provides a concise comparison of how each discretization technique handles disturbances and time delays, along with 

additional notes to highlight their relative strengths and weaknesses in these aspects. It is important to note that the suitability of each 
technique can vary based on the specific control system requirements and the nature of the disturbances and time delays present. 

Table 4 
An in-depth comparison of the discretization techniques mentioned in the study.  

Discretization 
Technique 

Description Advantages Limitations Applicability 

ZOH Holds constant values over discrete 
intervals 

Simple implementation Introduces initial delay General 

FOH Approximates using first-order 
system 

Captures initial slope, smoother 
transitions 

Limited accuracy for rapidly 
changing signals 

General 

Impulse response 
matching 

Matches discrete impulse response 
to continuous 

Accurate representation of 
dynamics 

Sensitive to noise, complex 
implementation 

Critical control 
accuracy 

Tustin Maps using bilinear transformation Accurate representation of 
dynamics 

Frequency warping, phase shifts General, stable 
systems 

MPZ Matches poles and zeros between 
domains 

Retains pole and zero locations, 
accurate 

Complex poles can lead to 
instability 

Accurate 
representation  

Table 5 
A concise comparison of the discussed discretization techniques considering the impacts of disturbance and time delays.  

Discretization 
Technique 

Disturbance Handling Impact of Time Delay Additional Notes 

ZOH Struggles with effective handling due to discrete- 
time nature. Can result in oscillations and 
inaccuracies. 

Inherent delay can introduce phase shifts and 
impact stability. High-frequency components 
might be distorted. 

Limited suitability for handling 
disturbances and managing time 
delay. 

FOH Relatively better disturbance rejection due to 
consideration of initial derivatives. Large 
disturbances can still cause overshoot and 
oscillations. 

Delay can introduce phase shifts. Integration 
of slope information mitigates high-frequency 
distortion to some extent. 

Improved disturbance handling 
compared to ZOH. 

Impulse response 
matching 

Challenges in handling disturbances. Aligning 
impulse responses may not lead to optimal 
disturbance rejection. 

Significant phase shifts can impact stability, 
especially at higher frequencies. 

Less suitable for disturbance 
rejection and time delay 
management compared to other 
methods. 

Tustin Performs reasonably well in handling 
disturbances due to bilinear mapping. 

Mapping introduces phase shifts, affecting 
frequency response. Balance between 
frequency response and delay management. 

Balanced approach for handling 
disturbances and managing time 
delay. 

MPZ Tends to improve disturbance rejection by 
preserving continuous-time dynamic behavior. 

Provides better control over time delay effects 
by matching poles and zeros. Demands more 
computational resources. 

Suitable for systems requiring 
enhanced disturbance rejection and 
delay management.  

Fig. 8. The unity feedback configuration of a PI controlled buck converter.  
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5. PI controller design and control performance analysis 

The plant’s mathematical model is derived using state-space averaging and AC small signal techniques, allowing for the prediction 
of its response and observation of its behavior in both the time and frequency domains. Control systems are designed and implemented 
to improve important dynamic properties of the plant, including stability, response time, steady-state error, and oscillations present in 
both the transient and steady-state phases. Among the various controller structures available, the proportional-integral (PI) feedback 
compensator is commonly employed due to its simplicity in design, ease of understanding, and high level of effectiveness. Fig. 8 depicts 
the unity feedback structure of the proposed buck converter. 

The design specifications for the PI controller are provided in Table 6, outlining the necessary criteria for its proper configuration 
based on SMPSs stable operation. 

The proportional gain (Kp) is set to 0.21, while the integral gain (Ki) is determined as 709. When considering the negative unity 
feedback system comprising the designed PI controller and the transfer functions of the buck converter on the forward path, the 
resulting closed-loop transfer function can be expressed as follows: 

iL(s)
d(s)

=
GPI(s)GBuck(s)

1 + GPI(s)GBuck(s)
(54)  

when the phase crosses − 180◦, the system goes into positive feedback and the plus sign int the denominator of the feedback transfer 
function changes to minus. Accordingly, the positive feedback of the system is given by: 

iL(s)
d(s)

=
GPI(s)GBuck(s)

1 − GPI(s)GBuck(s)
(55) 

The DC (static) gain of the system which is the ratio of the steady state output to its constant input (unit step response) can be 
calculated by using final value theorem as: 

L
(
ystep(t)

)
=GPI(s)GBuck(s)

1
s

(56) 

Table 6 
The proposed buck converter design and control criteria.  

Parameters Value 

Crossover (cutoff frequency) between the range of 1/10th to 1/8th of switching frequency 
Phase margin greater than 45◦

Gain margin greater than 10 dB 
The slope of the gain curve at the crossover frequency ≈-20 db/decade 
Steady-state error <2% for step input  

Table 7 
Step response characteristics of the proposed buck converter.  

Step response characteristics Open-loop buck converter Closed-loop PI controlled buck converter 

Rise time (s) 2.7203e-4 1.9402e-4 
Settling time (s) 4.1803e-4 9.1124e-4 
Settling minimum 10.9681 0.9006 
Settling maximum 12.2004 0.9902 
Overshoot (%) 0.31 0 
Undershoot (%) 0 0 
Peak 12.2004 0.9902 
Peak time (s) 6.50483–4 0.0021  

Table 8 
Frequency response characteristics of the proposed buck converter.  

Stability margin from frequency response data Open-loop buck converter Closed-loop PI controlled buck converter 

Gain margin (dB) Infinite Infinite 
Gain margin 

Crossover frequency (rad/s) 
– – 

Phase margin (deg.) 90.2803 − 180 
Phase margin 

Crossover frequency (rad/s) 
6.2664e+4 0 

Delay margin (s) 2.5147e-5 Infinite 
Delay margin 

Crossover frequency (rad/s) 
6.2664e+4 0  
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Fig. 9. Step responses for various sample times based on the switching frequency of the proposed buck converter a) GBuck(ZOH)(z), b) GBuck(FOH)(z), c) 
GBuck(Impulse)(z), d) GBuck(MPZ)(z), and e) GBuck(Tustin)(z) for varying sample times. 
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DC gain= lim
t→∞

ystep(t)= lim
s→0

s
[

GPI(s)GBuck(s)
1
s

]

= lim
s→0

GPI(s)GBuck(s) (57)  

Dc gain= lim
s→0

(
0.21s + 709

s

)(
7.602 × 10− 4s + 12.16

1.237 × 10− 8s2 + 1.979 × 10− 4s + 1

)

= infinite (58) 

It is important to note that for extremely large and small gains, the behavior of the system transfer function is nearly the same for 
both positive and negative feedback structures. Thus, even if the obtained phase margin from the frequency response data for the 
closed-loop system is − 180◦, it remains stable. Instability occurs when |GPI(s)GBuck(s)| ≈ 1 and negative phase margin is present. 
Therefore, what truly matters is ensuring that the loop is not in positive feedback, particularly at or near the gain crossover frequency, 
rather than focusing on the calculated combination of gain margin and phase margin. 

The step response characteristics of the proposed system are provided in Table 7 for both the open-loop and closed-loop config-
urations with the PI controller. 

Table 8 presents the stability margins of the proposed system, which were obtained from the frequency response data, for both the 
open-loop and closed-loop configurations. 

6. Results and discussions 

There is no definitive best discretization method for the transfer function of a buck converter, as the choice depends on various 
factors such as the specific requirements of the system, desired performance, computational resources, and implementation con-
straints. Different discretization methods have different characteristics and may be suitable for different scenarios. Fig. 9 illustrates the 
step responses corresponding to different sample times obtained through the utilization of various discretization methods, which are 
based on the switching frequency of the proposed buck converter. The findings presented in Fig. 9, along with the derived numeric 
results in Table 9, unequivocally demonstrate that Tustin’s method outperforms the other investigated discretization methods when 
applied to the step response analysis of the proposed buck converter in continuous time. The superior performance of Tustin’s method 
is evident through its ability to yield the most favorable outcomes in terms of response characteristics. 

Based on the frequency response illustrated in Fig. 10 and the corresponding numeric results presented in Table 10, it is evident that 
Tustin’s method outperforms the other examined discretization techniques in terms of accurately capturing the frequency response 
characteristics of the proposed buck converter in continuous time. The superior performance of Tustin’s method is substantiated by its 
ability to yield the most favorable outcomes and accurately reproduce the frequency response characteristics across the desired fre-
quency range. 

Table 10 reveals a noteworthy observation indicating that the utilization of specific discretization techniques with significant 
sample times can lead to instability in the transfer function of the proposed buck converter. Tables 9 and 10 further confirm that 
selecting a small sample time for system discretization does not universally guarantee the best outcomes. These tables likely 
demonstrate instances where employing a small sample time resulted in suboptimal or unfavorable results in terms of system per-
formance or stability. This highlights the importance of carefully considering the specific requirements, dynamics, and constraints of 
the system when determining an appropriate sample time for discretization. The choice of sample time should be a well-informed 
decision, considering factors such as computational resources, desired accuracy, stability requirements, and implementation con-
straints to achieve the desired performance trade-offs. 

The performance of the aforementioned discretization methods in terms of transient response compared to continuous time, 
considering the inherited process delay of 0.01 ms and the transport delay of 0.05 ms, is demonstrated in Figs. 11 and 12. 

It is clear that the Tustin discretization technique stands out as an effective method for controller design in scenarios involving 
highly non-linear behaviors of systems like the DC-DC buck converter. This technique offers a balance between accurately capturing 
system dynamics, addressing non-linearities, and maintaining stability—a crucial requirement for control applications. In the context 
of a DC-DC buck converter exhibiting pronounced non-linear behaviors, the Tustin discretization technique offers distinct advantages 

Table 9 
Step response characteristics of the proposed buck converter discretized by using different methods and varying sample times.   

Discretization methods with varying sample times based on switching frequency  

ZOH method FOH method Impulse invariant method Tustin method MZP method 

Step response characteristics 1
2f sw  

1
10f sw  

1
2f sw  

1
10f sw  

1
2f sw  

1
10f sw  

1
2f sw  

1
10f sw  

1
2f sw  

1
10f sw  

Rise time (s) 2.5e-4 2.8e-4 2.5e-4 2.7e-4 2.5e-4 2.7e-4 2.5e-4 2.7e-4 2.5e-4 2.8e-4 
Settling time (s) 4.5e-4 4.2e-4 4.5e-4 4.2e-4 4.5e-4 4.2e-4 4e-4 4.2e-4 4.5e-4 4.2e-4 
Settling minimum 11.0479 11.0479 11.3108 10.9857 12.8660 11.2938 11.3341 10.9865 11.0693 11.0488 
Settling maximum 12.2004 12.2004 12.1993 12.2003 13.7368 12.5076 12.2063 12.2006 12.2010 12.2004 
Overshoot (%) 0.31 0.31 0.3014 0.3096 0.2706 0.3021 0.3586 0.3116 0.3151 0.3102 
Undershoot (%) 0 0 0 0 0 0 0 0 0 0 
Peak 12.2004 12.2004 12.1993 12.2003 13.7368 12.5076 12.2063 12.2006 12.2010 12.2004 
Peak time (s) 6.5e-4 6.5e-4 6.5e-4 6.5e-4 6.5e-4 6.5e-4 6e-4 6.4e-4 6.5e-4 6.5e-4  
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over other methods due to its inherent ability to handle both continuous-time and discrete-time domain characteristics simultaneously. 
This is particularly pertinent in scenarios where non-linearities arise due to rapid changes in the input voltage, load variations, and 
inherent switching dynamics of the converter. Considering these attributes, the Tustin discretization technique emerges as a 
compelling choice for controller design in the context of a DC-DC buck converter with highly non-linear behaviors. Its capacity to 
faithfully capture system dynamics, maintain stability, and effectively address frequency response nuances while accommodating non- 
linearities positions it as a robust solution for control system design, enabling optimal performance in the presence of intricate system 
behaviors. 

Fig. 10. Bode plots for various sample times based on the switching frequency of the proposed buck converter a) GBuck(ZOH)(z), b) GBuck(FOH)(z), c) 
GBuck(Impulse)(z), d) GBuck(MPZ)(z), and e) GBuck(Tustin)(z) for varying sample time. 
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7. Conclusion and future work 

This research encompassed a comprehensive investigation aimed at enhancing the understanding of the dynamic behavior, control 
algorithms optimization, system efficiency improvement, and reliable power conversion in PV applications through the analysis of a 
DC-DC buck converter. The objective was to delve into various aspects of PV system performance and uncover key strategies for 
enhancing the operation and control of buck converters. 

Key areas of focus included discretization techniques, effective sample time selection considering system delays, and both time and 
frequency domain analysis. By thoroughly examining these aspects, the researchers aimed to shed light on the best practices for 
achieving accurate and efficient power conversion in PV applications. To address the non-linear behavior inherent in buck converters 
and improve digital control, several approaches were explored. Accurate modeling and identification of non-linear elements, the 
development of advanced control algorithms accounting for non-linearities, implementation of adaptive control techniques, and 
utilization of feedback mechanisms to compensate for deviations from linearity were identified as effective strategies. These strategies 
aimed to mitigate the impact of non-linear behavior and enable digital control systems to achieve improved accuracy, stability, and 
transient response in regulating the buck converter’s output waveforms. 

The results of this study showcased the superiority of the trapezoidal integration method, commonly known as the bilinear 
approximation or Tustin’s approach, over other commonly used discretization methods such as FOH, ZOH, impulse response matching, 
and MPZ techniques. The researchers observed that the bilinear approximation exhibited exceptional performance in dual-domain 
(time and frequency) analysis. Notably, it bridged the gap between the continuous-time and discrete systems by closely matching 
frequency domain characteristics. This finding underscores the significance of the bilinear approach in preserving the frequency 
characteristics of the original continuous-time system during discretization. The employment of this method ensured an accurate 
representation of the frequency domain in the discrete system, which is crucial for maintaining the desired performance of the buck 
converter. 

Moving forward, future work can explore further enhancements in PV system performance through the investigation of alternative 
discretization techniques and improved sample time selection methods that account for system delays. By evaluating different dis-
cretization methods and refining sample time selection approaches, researchers can refine the control strategies for buck converters 
and optimize their operation under various operating conditions. 

Table 10 
Frequency response characteristics of the proposed buck converter discretized by using different methods and varying sample times.   

Discretization methods with varying sample times based on switching frequency  

ZOH method FOH method Impulse invariant method Tustin method MZP method 

Frequency response stability margin 1
2f sw  

1
10f sw  

1
2f sw  

1
10f sw  

1
2f sw  

1
10f sw  

1
2f sw  

1
10f sw  

1
2f sw  

1
10f sw  

Gain margin (dB) 0.6406 3.2523 Inf Inf Inf Inf Inf Inf 0.63 3.25 
Gain margin 

Crossover frequency (rad/s) 
6.29e4 3.14e5 – – – – – – 6.28e-4 3.14e5 

Phase margin (deg.) Inf 72.03 91.12 90.31 Inf 108.18 90.29 90.29 Inf 72.03 
Phase margin 

Crossover frequency (rad/s) 
– 6.37e4 4.06e4 6.08e4 – 6.37e4 4.01e4 6.07e4 – 6.37e4 

Delay margin (s) – 1.97 0.78 2.59 0 3 0.79 2.59 – 1.97 
Delay margin 

Crossover frequency (rad/s) 
– 6.37e4 4.06e4 6.08e4 – 6.37e4 4.01e4 6.07e4 – 6.37e4 

Closed-loop stable No Yes Yes Yes Yes Yes Yes Yes No Yes  

Fig. 11. Transient response of current control buck converter with the implementation of discussed discretization methods.  
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