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Abstract: Infection with Zika virus (ZIKV), a member of the Flavivirus genus of the Flaviviridae
family, typically results in mild self-limited illness, but severe neurological disease occurs in a limited
subset of patients. In contrast, serious outcomes commonly occur in pregnancy that affect the
developing fetus, including microcephaly and other major birth defects. The genetic similarity of
ZIKV to other widespread flaviviruses, such as dengue virus (DENV), presents a challenge to the
development of specific ZIKV diagnostic assays. Nonstructural protein 1 (NS1) is established for
use in immunodiagnostic assays for flaviviruses. To address the cross-reactivity of ZIKV NS1 with
proteins from other flaviviruses we used site-directed mutagenesis to modify putative epitopes. Goat
polyclonal antibodies to variant ZIKV NS1 were affinity-purified to remove antibodies binding to the
closely related NS1 protein of DENV. An antigen-capture ELISA configured with the affinity-purified
polyclonal antibody showed a linear dynamic range between approximately 500 and 30 ng/mL,
with a limit of detection of between 1.95 and 7.8 ng/mL. NS1 proteins from DENV, yellow fever
virus, St. Louis encephalitis virus and West Nile virus showed significantly reduced reactivity in the
ZIKV antigen-capture ELISA. Refinement of approaches similar to those employed here could lead to
development of ZIKV-specific immunoassays suitable for use in areas where infections with related
flaviviruses are common.

Keywords: Zika virus; non-structural protein 1; site-directed mutagenesis; polyclonal antibodies;
antigen-capture ELISA

1. Introduction

Zika virus (ZIKV) is named after the Zika forest in Uganda, where it was first isolated
from a sentinel monkey in 1947 [1], and shortly after from mosquitoes in the same area [2].
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Follow-up serological studies revealed Zika to be widespread in Africa and Asia [1,3,4]. The
first reported natural ZIKV infection in humans was reported in 1964, when a scientist was
infected while isolating virus from mosquitos in Uganda [4,5]. The first known incidence
of Zika outside Africa and Asia was in 2007 in Yap State, Micronesia [6], in what became
the first large outbreak recorded [7]. A total of 73% of residents of Yap Island 3 years old or
older were infected [8]. In 2013, cases of Zika began being reported in French Polynesia.
A total of 8746 cases were estimated to have occurred during this outbreak [9]. Other ZIKV
outbreaks included New Caledonia, Cook Islands and Easter Island [10].

Beginning in early 2015, cases of ZIKV infection were reported in Bahia, Brazil [11].
A second introduction of Zika into Brazil occurred at about the same time, in Natal [12].
Estimates were from 440,000 to 1.3 million cases [13], with an eventual estimate of over
500,000 cases of Zika [14] and 73% of the population exposed in some areas [15]. Other
countries in the Americas also reported Zika cases during this time. Colombia reported over
100,000 suspected cases [16], with a total of 27 countries in the Americas reporting cases,
including Mexico, Guatemala, the Dominican Republic and Panama [17]. Eventually, Zika
cases were reported in the continental United States, with multiple introductions of ZIKV
into Florida [18], as well as Texas. These cases in Texas and Florida were locally acquired,
indicating at least some level of circulation in local mosquito populations [19]. Afterward,
ZIKV made its way to Cape Verde, Samoa, the Solomon Islands and the surrounding
region [5,20]. In all, 87 countries were affected by the pandemic, with cases continuing
after the large outbreak, including 30,000 cases in 2018 [14]. ZIKV has established itself as
endemic to many more regions than it was prior to the outbreak and may continue to infect
humans routinely into the future.

ZIKV infection usually results in a self-limited illness [21]. In symptomatic cases the
most common symptom is a maculopapular rash, occurring in over 80% of cases [22], often
on the face, torso and upper arms [23,24]. Another common symptom is arthralgia in
about 62% of cases, mainly involving small joints [22,25], and occasionally larger joints as
well [24,26]. Conjunctivitis is seen in roughly half of patients, with both eyes commonly
being affected [22,27]. Other symptoms may be seen, such as myalgia, headache, nausea,
vomiting, sore throat and cough [28]. If present, symptoms resolve within a week and
are generally not fatal [29], provided there is not a comorbidity, such as sickle cell ane-
mia [30]. Before 2013, no significant complications were reported from infections with
ZIKV [4]. However, it was later determined that ZIKV is capable of establishing persistent
infections, crossing placental and neuronal barriers, and damaging neurons [31]. During
the French Polynesia outbreak, multiple cases of Guillain–Barré Syndrome (GBS) were
reported [5,32,33]. GBS is a neurological disorder presenting as a rapid ascending paralysis
that results in respiratory failure [34]. Another complication seen from ZIKV infections,
microcephaly, occurs in a developing fetus in infected pregnant women. Defined as a
neurological malformation resulting in decreased head circumference due to death of
neural progenitor cells, microcephaly has been implicated as a result of ZIKV infections
in eight individuals during the French Polynesia outbreak [35]. The outbreak in Brazil
resulted in many more reports of congenital microcephaly, prompting the World Health
Organization to declare a Public Health Emergency of International Concern on 1 February
2016 [36]. Other complications include conditions such as optic neuropathy, uveitis and
congenital glaucoma resulting in loss of vision [37,38].

Antigen-capture diagnostic assays targeting NS1 have been utilized in the past for
dengue virus (DENV) infection, with NS1 being established as an early biomarker for
flavivirus infection [39–42]. The flavivirus non-structural protein 1 (NS1) functions in
genome replication as an intracellular dimer and in immune system evasion as a se-
creted hexamer. Assays are often in Enzyme Linked Immunosorbent Assay (ELISA)
format using monoclonal antibodies (mAbs) to overcome the genetic similarity among
flaviviruses [43–47]. One of the assays commonly employed for the early diagnosis of
dengue is the InBios DENV Detect NS1 ELISA Kit. It has a reported sensitivity of 86.8%
and specificity of 97.8% [48]. One potential issue may be the lack of sensitivity in secondary
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dengue cases, with one study indicating 100% sensitivity in primary infections, and 10%
sensitivity in secondary infections [41]. This is likely due to circulating anti-NS1 antibodies
present during secondary infections [49]. This demonstrated success with NS1-based de-
tection of DENV infection offers an attractive option for detection of infection with other
flaviviruses.

Here, we describe development of an NS1 capture diagnostic assay that utilizes
affinity-purified polyclonal antibodies (pAbs) generated against recombinant ZIKV NS1
containing mutations in potentially cross-reactive epitopes. Reduced cross-reactivity to NS1
proteins of other commonly circulating flaviviruses was observed. The antigen-capture
ELISA appears to be sensitive and specific, with little to no interference from antibodies
generated against NS1 from the early immune response in patients.

2. Materials and Methods
2.1. Mutagenesis of Zika Recombinant NS1 Protein

Site-directed mutagenesis was performed to generate mutated recombinant NS1
(rNS1). Primers were designed to mutate residues in regions of NS1 with high sequence
similarity to other members of the Flaviviridae family (Table S1). PCR was performed
using a reaction consisting of 20 ng wild-type plasmid template, 0.5 µM forward and
reverse primers, 1X Pfx AccuPrime Reaction Mix, 2.5 units AccuPrime Pfx polymerase
(ThermoFisher, Waltham, MA, USA). Reaction conditions consisted of 1 cycle of initial
denaturation of 95 ◦C for 5 min, 12 cycles of denaturation at 95 ◦C for 30 s, annealing at
56 ◦C for 1 min, and extension at 68 ◦C for 8 min. This was followed by a final annealing
step of 56 ◦C for 1 min, and a final extension of 68 ◦C for 30 min. The PCR products were
treated with DpnI (ThermoFisher, Waltham, MA, USA) for 1 h and purified using PureLink
Quick PCR purification Kit (Invitrogen, Darmstadt, Germany). Purified products were then
transformed into JM109 (Promega, Madison, WI, USA) or DH5α (Invitrogen, Waltham,
MA, USA) cells via heat shock and plated for overnight incubation on LB agar containing
100 µg/mL carbenicillin at 37 ◦C. Colonies were picked and screened by PCR.

2.2. Cloning of NS1 into Expression Vector and Expression Screening

The full-length amplified NS1 genes for ZIKV and DENV type II, NCBI Accession
Numbers LC002520 and KM204118, respectively, were ligated into the expression vector
pET-45b(+) (Novagen, Madison, WI, USA) using the added restriction sites, resulting in
an N-terminally hexahistidine-tagged NS1 protein under the control of the T7 promoter
with minimal vector-encoded amino acids. The plasmid was transformed into Rosetta 2
(DE3) E. coli cells and plated on LB agar containing 100 µg/mL carbenicillin and incubated
overnight at 37 ◦C. Rosetta 2 strains enhance expression of eukaryotic proteins that contain
codons rarely used in E. coli by supplying tRNAs for 7 rare codons (AGA, AGG, AUA,
CUA, GGA, CCC, and CGG) on a chloramphenicol-resistant plasmid.

Colonies were screened by PCR amplification of gene insert followed by confirmation
via restriction digestion using the enzymes used for insertion. Colonies confirmed by
digestion were further confirmed by sequencing of the insert using primers for T7 promoter
and T7 terminator sequences (GeneWiz, South Plainfield, NJ, USA). Colonies from a
confirmed plasmid were screened for expression levels by plating on LB agar containing
100 µg/mL carbenicillin followed by growth in LB broth. At an OD600 of 0.7 in liquid
culture, expression was induced using 1 mM IPTG and pelleted after a period of 3 h.
Colonies were diluted to 100× the final OD600 with water and lysed with addition of
Laemmli sample buffer (Bio-Rad, Hercules, CA, USA) to working concentration, followed
by brief sonication. Lysed samples were analyzed by SDS-PAGE followed by total protein
staining via Coomassie Blue G250.

2.3. Flavivirus Gene Synthesis and PCR Amplification

The full length NS1 genes from yellow fever virus (YFV), West Nile virus (WNV), and
St. Louis Encephalitis virus (SLEV), NCBI Accession Numbers KF769016.1, DQ211652.1,
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and KX258461.1, respectively, were synthesized in pUC-IDT (Amp) (Integrated DNA
Technologies, Coralville, IA, USA). The NS1 gene was then amplified using primers NS1
WT Forward (Table S2) with the upstream restriction site and NS1 WT Reverse with the
restriction site added downstream, as well as an E. coli STOP codon. Restriction sites
differed based on whether each enzyme cut site was contained within the gene of interest;
if so, a different enzyme was chosen. For SLEV, BamHI and HindIII were used, with
YFV using MfeI and HindIII, and WNV using BamHI and NotI. PCR was performed
using a reaction containing 1X Phusion polymerase (New England BioLabs, Ipswich, MA,
USA), 200 µM dNTPs, 0.5 µM forward and reverse primers, 1X Phusion HF Buffer, and 3%
DMSO using an ABI thermal cycler (Applied Biosystems, Foster City, CA, USA). Reaction
conditions consisted of an initial denaturation at 98 ◦C for 30 s, followed by 35 cycles of
denaturation at 98 ◦C for 10 s, annealing at 55 ◦C for 30 s, and extension at 72 ◦C for 30 s,
with a final extension of 72 ◦C for 10 min. Inserts were confirmed by sequencing (GeneWiz,
South Plainfield, NJ, USA).

2.4. rNS1 Production and Solubilization

One-liter cultures of bacteria expressing recombinant NS1 were grown to an OD600
of 0.7 and induced with 1 mM IPTG. After induction for 4 h, cultures were harvested at
10,000× g for 10 min. Pellets were suspended in cell lysis buffer (10 mM Tris, 10 mM EDTA,
100 mM NaCl, 100 µg/mL Lysozyme, 1% Triton X-100, and protease inhibitor cocktail) for
1 h at 4 ◦C. Pellets were sonicated for 5 min at 40% power (10 s on/30 s off). The solution
was centrifuged at 10,000× g for 40 min and resuspended in IB wash buffer (10 mM Tris,
200 mM NaCl, 1 M Urea, pH 6.0). The suspension was sonicated briefly and rocked for
1 h at 4 ◦C and centrifuged at 10,000× g for 40 min. The resulting inclusion body was
resuspended in IB solubilization buffer (10 mM Tris, 500 mM NaCl, 100 mM NaH2PO4, 8 M
Urea, and 10 mM Beta-mercaptoethanol, pH 8.0) overnight at 4 ◦C after a brief sonication.
The solution was centrifuged at 3220× g for 30 min and used for rNS1purification.

2.5. Purification by Immobilized Metal Affinity Chromatography

The addition of the N-terminal His6 tag allowed for purification of rNS1 by immobi-
lized metal affinity chromatography (IMAC) using HisPur Ni-NTA spin columns (Thermo
Scientific, Waltham, MA, USA). The column was equilibrated with 2 bed volumes of IB
solubilization buffer and the solubilized rNS1 was loaded onto the column. The protein
was allowed to bind for 1 h at room temperature on a rotary shaker. Unbound protein was
allowed to flow through via gravity, and the resin was washed with 10 bed volumes of
wash buffer (500 mM NaCl, 100 mM NaH2PO4, 8 M Urea, 10 mM beta-mercaptoethanol,
20 mM imidazole, pH 8.0). Protein was eluted by passing 10 bed volumes of elution buffer
(500 mM NaCl, 100 mM NaH2PO4, 8 M Urea, 10 mM beta-mercaptoethanol, 250 mM
imidazole, pH 6.0) over the column. Fractions were collected for later SDS-PAGE analysis,
and pure eluted fractions were pooled together for refolding.

2.6. Refolding of Recombinant NS1

Refolding of rNS1 of ZIKV, DENV, YFV, WNV and SLEV was accomplished by ad-
justing the concentration of the pooled protein to 100 µg/mL in IB solubilization buffer
and added to a 10 MWCO dialysis flask (Thermo Scientific, Waltham, MA, USA). The
protein was refolded at 4 ◦C over the course of 3 days in refolding buffer (50 mM Tris,
0.4 M L-arginine, 1 mM reduced glutathione, 0.1 mM oxidized glutathione, pH 8.0) at a
10-fold volume excess, changing refolding buffer once a day. Dialysis was subsequently
performed into PBS (pH 7.4) using 3 changes of buffer, with a final overnight exchange.

2.7. Western Blot Analysis of Refolded Protein

Refolded rNS1 was analyzed by electrophoretic separation on SDS-PAGE gels and
transferring the proteins from the gel to nitrocellulose using a XCell II Blot Module (Thermo
Scientific, Waltham, MA, USA). The membranes were blocked for 1 h at room temperature
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with 5% nonfat dry milk in PBS and 0.05% Tween-20 (PBST). The blots were incubated
with mouse anti-His6 monoclonal antibody (GE Healthcare, Chicago, IL, USA) or anti-
ZIKV NS1 monoclonal antibody (GeneTex, Irvine, CA, USA) overnight at 4 ◦C with gentle
rocking, followed by washing with PBST three times for 5 min each. Incubation with
anti-mouse HRP antibodies followed for one hour at room temperature, and another wash
with PBST three times for five minutes each, followed by development with Novex ECL
chemiluminescent reagent (Invitrogen, Waltham, MA, USA).

2.8. Generation of ZIKV rNS1 Antiserum

Antiserum against ZIKV rNS1 proteins was generated via immunization of goats
with wild-type NS1 and NS1 with alanine substitution mutations of amino acids 117–119
or 227–229 were each inoculated in goats. (ProSci, San Diego, CA, USA). Goats were
immunized with 1.5 mg total of each protein four times at intervals of three weeks. A
pre-immunization bleed was collected plus 4 post-immunization bleeds. Two goats were
used for each protein, with the last bleed for each protein being used for experiments.

2.9. Generation of Polyclonal Antibodies against ZIKV NS1

Antiserum generated in goats against ZIKV NS1 117–119 were purified using affinity
chromatography. CarboxyLink Coupling Resin (Thermo Scientific, USA) was coupled to
5–10 mg ZIKV NS1 117–119 in PBS using a 3-fold increase in the suggested amount of EDC
to compensate for phosphate-containing buffer. Coupled resin was washed and the flow-
through combined with the wash was analyzed at A280 to determine coupling efficiency
by comparing this with the protein solution applied to the resin. Coupled resin was added
to a column suitable for chromatography and stored at 4 ◦C in PBS + 0.02% sodium azide.
Antiserum against rNS1 was diluted 1:1 with PBS and filtered through a 0.22 µm syringe
filter before application to the column. Once applied to the column, the solution was
allowed to flow via gravity until it reached the column exit. Fractions were collected in
1 mL aliquots for A280 analysis. Columns were washed using 10 resin bed volumes of PBS,
followed by elution of bound antibodies with 0.1M glycine, pH 2.7. Elution fractions (1 mL
each) were combined with 60 µL of 1M Tris-HCl, pH 9.0 for antibody affinity protection.
The column was washed with at least 10 resin bed volumes of PBS to remove the glycine,
followed by storage of the column in PBS + 0.5% sodium azide at 4 ◦C.

2.10. Purification of ZIKV Specific Antibodies

Anti-ZIKV NS1 pAbs were cross-adsorbed against DENV2 NS1 using affinity chro-
matography against DENV2 NS1 coupled to CarboxyLink resin via the same protocol as
before. Antibodies eluted from the ZIKV NS1-coupled column were mixed 1:1 with PBS
and applied to the DENV2 NS1-coupled column. The column was washed with 10 resin
bed volumes of PBS, followed by elution of the bound fraction by 0.1 M glycine, pH 2.7.
These fractions were combined for later experimental use as non-adsorbed ZIKV NS1 pAbs.
The fractions that were collected in the flow-through and wash fractions were combined
and applied to the DENV2 NS1-coupled column again. Flow-through and wash fractions
were collected and combined to be used experimentally as cross-adsorbed ZIKV NS1 pAbs.
Both of the cross-adsorbed and non-adsorbed solutions were concentrated via Amicon
Ultra 30,000 MWCO spin filters (Millipore, Cork, Ireland). The pAbs were biotinylated via
the EZ Link Sulfo-NHS Biotin Kit (Thermo Fisher, Waltham, MA, USA).

2.11. Antigen-Capture ELISA

Evaluation of ability of purified pAbs to bind NS1 proteins was performed via Antigen-
capture ELISA. The affinity-purified pAbs were titrated to determine the optimal concentra-
tion to adsorb to the ELISA plates. A variety of coating conditions and ELISA plates were
tested. Optimal conditions were found to be coating pAbs on Nunc Maxisorp 96-well plates
overnight at 10 µg/mL in CBC at 4 ◦C. Wells were blocked with 1.5% BSA for four hours at
room temperature before plates were dried overnight at room temperature and stored at
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4 ◦C. Serum samples to be analyzed were diluted at 1:10 in sample diluent before addition
to the antibody-coated plate and incubation at 37 ◦C for one hour. Plates were washed
with PBS containing 0.05% Tween-20 (PBST) four times before addition of biotinylated-NS1
pAbs (5 µg/mL) for 30 min at room temperature. After another PBST wash, a 1:5000
solution of high sensitivity Streptavidin-HRP (Thermo Fisher, Waltham, MA, USA) was
added and the plate was incubated at room temperature for 30 min. After another PBST
wash, the plate was incubated with TMB substrate (Sigma, Neustadt, Germany) in the
dark for 15 min. The reaction was then stopped with 0.36 N H2SO4 before reading the
absorbance of each well at 450 nm. Standards were run on each plate consisting of ZIKV
rNS1 diluted from 2000 ng/mL down to 0.49 ng/mL using 1:4 dilutions, plus a negative
control consisting of normal human serum diluted 1:10 in sample diluent.

2.12. NS1-Antibody Complex Dissociation ELISA

Serum samples were incubated in an alkaline detergent solution in order to release
antibodies from the antigen (NS1) to examine the possibility of antibody interference
of antigen detection. Serum (55 µL), or soluble NS1 in the case of the standard curve,
were mixed with 55 µL of dissociation solution (1 M Tris base, pH 10.5, 2% Triton X-100,
and 150 mM NaCl) and incubated for 1.5 h at 37 ◦C. After incubation, the alkalinity was
neutralized via addition of 20 µL of 2 M HCl and incubation for one hour at 37 ◦C. After
incubation, 100 µL of 150 mM NaCl solution was added to dilute the detergent percentage
for more efficient binding to the capture antibodies. After sample addition to the plate,
the plates were incubated overnight at 4 ◦C and subjected to the rest of the above ELISA
procedure the next day. Dissociated and non–dissociated samples were run on the same
plate for comparison. Non-dissociated samples were diluted in pre-neutralized and diluted
dissociation buffer. Standards consisted of soluble NS1 run side-by-side on the same plate
using dissociated and non-dissociated conditions.

3. Results
3.1. Computational Analysis of Flavivirus NS1

Crystal structures for full-length, glycosylated NS1 from WNV and DENV have
been reported (PDB: 5GS6, 5IY3). These structures define protein domains and potential
immunoreactive sites (Figure 1). NS1 is a dimer with three major domains in each monomer
(Figure 1A). Due to the sequence similarity between NS1 proteins of flaviviruses, the
ZIKV NS1 is expected to be structurally similar to the NS1 proteins of WNV, DENV and
other members of the flavivirus genus of the Flaviviridae. A small “β-roll” dimerization
domain (amino acids 1–29, red) links the two monomers of the NS1 dimer. The wing
domain (amino acids 30–180, yellow) of each monomer extends from the central β-roll.
A discontinuous connector subdomain (amino acids 30–37 and 152–180, orange) is also
linked to the dimerization domain. A major feature of NS1 is the third domain (amino
acids 181–352, blue), with a ladder-like feature extending along the length of the dimer
and comprised of 18 β-strands. Most of the inter-strand loops are short with the notable
exception of a long “loop” (green) between amino acids 219–272 that lacks secondary
structure but has extensive hydrogen bonding.
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regions 2 and 3.

Previous studies have identified several immunodominent regions of the protein
(Figure 1A,B). Immunodominent region 1 maps to the β-roll, immunodominant region 2
to a disordered sequence at the tip of the wing domain, immunodominent region 3 to the
loop and immunodominant region 4 to the ends of the β-sheet ladder. Of these immuno-
dominent regions 2 and 3 display the most sequence variability between flavivirus NS1
proteins. Site-directed mutagenesis was performed to generate mutated rNS1. Primers
were designed to mutate residues in regions of NS1 with high sequence similarity to
other members of the Flaviviridae family (Table S1). Mutations were targeted toward
sequences in the protein in immunodominant regions 2 and 3 that shared sequence identity
with related flaviviruses. These regions were selected because they are the most highly
conserved sequences in any of the immunodominant regions. Mutations of the sequence
were introduced to the ZIKV NS1 sequence as triple alanine repeats to minimize impacts on
folding of the protein structure. Specific mutations (117–119 and 227–229) were designed
for lower reactivity of the protein to antibodies to non-ZIKV Flavivirus NS1 proteins and
increase specificity of a diagnostic toward ZIKV.

3.2. Production of Mutant Zika Virus NS1 and Dengue Virus NS1

To produce recombinant non-structural protein 1 (rNS1) for the variant NS1, as well
as the related DENV, sequences were amplified and cloned into the pET-45b(+) vector. The
pET-45b(+) vector enables addition of an N-terminal His6 tag that was used for purification
(Figure 2). After induction of protein production, multiple colonies were screened for
expression by SDS-PAGE, with expression appearing to be near peak at 4 h post induction.
Upon expression, localization was confirmed by sonication of an induced pellet followed
by centrifugation to pellet insoluble mass and resuspension of that mass. This revealed
the vast majority of protein to be in the insoluble fraction (inclusion body). Solubilization
of the inclusion body was performed using urea-based buffers in order to denature the
protein and pull it into solution. Following the protein through multiple purification steps
shows the protein is not soluble in either the initial Triton X-100 solubilization buffer, or
1 M urea washes, but must be solubilized in 8 M urea. Ni-NTA purification of protein
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based on the added hexahistidine tag was performed on the 8 M urea soluble fraction with
washes using 20 mM imidazole to eliminate non-specific binding. Elution was performed
with 250 mM imidazole to outcompete the binding of the protein to the resin and allow the
protein to flow through the column.
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Figure 2. Western blot of NS1 mutants. (A): The blot was probed with anti-His6 antibody targeted
toward the protein N-terminus. (B): The blot was probed with anti-ZIKV NS1 monoclonal antibody
targeted toward the C-terminus. Uncropped gels are displayed in Figure S1.

3.3. Reactivity of the rNS1 to Antibodies Circulating in Patient Serum and Immunized Goats

To compare the seroreactivity of the wild-type rNS1 to the mutant rNS1 samples from
Zika patients from Columbia and the Dominican Republic were tested (Figure 3). IgG
binding ratios for the Colombia samples show no differences between wild-type NS1 and
either mutant protein. IgM binding ratios for the samples from the Columbian patients
indicate increased binding to the wild-type protein. Samples from the Dominican Republic
patients showed a different trend, with increased binding to the ZIKV NS1 117–119 and
decreased binding to the ZIKV NS1 227–229. Both mutant NS1 proteins bound serum
IgM more readily in the Dominican Republic samples compared to wild-type NS1 (Figure
3, Table S3). Differences in protein–protein interactions or other structural changes in
the mutant proteins could account for the differential antibody binding compared to
wild-type NS1.

As a large volume of goat serum would be required to produce antigen-capture ELISA
in sufficient amounts for the current and future studies sera from two goats immunized
with either wild-type or mutant rNS1 were pooled. Differences in reactivity are present
significantly in the pooled serum from the immunized goats. Goats immunized with the
wild-type protein produce antibodies that bound to all three variants of ZIKV NS1, as
well as DENV NS1, less strongly than antiserum produced from either mutant ZIKV NS1
proteins (Figure 4). The reduced reactivity, along with the data indicating high binding
of the wild-type protein with antiserum from mutants, reinforces the idea that there are
significant differences in the protein–protein interactions or structural differences of the
mutate rNS1 compared to the wild-type protein. The mutant rNS1 bound each of the other
proteins in amounts not significantly different, indicating that the mutations had little effect
on binding of NS1, at least in goats.
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Figure 3. Ratios of mutant vs. wild-type binding of NS1 by patient samples. The blue line at 1 indicates equal binding.
Numbers over 1 indicate increased binding to the named mutant, while under 1 indicate increased wild-type binding.
(A): Ratios of mutant/wild-type binding from IgG in samples show preferential binding to 117–119 mutant NS1. (B): IgM
shows preferential binding of mutant NS1 proteins in samples from the Dominican Republic. Colombia = Colombia samples
from suspected ZIKV infection. Dom Rep = Dominican Republic samples from suspected ZIKV infection. 117–119 = ZIKV
NS1 W117A, G118A, K119A. 227–229 = ZIKV NS1 H227A, T228A, L229A Comparisons were made using Kruskal–Wallis
ANOVA. Asterisks represent significant comparisons (**** p < 0.0001; ** p < 0.01). The full dataset is presented in Table S3.
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Figure 4. Serum from goats immunized with ZIKV mutants show differential binding to NS1 proteins. Antibody-capture
ELISA was performed on a mixture of serum from two goats immunized with ZIKV NS1 protein. Binding of WT ZIKV
NS1 showed lower binding to WT (A), both mutants (B,C), as well as DENV2 WT NS1 (D). Data represent samples run in
duplicate. Error bars (standard error of the mean) were smaller than the symbols as drawn. The experiment was repeated a
total of three times. The legend in panel (D) also applies to panels (A–C).
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3.4. Affinity Purification of ZIKV NS1 Polyclonal Antibodies

To generate a pAb solution that is specific to ZIKV NS1, without cross-reactivity
to related viruses, we began with pooled goat anti-ZIKV NS1 serum generated from
inoculation with the full-length ZIKV rNS1 117–119 mutant. This serum was selected
because it had a higher titer for ZIKV rNS1 than the sera from goats immunized with
wild-type rNS1. Using a CarboxyLink column coupled with the same mutant NS1, we
purified anti-ZIKV pAbs via affinity chromatography. This resulted in a pool of antibodies
with high levels of binding toward ZIKV NS1, but also possessed affinity for DENV2 NS1.
This was removed via affinity chromatography using a similar column set-up but coupled
with DENV2 NS1 wild-type protein (Figure 5A). This cross-adsorption was repeated once,
resulting in a pAb solution with high affinity to ZIKV NS1 and low reactivity toward
DENV2 NS1 (Figure 5B).
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Figure 5. Process for purifying and cross-adsorbing ZIKV NS1 antibodies. ZIKV NS1 antibodies were affinity purified using
a gravity flow column. (A): The bound and eluted fraction was put through a column with DENV NS1 twice. The unbound
and eluted (non-DENV reactive) fraction is the cross-adsorbed, ZIKV-specific fraction. (B): Antibodies flowing through the
column initially bind ZIKV at low signal strength. Following ZIKV NS1 column elution, strength of binding of the solution
goes up, but DENV NS1 reactivity is present. Upon cross-adsorption against DENV NS1, specificity of the pAb solution
goes up, as well as its binding avidity to ZIKV NS1.

3.5. Development of a ZIKV NS1 Antigen-Capture ELISA

The anti-ZIKV NS1 pAbs generated were coated onto plates in order to perform
antigen-capture ELISA targeted toward ZIKV NS1. Purified ZIKV NS1 W117A, G118A,
K119A was diluted 1:4 in buffer beginning at 2000 ng/mL and going down to 0.49 ng/mL.
This assay provided a good range of values corresponding with dilutions of NS1, with
a limit of detection of between 1.95 and 7.8 ng/mL, defined as the mean of the negative
control plus 1.96 standard deviation of the control (Figure 6A). Linear regression analysis
shows a good fit of data, with an r2 value of 0.96 (Figure 6B). Comparison of separate runs
using the same preparation of pAbs in both runs results in a p value < 0.0001 (Figure S2).
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Figure 6. ZIKV NS1 antigen-capture ELISA limit of detection and dynamic range. (A): ZIKV rNS1 shows binding
significantly higher than BSA down to 7.8 ng/mL. The limit of detection of the assay is between 7.8 and 1.95 ng/mL
NS1. (B): Linear regression of NS1 detection via ELISA demonstrates assay can quantify protein across a range of values.
Comparisons were made using two-way ANOVA with a Holm–Sidak multiple comparisons test. Asterisks represent
significant comparisons (**** p < 0.0001; * p < 0.05). Error bars represent the standard error of the mean.

3.6. Specificity of ZIKV Antigen-Capture ELISA

Sequences of NS1 antigens from the related flaviviruses YFV, WNV and SLEV were
generated synthetically and cloned into the pET-45b(+) vector by using primers that
added appropriate restriction sites (Table S2). As with our previous ZIKV and DENV NS1
constructs, this allowed for insertion of an N-terminal His6 sequence in order to allow
for downstream blotting and purification. Protein staining of cultures induced with IPTG
alongside uninduced colonies via Coomassie Blue reveals NS1 bands in sizes as expected
(Figure 7). After solubilization of the NS1 proteins, which were located predominantly in
the inclusion body, refolding was performed to return the proteins to their native structures.
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Figure 7. Production of flavivirus NS1. Coomassie-stained SDS-PAGE images of induced (I) and
uninduced (U) cultures from NS1 proteins of yellow fever virus (A), West Nile virus (A,B) and St.
Louis Encephalitis virus (B). Bands indicate proteins similar to DENV and ZIKV NS1 WT production.
Results from three different colonies [1–3] for each flavivirus NS1 are indicated. Uncropped gels are
displayed in Figure S3.

Cross-reactivity of anti-ZIKV NS1 pAbs was analyzed via antigen-capture assay using
ZIKV, DENV, SLEV, WNV and YFV rNS1. Binding values (A450) were significantly lower
with concentrations of NS1 of ZIKV vs. DENV, SLEV, YFV and WNV from 2000 ng/mL to
7.8 ng/mL (Figure 8). West Nile Virus NS1 had cross-reactivity assessed via percentage
of ZIKV NS1 binding at just above 20%, with all other NS1 proteins being at or below
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20% cross-reactivity. Cross-reactivity of non-adsorbed antibodies was assessed as well.
In this case, the cross-reactivity of WNV NS1 was over 70%, with other proteins falling
between that and 50% (Figure S4A). Non-cross-adsorbed antibodies react to ZIKV NS1 at
approximately 55% of the level of cross-adsorbed antibodies in the same assay (Figure S4B).
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Figure 8. The ZIKV NS1 antigen-capture assay demonstrates low cross-reactivity to related viruses.
Recombinant NS1 antigens were produced and assayed. A: Even at low levels of NS1 detection,
the assay is specific to ZIKV NS1. Comparisons made using two-way ANOVA with a Holm–Sidak
multiple comparisons test. Asterisks represent significant comparisons between ZIKV NS1 and all
other NS1 proteins (**** p < 0.0001; * p < 0.05). Error bars represent the standard error of the mean.

3.7. Antigen Levels in Serum from ZIKA Patients

We utilized the ZIKV NS1 antigen-capture assay to determine circulating NS1 levels
in patient serum from the 2015–2016 ZIKV outbreak. Levels found circulating range from
not detectable to over 2.2 µg/mL (Table 1). In the Colombian samples, 52.6% of samples
were positive for NS1, while the Dominican Republic samples showed a higher positivity
rate of 67.5%. Overall, 55.7% of samples collected from symptomatic ZIKV patients during
the outbreak were positive (Table 1 and Table S2).

Table 1. ZIKV NS1 antigen-capture ELISA results from patients infected during the 2015–2016
outbreaks in Colombia and the Dominican Republic 1.

Country Number of Samples Positive Samples (%)

Columbia 154 81 (52.6)
Dominican Republic 40 27 (67.5)

Overall 194 108 (55.7)
1 Raw data for this Table are presented in Table S3.

We next asked if the detection of NS1 could be improved by dissociating the antigen
from any circulating anti-Flavivirus NS1 antibodies patients may have developed from
previous infections. If so, it would pose a challenge for detection of ZIKV infection in
flavivirus endemic areas. Using an alkaline detergent method, we separated the antigen-
antibody complex and performed NS1 antigen-capture ELISA as performed previously.
This method showed little effect on detection of NS1 in solution (Figure S5A). Performing
the assay on samples from the Dominican Republic shows no significant change in detection
of NS1 whether associated to circulating antibodies or not (Figure S5B).
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4. Discussion

The Zika epidemic of 2015–2016 spurred development of multiple antigen-capture
assays [50–52]. Several have become commercially available for use in clinical diagnosis,
while others were available for research use only [53]. Some of the diagnostics exhibited low
limits of detection, and remained untested in the field [51], while others had sensitivities
and specificities between 70% and 100% [54]. The broad sequence similarity of ZIKV
proteins and other widespread flaviviruses, such as DENV, makes development of specific
ZIKV diagnostic assays challenging. Generally, ZIKA antigen-capture assays have utilized
mAbs to reduce reactivity to related flavivirus proteins. However, DENV diagnostics based
on NS1 capture are susceptible to interference from antibodies circulating in patient serum,
and other flavivirus diagnostics have exhibited the same issue. A diagnostic based on
capture of WNV NS1 was developed using mAbs, where capture of recombinant NS1 was
deemed sensitive, with a detection limit of 0.5 ng/mL soluble NS1. Detection in serum after
day 7, even in mice during a primary infection, was decreased. This was presumably due to
the increase in IgM generated against WNV NS1. After separation of the antigen–antibody
complex, NS1 detection increased significantly [55]. This illustrates a potential difficulty
with using mAb-capture NS1 diagnostics, which lead us to develop a test using pAbs.

The hypothesis that mutations of NS1 that eliminate epitopes conserved among fla-
viviruses could decrease cross-reactivity to non-ZIKV flavivirus NS1 was tested. Region 2,
containing an immunodominant region in both natural infection and vaccination, and
mapped to the wing domain with a conserved amino acid sequence from
aa 114–119 [56–58]. Monoclonal antibodies against this region are capable of inducing
protection across multiple species within the Flaviviridae family [59]. We used NS1 with
mutations in this epitope to analyze sera of serum collected from patients diagnosed with
Zika from the 2015–2016 epidemics in Colombia and the Dominican Republic. Sera from the
Columbian and Dominican human populations, previously diagnosed with Zika, reacted
differently to the modified proteins compared to wild-type and the pattern in which these
populations reacted differed.

Immunizing with NS1 modified to distrupt cross-reactive epitopes significantly in-
creased the immune response of goats relative to the wild-type protein. One possibility
to explain this observation is that the mutations focused the animals’ humoral immune
response to the remaining available non-cross-reactive epitopes. Our approach not only
improved the specificity of the pAbs, but it also increased their apparent reactivity. This al-
lowed the development of an NS1 antigen-capture ELISA that effectively measures soluble
NS1 protein, with a limit of detection between 1.95 ng/mL and 7.8 ng/mL. This compares
favorably to comparable DENV NS1 capture ELISAs, such as SD Bioline’s detection limit
of between 16 and 63 ng/mL NS1 [60].

Future studies could potentially employ recombinant NS1 proteins with mutations
in additional epitopes and combinations of different epitope mutations to further reduce
cross-reactivity. For example, immunodominant region 4 in the NS1 protein corresponds
to an area of NS1 above the beta-ladder that is exposed on the protein surface and is also
an area of high antibody binding. This region elicited strong cross-reactive serological
responses upon vaccination of mice with NS1 of DENV2 plus adjuvant, as well as during
natural infection with DENV2. This points to this region, which is conserved among DENV
strains, as an attractive target for the approaches piloted in the current study [58].

Expression of NS1 proteins of the genetically related flaviviruses YFV, WNV and
SLEV allowed investigation of potential cross-reactivity that could generate false positive
diagnostic results in our ZIKV antigen-capture ELISA. NS1 proteins from DENV, YFV,
WNV and SLEV show minimal reactivity in our prototype ZIKV antigen-capture ELISA.
The diagnostic revealed high ZIKV specificity, with the highest cross-reactivity coming from
WNV, with only 20% of the signal generated from ZIKV NS1 at the highest level of protein
tested. This is a decrease of 50% signal intensity from non-cross-adsorbed antibodies,
indicating this process removes a substantial portion of cross-reactive antibodies from the
solution, leaving a high signal generating, specific pool of pAbs. The ZIKV antigen-capture
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ELISA assay detected ZIKV in human serum from acute cases of ZIKV infection comparable
to existing DENV antigen-capture diagnostics [61].

Cross reactivity is not the only problem in developing diagnostic tests where related
viruses are endemic. Circulating anti-NS1 antibodies present during later in infection can
reduce assays sensitivity dramatically [42,49]. The pAb-based ELISA showed no effect of
antigen unmasking, indicating that this phenomenon is not a concern as it can be with
mAb-based assays. Not only does the pAb approach contribute to solving the need for
more ZIKV-specific assays that must be in place to differentiate ZIKV infections from
similar and related infections, but none of the masking of NS1 by pre-existing antibodies
generated by previous infections by related flaviviruses was observed. These results also
suggest that a rapid diagnostic test could be developed using this approach to satisfy a
need for point of care diagnostics for deployment to sites of outbreaks to be performed
by personnel without extensive training [62]. This could also be utilized in a side-by-side
antigen and antibody (IgM) detection platform, as is available for DENV infection [42,63].

Evaluation of different methods of generating ZIKV-specific antibodies and antigens
may be fruitful in the future. Rabbits are commonly used to generate antibodies, and rabbit
antibodies often possess enhanced binding capabilities [64,65]. Use of rabbit antibodies
in NS1 antigen-capture may require less cross-adsorption, as well as resulting in low non-
specific interactions during lateral flow rapid tests. Generation of protein via mammalian
cells may be of benefit as well, as mammalian cells can produce post-translational modi-
fications, including glycosylation, that result in an antigen with greater similarity to that
produced during human infection, thereby improving antibody recognition. Advances
in mammalian cell-hosted protein production [66,67] suggest that yields sufficient for the
implementation of the type of detection test presented in this report are achievable.

5. Conclusions

An antigen-capture ELISA configured with an affinity-purified pAb to ZIKV NS1
demonstrated limited cross-reactivity to NS1 of commonly circulating flaviviruses. Re-
finement of approaches similar to those employed here could lead to development of
ZIKV-specific immunoassays suitable for use in areas where infections with related fla-
viviruses are common. This assay is effective at detection of ZIKV NS1 even when antigens
from ZIKV or co-circulating non-ZIKV flavivirus antibodies are present. These results
further the goal of developing the tools for ZIKV infection diagnoses at every window of
infection, thus giving the clinician valuable information for future case management and
treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13091771/s1, Figure S1: Uncropped gel images for Figure 2, Figure S2: Antigen capture
assay shows consistency between runs, Figure S3: Uncropped gel images for Figure 7, Figure S4:
Reactivity of NS1 antibodies without cross-adsorption, Figure S5: ZIKV NS1 Capture ELISA does
not display interference from substances in patient serum, Table S1: Primer sequences used for the
generation and mutation of ZIKV/DENV NS1, Table S2: Primers used for the generation of flavivirus
NS1 Proteins, Table S3: NS1/IgM/IgG Levels in surveyed patient serum.
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