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Abstract

Type 2 diabetes develops when beta cells are not able to fulfill insulin needs. The role of

the endoplasmic reticulum–mitochondria junction in coordinating the functions of these

two organelles throughout the natural history of type 2 diabetes is determinant and may

explain the alterations of insulin biosynthesis. Our goal was to study endoplasmic reticu-

lum and mitochondrial interactions in human beta cells from organ donors with type 2 dia-

betes. Pancreas samples were obtained via the network for pancreatic organ donors with

diabetes (nPOD) based on disease status with 12 subjects with type 2 diabetes and 9 non-

diabetic controls. We examined pancreatic specimens by immunofluorescence, in situ

hybridization and in situ proximity ligation assay and compared the results to an in

vitro model of beta-cell dysfunction. Expression of proteins that enable tethering and

exchanges between endoplasmic reticulum (ER) and mitochondria and quantification of

interconnection through mitochondria associated membranes (MAM) was investigated. In

beta cells from type 2 diabetic cases as compared to controls, there was a significant

increase in reticular expression of inositol triphosphate receptor-2 (IP3R2) both at the pro-

tein and mRNA levels, no difference in mitochondrial transit peptide receptor TOM20 and

mitofusin-2 expressions, and a decrease in the expression of voltage-dependent anion

channel-1 (VDAC-1). The number of IP3R2-VDAC-1 complexes identified by in situ prox-

imity ligation assay was significantly lower in diabetic islets and in beta cells of diabetics as

compared to controls. Treatment of Min6-B1 cells with palmitate altered glucose-stimu-

lated insulin secretion, increased ER stress and significantly reduced ER-mitochondrial

interactions. We can conclude that specific changes in reticular and mitochondrial beta

cell proteins characterize human type 2 diabetes with reduction in organelle interactions.

This finding opens new targets of intervention.
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Introduction

Type 2 diabetes is characterized by beta cells being unable to produce sufficient amounts of

insulin in the context of insulin resistance. Decreased beta cell function and mass predict dia-

betes onset and progression [1]. A better understanding of beta cell function during type 2 dia-

betes is essential to develop early interventions and to prevent the consequences of chronic

exposure of beta cells to high glucose. During the last 30 years, important efforts have been

made to understand the contribution of beta cells to the pathogenesis of type 2 diabetes but

this remains a matter of debate due to limited access to the pancreas in humans and difficulties

in imaging beta cells in vivo and to correlate dynamic testing with beta cell mass. Interrelated

stressors alter beta cells with different proportions among diabetic individuals that include

lipid accumulation, inflammation, endoplasmic reticulum (ER) stress, oxidative stress and

amyloid deposits which ultimately lead to beta cell apoptosis [1, 2]. This sequence of events are

largely extrapolated from animal models as well as from in vitro studies using cell lines or pri-

mary islet cell cultures and reinforces the need to intervene as early as possible in the course of

the disease to prevent beta cell loss. A reduction in beta cell mass has been found in several

studies of autopsied pancreata [2, 3] but accurate levels are difficult to compare due to differ-

ences in pancreatic parenchyma volume in obese vs lean subjects [4] and according to duration

of disease. There is also an important heterogeneity among patients due to genetic polymor-

phisms that control insulin synthesis as well as disparities between the levels of nutritional load

and body’s insulin sensitivity.

In the context of insulin resistance and type 2 diabetes, it is admitted that beta cells are

unable to increase insulin output to maintain glucose tolerance and that progressive func-

tional changes precede cell apoptosis [5]. ER and mitochondria are two metabolic organelles

playing a key role in beta cell function. Activation of ER plays a crucial role in the synthesis,

correct folding and sorting of insulin in response to glucose. ER forms the main intracellular

Ca2+ reservoir and the controlled release of Ca2+ into the cytosol is a critical step for insu-

lin synthesis. Intracellular compartments have to exchange material and transmit signals

between each other to maintain and balance cellular activities. A special ER compartment

communicates with mitochondria and functionally interacts at sites defined as mitochon-

dria-associated membranes (MAM) in order to fulfill a plethora of functions associated

with, among others, lipid metabolism and Ca2+ signaling but also the regulation of mito-

chondrial maintenance and programmed cell death/cell survival [6]. Among the group of

proteins enriched at ER-mitochondrial interface, inositol 1,4,5-trisphosphate sensitive

Ca2+ channels (IP3R) regulates calcium release activities through an interaction with

the GRP75/VDAC-1 complex [7]. Increased basal and decreased glucose-stimulated Ca2+

concentrations have been associated with cell dysfunction [8] and alteration of beta cell

calcium dynamics is an early event during type 2 diabetes [9]. Whereas recent data sug-

gested a disruption of organelle coupling in insulin resistant liver that may participate in

altered glucose homeostasis [10,11], the relevance of MAM in beta cell dysfunction has not

been studied.

The primary objective of the present study was to examine the levels of ER and mitochon-

dria proteins that enable tethering and exchange of metabolites and signaling molecules. To

address this, we analyzed at the mRNA and protein levels a series of high-quality human pan-

creatic tissues obtained from brain-dead organ donors with or without diabetes. We provided

novel insights into beta cell dysfunction during human type 2 diabetes illustrating the impor-

tance of ER-mitochondrial interactions.
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Materials and methods

Pancreatic sections

Formalin-fixed paraffin-embedded tissue sections from the tail of the pancreas from cadaver

brain-dead organ donors were obtained through the Juvenile Diabetes Research Foundation

(JDRF)-sponsored Network for Pancreatic Organ Donors with Diabetes (nPOD) program

(http://www.jdrfnpod.org/for-investigators/online-pathology-information/). All procedures

were in accordance with federal guidelines for organ donation and the University of Florida

institutional review board. The nPOD collection of biological specimens for research purposes

by noninvasive means was approved by the IRB from the University of Florida with the ref#

IRB201600029 on 3/17/2016. Pancreas specimens were selected from donors with type 2 dia-

betes (n = 12) and donors with no history of diabetes (n = 9). Characteristics regarding the

human tissue donors are presented in Table 1. The median age [range] from individuals with

type 2 diabetes and controls were similar (45.3 [19–62] years vs 37.9 [14–65] years, t-test

p = 0.46). The mean± standard error of the mean (SEM) BMI was significantly higher in indi-

viduals with type 2 diabetes (34.58±1.46 vs 26.21±1.74, Mann Whitney test p<0.01). The mean

pancreatic weight obtained from nPOD registry was similar among the two groups of donors.

It is interesting to note that mean±SEM peripheral C-peptide values were significantly lower

in patients with type 2 diabetes (4.17±1.83 vs 8.34±1.49 ng/ml, p = 0.02).

Cell culture

Min6-B1 cells were cultured in DMEM (20mM/l glucose) supplemented with 15% of heat-

inactivated fetal bovine serum, 2 mM glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin

Table 1. Characteristics of the 12 pancreatic donors with type 2 diabetes and the 9 pancreatic donors with no history of diabetes (controls).

Type 2 diabetes Age BMI Sex Race Duration of Diabetes (years) C pept (ng/ml) Pancreas weight (g) Insulin therapy

6028 33 30.2 M AFR AM 17 22.4 49 yes

6059 19 39.1 F HISP 0.25 10.68 74 yes

6108 58 30.4 M ASIAN 2 1.25 91 no

6110 21 40 F AFRIC 0.5 0.58 69

6114 43 31 M CAUC 2 0.58 100 no

6124 62 33.7 M CAUC 3 2.85 104 no

6127 45 30.4 F CAUC 10 0.08 59 yes

6132 56 44.6 F HISP - 0.8 70

6133 46 40.2 F CAUC 20 0.84 70 yes

6221 61 33.7 F CAUC 4 3.05 74 no

6249 45 32.3 F ASIAN 15 4.17 54 yes

6255 55 29.4 M CAUC 6 2.78 104 no

Controls

6009 45 30.6 M CAUC 11.32 -

6013 65 24.2 M CAUC 2.8 34

6057 22 26 M CAUC 16.23 104

6179 21 20.7 F CAUC 2.74 72

6229 31 26.9 F CAUC 6.23 46

6233 14 21.9 M CAUC 7.26 61

6235 30 25.4 M CAUC 8.1 102

6288 55 37.7 M CAUC 12.96 111

6290 58 22.5 M CAUC 7.46 86

https://doi.org/10.1371/journal.pone.0182027.t001
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and 71 μM beta-mercaptoethanol (Sigma Aldrich, St-Quentin Fallavier, France). For lipotoxi-

city studies, Min6 cells were treated with bovine serum albumin (BSA) or palmitate (conju-

gated to BSA at a 6:1 fatty acid to BSA molar ratio, 200μmol/L for 24 h) in serum-free culture

medium. At the end of the 24 h incubation period, Min6B1 cells were kept for 1h in Krebs-

Ringer bicarbonate (125 mM NaCl; 4.7 mM KCl; 1 mM CaCl2; 1.2 mM MgSO4; 1.2 mM

K2HPO4; 5 mM NaHCO3; and 25 mM HEPES 132 pH 7.4) supplemented with 0.5% bovine

serum albumin and 2.7 mM/l glucose then challenged with 16.7 mM/l glucose to assess glu-

cose-stimulated insulin secretion (GSIS). Insulin was measured by a specific immuno-radio-

metric assay (Bi-insulin IRMA, Cis-Bio International, Gif sur Yvette, France). Genomic DNA

was isolated from MIN6B1 cells using the standard phenol/chloroform method. The relative

mtDNA content was measured by quantitative real-time PCR (qPCR). The primer pair COX1

(5’- ACTATACTACTAACAGACCG-3’) and (5’- GGTTCTTTTTTTCCGGAGTA-3’) was

used for mtDNA detection. The amplification of the primer pair PPiA (5’—ACACGCCATAA
TGGCACTGG-3’) and (5’-CAGTCTTGGCAGTGCAGAT-3’) was used for nuclear DNA nor-

malization. The values were expressed as mtDNA/nDNA ratios.

Immunofluorescence

Pancreatic slides were deparaffinized with Slidebrite (BioCare Medical, Concord CA) and

dehydrated using graded ethanol concentrations. Slides were boiled in antigen retrieval citrate

buffer pH6, blocked for 1hr with 2% normal goat serum, 2% bovine serum albumin, 0.5%

Tween 20 in phosphate buffer saline followed by incubation with primary antibodies overnight

at 4˚C using different combinations. The staining series included antibodies to IP3R2 (Abcam,

Cambridge, MA, USA 1:50), Translocase of outer mitochondrial membrane 20 (TOM20)

(Santa Cruz biotechnologies, Dallas Texas, USA 1:50), VDAC-1 (Abcam, 1:100), mitofusin-2

(Abcam, 1:100), insulin (Dako, Carpinteria, CA, USA 1:150), glucagon (Abcam, 1:200). Sec-

ondary antibodies coupled to a fluorochrome (AF488, AF555, AF647, Life Technologies,

Grand Island, NY, USA) were added for 30 min at RT according to the species of primary anti-

bodies. Nuclei were stained with Hoechst 33342 (Sigma-Aldrich) and preparations were

mounted in Prolong Gold anti-fade reagent (Life Technologies). Slides were analyzed with a

slide scanner AxioScan.Z1 (Carl Zeiss SAS, Marly le Roi, France) at x40 magnification.

In situ hybridization

Sections were dried for 1 hour at 60˚C, pretreated and hybridized with an hs-ITPR2 probe

(Homo sapiens inositol 145-trisphosphate receptor type 2 (ITPR2) mRNA) for 2 hours at

40˚C. Probes were custom-designed and labeled for use with RNAscope 2.5HD (Advanced

Cell Diagnostics, Newark, CA, USA). Some sections were stained with Hs-PPIB or dapB

probes as positive and negative controls, respectively. Amplification steps were performed

prior to the detection of signals with 3,30-diaminobenzidine. Sections were counterstained and

mounted with Permount (Fisher scientific, Waltham MA, USA).

In situ proximity ligation assay

Duolink II in situ proximity ligation assay (PLA) (Olink Bioscience, Uppsala Sweden) enables

detection, visualization, and quantification of protein interactions (<40 nm) as an individual

dot by microscopy. Primary antibodies to assess ER-mitochondria interactions were against

IP3R2 (1:100) and VDAC-1 (1:200) as previously described [7]. Digitized slides were analyzed

at x20 magnification. When necessary, beta cells and alpha cells were identified using anti-

insulin and anti-glucagon antibody staining on the same slide. Dots were quantified in each

islet using the Zen program and Fiji-ImageJ software and expressed as percentage of dots per

MAM in human beta cells during type 2 diabetes
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nucleus. Experiments were performed at least twice using 2 to 5 non-consecutive slides for

each donor. For Min6-B1 cultures, ER-mitochondria-interactions were assessed using a fluo-

rescent PLA assay, employing antibodies directed against VDAC-1 (Abcam, 1:100) and IP3R1

(Santa Cruz laboratories, Dallas TX, USA 1:500) as described previously [10]. Experiments

with Min6-B1 cells were performed at least three times, with a minimum of five fields taken

per condition.

Morphometric analysis

Stained sections were scanned at x20 or x40 magnification to create digital slide images using a

Zeiss Axioscan Z1 slide scanner. Using the same sections, randomized islets were also exam-

ined with a Leica confocal SP5X microscope at x63 magnification for colocalization studies.

The frequency of insulin positive islet cells was calculated as the ratio of insulin positive cells

divided by the total number of islet cells of the sectional area. Intensities of each specific stain-

ing in insulin positive areas were determined using multi-fluorescence with the same acquisi-

tion parameters. Fiji-ImageJ software was used to quantify fluorescence intensities within beta

cells and number of dots during in situ hybridization and in situ PLA.

Real time PCR

Total RNA of Min6-B1 cells was extracted with the TRI Reagent Solution (Sigma-Aldrich).

The levels of target mRNAs were measured by RT, followed by real-time PCR using a Rotor-

GeneTM 6000 (Corbett Research, Thermo Scientific, Waltham MA USA). A standard curve

was systematically generated with six different amounts of purified target cDNA and each

assay was performed in duplicate. We measured TATA-binding protein (TBP) mRNA as a ref-

erence gene so that the results are expressed as a ratio referred to the expression of TBP and

normalized to the control group.

Statistical analysis

A normality test was performed for all data using D’Agostino and Pearson omnibus normality

test included in the GraphPad Prism software (La Jolla, CA, USA). When distribution was nor-

mal, analysis was performed with parametric statistics, usually a Student’s t test. However, if

values did not pass the normality test nonparametric statistics were used, specifically the Mann

Whitney test. Box and Whisker quartile plots were performed with a specific macro (Add-Ins.

com LLC, Hockessin, DE) with Microsoft Excel where boxplots are built considering the first

and third quartile (25th and 75th percentiles) to define whiskers, the center bar is the median

and the upper and lower bars the 1.5 sigma points. Data were expressed as the mean ± SEM.

Statistical significance was defined as a value of p<0.05.

Results

Beta cells from patients with type 2 diabetes have higher expression of

IP3R2

Because beta cells are subjected to high insulin demand in response to hyperglycemia and

peripheral insulin resistance, we postulated that expressions of proteins involved at the ER-

mitochondrion interface were increased during type 2 diabetes. Since ER is the main intracel-

lular Ca2+ reservoir, we first studied the expression of the IP3R, an important channel through

which Ca2+ is released from the ER. We decided to study the expression of the IP3R2 isoform

since we demonstrated that IP3R2 was colocalized with insulin (Pearson’s R value: 0.58, Spear-

man’s rank correlation value: 0.46) as shown in S1 Fig. Type 2 diabetes was associated with a

MAM in human beta cells during type 2 diabetes
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significant increase in the expression of IP3R2 in beta cells; a representative confocal pattern is

shown in Fig 1 and representative images for each donor are shown in S2 Fig. Although the

distribution of IP3R2 varied among islets and donors (Fig 2A), 7/12 subjects with type 2 diabe-

tes had beta cells with mean IP3R2 intensities above the 90th percentile of control values

including some islets with high expression levels as shown in Fig 2A. The mean level of

IP3R2 staining in beta cells from 12 donors with type 2 diabetes was significantly higher than

in the 9 controls (mean ± SEM: 54.27±2.11 pixels from 261 islets from donors with type 2 dia-

betes vs 33.03±1.28 pixels from 178 control islets) using Mann-Whitney test (two tailed p

value < 0.0001) as shown in Fig 2B. There was no correlation between IP3R2 expression and

known diabetes duration or circulating C-peptide levels. We studied by in situ hybridization

(ISH) experiments, the number of ITPR2 transcripts per islet cell with a representative figure

shown in S3A Fig in comparison to positive and negative controls using PPIB and DapB

probes, as shown in S3B and S3C Fig respectively. Expression of ITPR2 mRNA was signifi-

cantly increased in islets from pancreatic donors in comparison to controls (mean ± SEM: 0.72

±0.03 dots per islet cell from 97 diabetic islets vs 0.36±0.02 dots per islet cell from 76 control

islets) as shown in S3D Fig using Mann-Whitney test (two tailed p value < 0.0001).

Mitochondria play important roles in energy production, Ca2+ exchange and cell death pro-

cesses. We first investigated the level of expression of TOM20, a transit peptide receptor from

the outer mitochondrial membrane (OMM). TOM20 expression in beta cells was similar

between 11 type 2 diabetic donors (mean±SEM intensity: 57.37±2.83 pixels, n = 189 islets) and

9 controls (65.15±3.98 pixels, n = 164 islets; Mann Whitney test, p = 0.79) as shown in S4B Fig,

with a representative pattern shown in S4A Fig. It should be noticed that mean intensities

of TOM20 and IP3R2 staining were inversely correlated in Type 2 diabetic patients (Pearson

r = -0.605, R squared 0.366, p<0.05) but not in controls (Table 2). Mean expression levels of

VDAC-1, a MAM component from the OMM, were significantly lower in beta cells of 11 dia-

betic patients (mean value±SEM of 109.6±4.58 pixels (n = 216 islets) than in 8 controls (123

±6.53 pixels, n = 125 islets; Mann-Whitney test, two tailed p value < 0.05) as shown in S5 Fig;

a representative pattern is shown in S6 Fig. However, levels of VDAC-1 beta cell expression

were heterogeneous among donors, including 5 subjects out of 11 with mean intensities above

the 90th percentile of control values, among whom 4 had concomitantly high IP3R2 expression

levels (S5 Fig and Table 2).

No correlation was found between TOM20 and VDAC-1 levels, or with known disease

duration. Since MFN-2 is enriched at contact sites between ER and mitochondria, we also ana-

lyzed the expression of this tethering protein. Mean±SEM intensities of MFN-2 in beta cells

were similar between 11 donors with type 2 diabetes (39.50±1.64 pixels, n = 214 islets) and 9

controls (38.07±1.36 pixels, n = 198 islets; Mann Whitney test, p = 0.70); individual islet values

are presented in S7 Fig and a representative pattern of MFN-2 staining is shown in S6 Fig.

Interestingly, 3/11 diabetic donors had mean MFN-2 intensities above the 90th percentile of

control values together with high levels of IP3R2 expression (Table 2).

Type 2 diabetes is associated with a reduction of ER-mitochondrial

interactions

MAMs represent contact sites between ER and mitochondria and are important regulators of

both organelle functions. To detect and quantify organelle interactions, we used an in situ PLA

targeting two organelle-surface proteins involved in Ca2+ transfer at the MAM interface as

previously described (10). We probed the voltage-dependent anion channel VDAC-1 at the

OMM and IP3R2 at ER membrane. Each dot corresponds to one VDAC-1-IP3R2 interaction

closer than 40nm, thus allowing quantification between individual islets as shown in

MAM in human beta cells during type 2 diabetes
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Fig 1. IP3R2 expression is enhanced in beta cells from diabetic donors. Confocal immunofluorescence images for insulin (red) IP3R2 (green),

and merged stainings of pancreatic islets from three diabetic donors (nPOD# 6255, 6108, 6110) and two non-diabetic donors (controls; nPOD#

6233, 6235).

https://doi.org/10.1371/journal.pone.0182027.g001
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Fig 3A and 3B. The results summarized in Table 2 and Fig 3C indicated that islets of 11 donors

with Type 2 diabetes had a significant reduction in the number of dots per islet cell (mean

±SEM 1.18±0.03 dots/ nucleus, n = 344 islets) in comparison to the islets of 8 controls (2.10

±0.06 dots/ nucleus, n = 300 islets; Mann Whitney test, p<0.0001) with individual values

shown in Fig 3D. In an independent experiment (Fig 4), we performed in situ PLA with islets

simultaneously stained for insulin and glucagon as shown in Fig 4A and 4B. The number of

dots per beta cell in donors with type 2 diabetes (nPOD # 6108, 6110, 6059, 6255) was signifi-

cantly lower in comparison to controls (nPOD# 6009, 6229, 6013, 6290) with 1.47±0.07 vs 2.97

±0.15 dots/ nucleus (p<0.0001), as well as the number of dots per alpha cell (0.92±0.11 vs 1.63

±0.15 dots/ nucleus, p<0.001) as shown in Fig 4C. This suggests that type 2 diabetes is associ-

ated with a reduction in organelle interactions in both endocrine cell types, which was more

pronounced in beta cells. There was no correlation between circulating C-peptide levels and

number of dots per islet cell, as shown in S8 Fig for donors with diabetes and controls (Pearson

r 0.162, p = 0.51, n = 19).

Palmitate alters insulin secretion in Min6-B1 cells and ER-mitochondria

interactions

Exposure of Min6-B1 cells to 200 μM palmitate did not modify cell viability assessed by trypan

blue exclusion (90.18±0.68 vs 90.66±0.65%). Using an in situ PLA examining the IP3R1-V-

DAC-1 interactions on these cultured cells (Fig 5A, 5B and 5C), we found a significant reduc-

tion in the number of blobs per nucleus in palmitate treated cells (26.3±3.8 vs 73.9±16,

p<0.04). During the same culture conditions, we compared the mtDNA/nDNA ratios. The

Coxa1/ PPIA ratio was similar between palmitate-treated and BSA-treated cells (0.74±0.04 vs

0.70±0.04, p = 0.59).

We investigated during the same culture conditions, the effects of palmitate on UPR mark-

ers. As shown in Fig 5C, 24hrs incubation of MIN6-B1 cells with 200 μM palmitate increased

but not significantly mRNA levels of glucose-regulated protein 78 (Grp78) (+20%) and the

Fig 2. Morphometric analyses of IP3R2 expression in beta cells. (A) The expression of IP3R2 in beta cells was analyzed in 12 donors with type 2

diabetes (closed circles) compared to 9 donors without history of diabetes (open circles) by indirect immunofluorescence. Box and whiskers plots. Each

circle corresponds to the mean expression level for a single islet. The horizontal line represents the upper 90th percentile of control values. (B) Mean beta

cell expression of IP3R2 levels were significantly higher in subjects with type 2 diabetes in comparison to controls (Mann Whitney test, p<0.0001).

https://doi.org/10.1371/journal.pone.0182027.g002
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spliced form of X-box binding protein 1 (Xbp1s) (+44%), and significantly increased pro-apo-

ptotic pathways through the activating transcription factor 3–4- and 6 (ATF3-ATF4-ATF6)

(respectively: +279%, +44%, +67%) and the C/EBP-homologous protein (CHOP) (+144%).

Insulin concentrations of both supernatants (23.71+1.4 vs 80.3+11 μU/ml, p<0.001) and acid-

ethanol extracts (549.12+44 vs 1408+50 μU/ml, p<0.0001) from palmitate-treated cells were

significantly lower than BSA-treated cells at 2.7mM/l glucose. In addition, palmitate treated

cells had a significant reduction in GSIS (20.35±1.03 vs 153.84±7.18 μU/ml, p<0.001) (Fig 5D)

and a reduction in the mean percentage of secreted insulin over insulin content from acid/eth-

anol cell extracts (11.0±0.88 vs 3.74±0.22, p<0.0001).

Discussion

This is the first in vivo study showing differences in interactions between beta cell organelles in

pancreatic islets of patients with type 2 diabetes as compared to healthy organ donors. Our

data showed reduced organelle interactions despite increased expression of tethering proteins.

This current study has some limitations. The most obvious is the small number of patients

examined and an analysis that did not concern the whole organ. We also did not provide quan-

titative data on mitochondrial size and numbers. However, despite these limitations, we found

Table 2. Mean intensity levels in beta cells of IP3R2, TOM20, MFN-2 and VDAC-1 by indirect immunofluorescence and levels of ER-mitochondrial

IP3R2-VDAC1 interactions quantified by in situ proximity ligation assay (PA). Levels in diabetic donors above the 90th percentile of normal values are in

bold characters.

nPOD # IP3R2 TOM20 MFN-2 VDAC-1 PLA

6028 19.86±1.61 118.48±8.04 28.33±1.73 32.85±3.10 1.44±0.08

6059 61.46±7.77 15.29±1.67 22.79±1.73 42.43±3.79 1.14±0.13

6108 75.94±7.49 44.15±6.33 54.12±6.04 161.96±8.06 1.13±0.05

6110 63.05±6.00 75.68±6.05 66.72±4.03 43.13±2.87 1.41±0.09

6114 99.05±2.57 48.80±3.46 55.13±4.35 205.78±6.04 0.6±0.03

6124 68.06±3.31 29.80±3.27 36.57±1.64 196.33±9.63 0.88±0.05

6127 27.64±4.61 31.97±4.21 33.78±2.56 ND 0.38±0.06

6132 22.54±0.94 120.04±11.18 26.23±1.74 191.88±7.44 ND

6133 94.79±3.92 20.01±2.10 34.86±0.56 140.23±10.25 1.92±0.06

6221 33.78±0.72 ND 15.20±0.79 89.65±4.83 1.00±0.05

6249 17.52±1.05 66.21±8.6 ND 95.25±6.42 1.33±0.07

6255 79.55±7.01 49.47±5.99 37.28±5.56 110.60±5.03 1.51±0.08

MEAN DT2 54.27±2.11 57.37 ± 2.83 39.50±1.64 109.6 ± 4.58 1.18±0.03

6009 24.13±0.89 16.36+0.94 17.78±1.02 130.83±15.41 2.05±0.14

6013 22.64±1.83 93.08±9.47 17.35±2.59 98.77±12.22 2.03±0.07

6057 35.23±2.02 68.56±2.41 25.44±1.92 64.85±5.47 2.5±0.11

6179 40.30±3.64 101.84±8.82 39.86±6.79 80.37±8.11 ND

6229 49.06±4.15 77.19±9.06 43.16±2.48 242.88±1.43 2.80±0.19

6233 45.85±4.26 23.08±5.57 36.45±1.04 65.52±2.02 1.22±0.06

6235 53.67±4.44 19.07±1.32 48.59±3.48 94.87±8.26 1.72±0.08

6288 23.04±0.53 19.17±4.42 58.54±5.13 ND 1.57±0.11

6290 18.74±1.88 134.08±7.38 31.52±3.42 74.76±2.81 2.55±0.18

MEAN CTL 33.2±1.45 65.15 ± 3.98 38.07±1.36 123±6.53 2.10±0.06

Lower 90th percentile 30.8 58.56 35.82 112.2 2.02

Upper 90th percentile 35.61 71.73 40.32 133.8 2.19

p (DT2 vs CTL) <0.0001 ns ns <0.05 <0.0001

https://doi.org/10.1371/journal.pone.0182027.t002
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significant and reproductive differences associated with type 2 diabetes with defects in organ-

elle interplay within beta cells.

The respective contribution of reduced beta cell function vs beta cell mass in type 2 diabetes

has been extensively studied. Insulin secretion in islets taken from patients with type 2 diabetes

is reported to be reduced by 50% after normalization for islet insulin content [12]. In addition,

diabetic islets failed to reverse hyperglycemia when transplanted to immune-deficient diabetic

mice in contrast to an equivalent number of normal islets [13]. As expected, plasmatic C-

Fig 3. Quantification of IP3R2/ VDAC1 complexes in islets of diabetic donors and controls. (A) Representative bright field images of an in situ

proximity ligation assay (PLA) are shown for a 33-year-old man who had type 2 diabetes for 17 years (nPOD# 6028) and (B) in a control (normoglycemic)

31-year-old woman (nPOD# 6229). (C) The mean number of dots per islet cell was significantly lower in donors with type 2 diabetes compared to controls.

(D) Individual results from 11 donors with type 2 diabetes (closed circles) and 8 controls (open circles). The horizontal line represents the upper 90th

percentile of control values.

https://doi.org/10.1371/journal.pone.0182027.g003
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Fig 4. Quantification of IP3R2- VDAC1 complexes in beta cells of diabetic donors and controls. (A) Representative bright field

images of an in situ proximity ligation assay (PLA) superimposed with insulin (green) and glucagon (purple) immunofluorescence

stainings for a recently-diagnosed 19-year-old woman with type 2 diabetes (nPOD# 6059) and (B) in a control (normoglycemic)

31-year-old woman (nPOD# 6229). The measurement bar in A and B represents 50 microns. (C) The mean number of dots per beta

cell was significantly lower in donors with type 2 diabetes compared to controls. The horizontal line represents the upper 90th

percentile of control values.

https://doi.org/10.1371/journal.pone.0182027.g004
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peptide values were significantly reduced among the group of nPOD donors with type 2 diabe-

tes. Different interventions such as bariatric surgery [14] or very low calorie diets [15] can lead

to marked and rapid improvements of beta cell function in patients of recent onset. This con-

firms previous studies in first-degree relatives [16] and suggests that loss of function precedes

beta cell loss and that dysfunction of beta cells is an early event of the disease.

ER is constituted by an extensive membrane network and is the principal organelle respon-

sible for the proper folding/processing of nascent proteins in a Ca2+ rich environment. The

architecture of the ER changes continuously according to cellular demand [17] with fusion

reactions and interactions with the cytoskeleton and other organelles [18]. Here, we have

Fig 5. Effects of palmitate on MIN6-B1 cells. (A) Representative images of an in situ proximity ligation assay targeting IP3R1-VDAC-1 interactions of

Min6-B1 cells cultured with BSA or 200 μM of palmitate for 24hrs. The scale bar indicates 25 microns. (B) Palmitate-treated MIN6-B1 cells had

significatively lower ER-mitochondrial interactions. (C) Exposure of Min6-B1 cells to 200 μM palmitate (closed bars) increased the UPR response in

comparison to cells cultured with BSA (open bars) and (D) reduced the glucose-stimulated insulin secretion. The asterisk corresponds to p<0.05 (student t-

test).

https://doi.org/10.1371/journal.pone.0182027.g005
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demonstrated that IP3R2 expression was increased in beta cells from patients with type 2 dia-

betes as shown in Fig 2. IP3R2 is one of the major glucose-dependent isoforms expressed in

beta cells [19], that has also the highest affinity for IP3 [20]. Increased IP3R2 amounts may

reflect important changes in Ca2+ homeostasis and release of Ca2+ from the ER. We have

previously shown that exposure of human islets to high glucose concentrations led to increased

levels of IP3R2 both at the mRNA and protein levels, as well as reduced levels of sarco-endo-

plasmic reticulum Ca2+ ATPase 2b (SERCA 2b) pump [21]. Depletion of reticular Ca2+ stores

results in dysfunction of protein folding activation of the unfolded protein response (UPR),

which leads to ER stress and may also alter mitochondria [22]. ER Ca2+ release and increase in

Ca2+ mitochondrial concentrations determine cytochrome C leaking to the cytosol, which

then acts as a positive feedback loop to maintain ER Ca2+ release through the IP3Rs and trig-

gers cell apoptosis [23]. Ca2+ also plays a key role in the regulation of mitochondrial oxidative

metabolism. Mitochondrial dysfunction in beta cells can be observed after chronic exposure to

high glucose concentration leading to excessive oxygen species production and reduction of

mitochondrial respiration that directly alters beta cell integrity [24]. In the present study,

investigation of three OMM proteins i.e. TOM20, VDAC-1 and MFN-2 gave contrasting

results. This may reflect different levels of mitochondrial function and dynamics [25–27]. An

increase of mitochondrial density volume may be present as already shown by EM studies [28]

with enhanced mitochondrial fission and fragmentation [29]. The demonstration that expres-

sion levels of several proteins from the OMM were maintained or even increased in some

patients excludes the presence of severe mitochondria alterations in beta cells of diabetic cases

herein.

Since MAMs play a special role in ER-mitochondria cross talk, we investigated the numbers

of tight IP3R2-VDAC-1 coupling as a marker of MAM integrity in beta cells. VDAC, a mito-

chondrial porin, is a highly conserved large conductance anion channel that provides the

major pathway for transmembrane fluxes of ions and metabolites across the OMM [30] and is

associated with cytochrome c release and apoptosis. The PLA confers dual-binder specificity

for the detection of organelle interactions in situ and reveals proximity of proteins. We have

shown previously that this technique was suitable to visualize ER-mitochondria coupling in

the liver [10]. The reduction in the number of PLA dots in diabetic patients for pair of proteins

involved in Ca2+ exchange despite an increase of IP3R2 expression shown in Fig 3 is intrigu-

ing. This may reflect the down-regulation of RE-mitochondrial interactions and tight ER-

mitochondria contacts in beta cells from individuals with diabetes in comparison to controls

in response to increased insulin demand. It has been shown that the subcellular distribution of

the IP3R can change according to the physiological status of the cells and is an important fac-

tor for the correct initiation and propagation of Ca2+ signals [31]. Loss of MAM integrity and

interactions between ER and mitochondria could be directly involved in or associated with

defective insulin secretory capacities. In vitro, chronic fatty acid treatment of beta cells is suffi-

cient to recapitulate both the secretory defects and apoptosis observed in type 2 diabetes. The

pro-apoptotic fatty acid palmitate triggers a comprehensive ER stress response in MIN6-B1

cells [32]. Herein, it is shown that palmitate-treated Min6-B1 cells have reduced GSIS and

IP3R-VDAC interactions, supporting the possible relationships between ER-mitochondrial

interactions and insulin secretion. The demonstration that mtDNA/nDNA ratios were not

altered by palmitate suggests mitochondrial integrity. It is still difficult to conclude that MAM

dysregulation is the cause of the functional defects of beta cells during type 2 diabetes and that

ER stress could be the trigger. Whether a pharmacological improvement in beta cell function

involves the reinforcement of MAM integrity is at this stage too speculative, but could be eval-

uated in vitro or in animal models of diabetes.
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In summary, we have demonstrated that beta cells from individuals with type 2 diabetes

have reduced ER-mitochondrial interactions. We believe that this work performed with pan-

creatic tissue from patients is novel and represents an important advancement in the under-

standing of beta cell impairment with new avenues of investigation.

Supporting information

S1 Fig. IP3R2 colocalizes with beta cells. Representative immunofluorescence confocal analy-

sis of a pancreatic section from a 55-year-old diabetic donor (nPOD# 6255) stained for insulin

(green), glucagon (white) and IP3R2 (red). IP3R2 (A) is predominantly expressed in beta cells

identified by insulin staining (B)and less in alpha cells stained for glucagon (GCG) (C). Merge

image is shown in panel D. The scale bar indicates 50 microns.

(EPS)

S2 Fig. Representative IP3R2 immunofluorescence staining. Expression patterns of IP3R2

and insulin of pancreatic islets from 12 donors with type 2 diabetes and 9 controls. The scale

bar indicates 50 microns.

(EPS)

S3 Fig. ITPR2 mRNA expression is increased in diabetic islets. In situ hybridization was per-

formed in nPOD sample # 6255 with ITPR2 probe (A) a positive probe PPIB (B) and negative

probe DapB (C). The scale bar indicates 50 microns. Morphometric analysis of ITPR2 mRNA

expression in islet cells were performed in 6 donors with type 2 diabetes (closed circles) and 6

donors without history of diabetes (open circles) as shown in panel D. Each circle corresponds

to the number of spots/ nucleus for a single islet. The horizontal line represents the upper 90th

percentile of control values.

(EPS)

S4 Fig. TOM20 expression in beta cells. Representative immunofluorescence analysis in

panel A with a slide scanner of pancreatic islets from a 55-year-old diabetic donor (nPOD#

6255) and a 58-year-old non diabetic donor (nPOD# 6290) for insulin (A), TOM20 (B) and

merge (C). The scale bar indicates 50 microns. Panel B shows the morphometric immunofluo-

rescence analyses of TOM20 expression in beta cells in 11 donors with type 2 diabetes (closed

circles) compared to 9 donors without history of diabetes (open circles). Each circle corre-

sponds to the mean expression level for a single islet. The horizontal line represents the upper

90th percentile of control values.

(EPS)

S5 Fig. Morphometric analyses of VDAC-1 expression in beta cells. Immunofluorescence

studies for VDAC-1 expression in beta cells were performed with a slide scanner in 11 donors

with type 2 diabetes (closed circles) compared to 8 donors without history of diabetes (open

circles). Each circle corresponds to the mean expression level for a single islet. The horizontal

line represents the upper 90th percentile of control values.

(EPS)

S6 Fig. Mitofusin-2 and VDAC-1 expression in beta cells. Representative immunofluores-

cence analysis of a pancreatic section with a slide scanner from a 46-year-old donor with type

2 diabetes (nPOD# 6133) and a 30-year-old non-diabetic donor (nPOD# 6235) for insulin,

MFN-2,VDAC-1 and merge The scale bar corresponds to 50 microns.

(EPS)
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S7 Fig. Morphometric analysis of mitofusin 2 expression in beta cells. Immunofluorescence

studies for MFN-2 expression in beta cells were performed with a slide scanner in 11 donors

with type 2 diabetes (closed circles) compared to 9 donors without history of diabetes (open

circles). Each circle corresponds to the mean expression level for a single islet. The horizontal

line represents the upper 90th percentile of control values.

(EPS)

S8 Fig. Absence of correlation between the number of IP3R2- VDAC1 complexes and

peripheral C-peptide levels. Mean results of in situ proximity ligation assay per islet cells do

not correlate with peripheral C-peptide levels both in donor with diabetes (closed symbols) or

controls (open symbols).

(EPS)
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