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a b s t r a c t

Background: Long QT syndromes (LQTS) are characterized by prolonged QTc interval on electrocardio-
gram (ECG) and manifest with syncope, seizures or sudden cardiac death. Long QT 1e3 constitute about
75% of all inherited LQTS. We classified a cohort of Indian patients for the common LQTS based on T wave
morphology and triggering factors to prioritize the gene to be tested. We sought to identify the causative
mutations and mutation spectrum, perform genotype-phenotype correlation and screen family
members.
Methods: Thirty patients who fulfilled the criteria were enrolled. The most probable candidate gene
among KCNQ1, KCNH2 and SCN5A were sequenced.
Results: Of the 30 patients, 22 were classified at LQT1, two as LQT2 and six as LQT3. Mutations in KCNQ1
were identified in 17 (77%) of 22 LQT1 patients, KCNH2 mutation in one of two LQT2 and SCN5A mu-
tations in two of six LQT3 patients. We correlated the presence of the specific ECG morphology in all
mutation positive cases. Eight mutations in KCNQ1 and one in SCN5A were novel and predicted to be
pathogenic by in-silico analysis. Of all parents with heterozygous mutations, 24 (92%) of 26 were
asymptomatic. Ten available siblings of nine probands were screened and three were homozygous and
symptomatic, five heterozygous and asymptomatic.
Conclusions: This study in a cohort of Asian Indian patients highlights the mutation spectrum of common
Long QT syndromes. The clinical utility for prevention of unexplained sudden cardiac deaths is an
important sequel to identification of the mutation in at-risk family members.
Copyright © 2016, Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Long QT syndromes (LQTS) are inherited autosomal dominant
channelopathies associated with prolongation of QT interval on the
12-lead electrocardiogram (ECG) (QTc > 440 ms in men and
>450 ms in women). They are caused by mutations in fifteen car-
diac ion channels pore forming and auxiliary subunit genes [1e3].
Common symptoms include syncope, seizures, and polymorphic
ventricular tachyarrhythmias, that may lead to sudden cardiac
death [4]. Among all types of LQTS, Long QT types 1e3 (LQT 1e3)
constitute about 75% of the cases [5,6]. LQT1 is also observed as an
autosomal recessive trait in patients with sensorineural deafness
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bijalvyas86@gmail.com
mailto:ratnadpuri@yahoo.com
mailto:kknnamboodiri@gmail.com
mailto:renu2006@gmail.com
mailto:mohancardio@gmail.com
mailto:bprahlad@gmail.com
mailto:mp.jayakrishnan@gmail.com
mailto:drameya@gmail.com
mailto:drameya@gmail.com
mailto:ravi.kishore@healthcity.ky
mailto:dr_icverma@yahoo.com
mailto:dr_icverma@yahoo.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipej.2016.03.003&domain=pdf
www.sciencedirect.com/science/journal/09726292
www.elsevier.com/locate/IPEJ
http://dx.doi.org/10.1016/j.ipej.2016.03.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ipej.2016.03.003
http://dx.doi.org/10.1016/j.ipej.2016.03.003


B. Vyas et al. / Indian Pacing and Electrophysiology Journal 16 (2016) 8e18 9
[Jervell-Lange Nielsen syndrome (JLNS)], whereas patients without
deafness are referred to as autosomal recessive Romano-Ward
syndrome (AR RWS) [7].

Specific triggering factors and T wave morphology on ECG are
consistently described in three common types of LQTS [8e10].
Typically, in LQT1 syndrome, physical exertion triggers arrhythmic
events with ECG showing broad T waves; in LQT2 syndrome,
emotional stress, auditory stimuli, postpartum period trigger car-
diac events with ECG demonstrating a biphasic or notched T wave.
In LQT3 syndrome, majority of arrhythmic events occur during
sleep or rest and they have delayed onset of T wave on ECG [2,11,12].

LQT1 and LQT2 are caused due to mutations in the potassium
channel genes, KCNQ1 (OMIM#607542) and KCNH2
(OMIM#152427) respectively, while LQT3 is caused bymutations in
a sodium channel gene, SCN5A (OMIM#600163) [2]. Although
hundreds of mutations have been identified in the three genes,
studies have shown the presence of common as well as founder
mutations in different populations suggesting genetic or allelic
heterogeneity [6,13e16].

Molecular testing in LQTS helps to confirm the clinical diagnosis
in the proband, perform genotype-phenotype guided management
as well identify the at-risk family members who may be asymp-
tomatic and can be missed by ECG studies [12,17]. In this study, we
classified a cohort of Asian Indian patients with Long QT syndrome
based on T wavemorphology and triggering factors. The aimwas to
identify the causative mutations in patients affected with common
types of LQTS, determine the mutation spectrum of this sparsely
studied population, perform genotype-phenotype correlation and
identify the at-risk family members.

2. Materials and methods

2.1. Patients

Thirty patients of Asian Indian origin from unrelated families
were included in the ongoing study on life threatening Long QT
syndromes, from January 2011 through July 2015 at Sir Ganga Ram
Hospital, NewDelhi, India. Theywere “suspected LQTS” on the basis
of prolongation of QTc interval >440 ms in men and >450 ms in
women. All probands were <40 years of age, had a structurally
normal heart on echocardiography, and were classified in three
different groups of LQTS (LQT1, LQT2, LQT3) depending on the ECG
morphology (Fig. 1) and triggers. They also had either a) symptoms
of syncope/seizures/resuscitated sudden cardiac death (SCD) and/
or b) a family history of SCD/LQTS. All those with unclear ECG
morphology were excluded. The clinical details such as age at onset
of symptoms, age at diagnosis, trigger for arrhythmias, type of
Fig. 1. Classification of LQTS type on the T wave morp
cardiac events and the family history, up to three generations was
noted for each proband. Patients with structural cardiac abnor-
mality, electrolyte imbalance or on medications known to prolong
QT interval were excluded.

An informed consent was obtained from all the probands and
their family members included in this study. This study was
approved by the Ethics Committee of Sir Ganga Ram Hospital vide
no EC/01/12/337.

2.2. Sample collection and DNA extraction

Blood samples (6 ml EDTA) were collected from the patient,
their parents and siblings as available. Genomic DNAwas extracted
using the salt precipitation method. The isolated DNA was quanti-
fied by a spectrophotometer at the absorbance ratio of 260/280.

2.3. Mutation screening

2.3.1. PCR amplification
Primers flanking the exon-intron boundaries of all coding exons

in three common genes (KCNQ1 [NM_000218], KCNH2
[NM_000238] and SCN5A [NM_198056]); were designed using
web-primer software available in Saccharomyces genome database
(http://www.yeastgenome.org/cgi-bin/web-primer). Primer se-
quences are available on request. On the basis of the T wave
morphology on ECG and triggering factors causing the episodes, the
candidate gene was selected to be PCR amplified and sequenced in
these patients.

2.3.2. Sanger sequencing
PCR products were purified using MicroAmp purification plate

and subjected to direct sequencing based on dideoxynucleotide
termination methodology using the BigDye terminator cycle
sequencing Ready reaction kit (Applied Biosystems, Perkin Elmer
Corporation, Foster City, CA). Sequencing was performed bi-
directionally on ABI 3500 Genetic Analyzer (Applied Biosystems,
UK).

2.3.3. Detection of variants
Analysis of the electropherogramwas performed by aligning the

patient sequences with the reference sequences of KCNQ1, KCNH2
and SCN5A available in the database using Blat tool (https://
genome.ucsc.edu/cgi-bin/hgBlat). Forward and reverse primer
sequencing results were compared to confirm the presence of the
variation. All variations were also verified by sequencing a second
amplified amplicon.
hology on ECG. LQT1 (a), LQT2 (b) and LQT3 (c).

http://www.yeastgenome.org/cgi-bin/web-primer
https://genome.ucsc.edu/cgi-bin/hgBlat
https://genome.ucsc.edu/cgi-bin/hgBlat
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2.4. Confirmation of the pathogenicity

If variations identified in this study were described in previous
literature or listed in mutation database (http://triad.fsm.it/
cardmoc/ and http://www.genomed.org/lovd2/home.php?
action¼switch_db), then these were considered disease causing.

For novel variations, in-silico analysis was performed. Frameshift
variations caused by deletion or duplication as well as nonsense
variations responsible for truncation of a protein were considered
to be pathogenic. Missense variations were evaluated using bio-
informatic softwares such as Mutation Taster (http://www.
mutationtaster.org), Polyphen-2 (http://genetics.bwh.harvard.edu/
pph2/), and SIFT (http://sift.jcvi.org/www/SIFT_enst_submit.
html). In addition, FATHMM (http://fathmm.biocompute.org.uk),
I-Mutant (http://folding.biofold.org/i-mutant/i-mutant2.0.html),
PROVEAN (http://provean.jcvi.org/seq_submit.php), PSIpred
(http://bioinf.cs.ucl.ac.uk/psipred/), RaptorX (http://raptorx.
uchicago.edu/StructurePrediction) and ProtParam (http://web.
expasy.oreg/protparam), were used to predict the effect of the
missense mutations on the secondary structure of protein and to
calculate the instability index of the mutated proteins. Splice-site
variations were investigated used BDGP (http://www.fruitfly.org/
seq_tools/splice.html), AUGUSTUS (http://bioinf.uni-greifswald.
de/augustus/predictions/), GeneID (http://genome.crg.es/
software/geneid/), GENSCAN (http://www.genes.mit.edu/
GENSCAN.html) and NetGene2 (http://www.cbs.dtu.dk/services/
NetGene2/). Conservation of residues was examined across
different species using PhyloP and PhastCons (http://www.
mutationtaster.org). Hundred control samples (200 alleles) were
screened to assess the frequency of the novel variations in the
general population. Novel variations were also checked in dbSNP
database (http://www.ncbi.nlm.nih.gov/projects/SNP), 1000 Ge-
nomes (http://browser.1000genomes.org/index.html) or Exome
Variant Server (EVS) (http://evs.gs.washington.edu/EVS). Fre-
quency information was also obtained from the literature or from
public exome/genome databases e 1000 Genomes and EVS and
variations with a MAF (minor allele frequency) of <1% in all pop-
ulation were considered as mutations. The novel variations were
only considered pathogenic if they were absent in these control
populations and atleast five bioinformatic softwares predicted the
change to be pathogenic.

3. Family screening

Once a variation was identified in a proband, the parents were
sequenced to determine the inheritance pattern. Screening of the
siblings and first-degree relatives was performed if their samples
were available. The results from segregation studies were used for
performing genotype-phenotype correlation.

The entire work plan is demonstrated in Fig. 2.

4. Results

4.1. Patient characterization

In this cohort, on the basis of the T wave morphology (Fig. 1), 22
(73%) of 30 were identified to have broad or tall T waves and were
classified as LQT1 patients. Exercise typically acted as a trigger in 12
(54%) of 22 patients. Of these, five (17%) patients had associated
sensorineural hearing loss. Similarly, 2 (7%) had notched T waves
and 6 (20%) of 30 had delayed onset of T waves classifying them as
LQT2 and LQT3 syndromes, respectively. In the LQT2 group,
emotion and sound acted as a trigger in one patient and the second
patient experienced syncopal events in the postpartum period.
Three of six patients in the LQT3 group experienced cardiac events
during sleep. The detailed phenotypes of probands classified as
LQT1, LQT2 and LQT3 are summarized in Table S1.

4.2. Molecular characterization

Of 30 patients with LQTS, mutations were identified in 20 (67%).
In the LQT1 patient cohort, mutations were present in 17 (77%) of
22 in KCNQ1; one proband had mutation in KCNH2 of 2 patients
with LQT2 phenotype; and 2 of 6 LQT3 patients had mutations in
SCN5A. The genotypic information of these patients is summarized
in Table 1.

4.2.1. LQT1 syndrome (KCNQ1)
In this group of 22 patients, 17 were identified with mutations.

Of these, seven patients had a heterozygous mutation and ten had
biallelic mutations of which three were compound heterozygous
and seven were homozygous for mutations in KCNQ1. Five of the
latter ten probands with biallelic mutations had associated senso-
rineural hearing loss (JLNS) and the rest without deafness were
classified as AR RWS.

In the cohort of 17 mutation positive patients, 20 mutations in
KCNQ1 were identified. Two common novel missense mutations
(G186D, F351L) were present in two and three unrelated probands
respectively. Of the remaining 17 different mutations, nine were
missense and eight were radical mutations including three splice
site, three deletions, and two duplications. Majority of mutations
(5/17; 29%) were located in exon 3; two each in exon 6, 13 and 15;
and one each in exon 2, 5, 7, 8, 11 and 14. Eleven mutations (65%)
were in or between transmembrane domains (S1eS6) and six (35%)
were in C-terminal region of the protein (Fig. 3). Eight mutations
identified were novel.

4.2.2. LQT2 syndrome (KCNH2)
One KCNH2 heterozygous missense mutationwas identified in a

probandwith LQT2 syndrome. This is a reportedmutation in exon 7
of the genomic region and transmembrane (S6) domain of the
protein.

4.2.3. LQT3 syndrome (SCN5A)
Two patients were identified with heterozygous missense mu-

tations in SCN5A. These mutations were located in exon 10 and 27
of the genomic region and transmembrane (D1eS6) and C-terminal
domain of the protein, respectively. R1897Q was a novel variant.

4.3. Genotypeephenotype correlation

4.3.1. LQT1, LQT2 and LQT3 mutation positive patient groups
In the cohort of LQT1 patients, the male to female ratio was 15:2

while patients with LQT2 and LQT3 were all female. Though the age
of onset was from birth upto 11 years of age in LQT1 patients, there
was a delay in establishing the diagnosis with the wide range of 2
yearse16 years. In LQT2, the age of onset and diagnosis was 29 and
31 years respectively, while in LQT3 cohort, age of onset and
diagnosis for one patient was 6 yrs and 16 yrs while for the other, it
was 0.5 yrs and 4 yrs. The mean age of onset and diagnosis in LQT1
cohort was 2.43 yrs and 7.94 yrs. QTc interval was >500 ms in 82%
and themean QTc was 530.7 ± 40.34 ms in LQT1 group whereas the
mean QTc in LQT2 and LQT3 was 650 ms and 533 ± 66 ms
respectively. Syncope occurred in 82% and seizures in 65% and
previous family history of prolonged QTc, LQTS and/or SCD was
noted in 88% of LQT1 patients as compared to LQT2 patient that
presented with syncope, seizures and family history. In LQT3 pa-
tients, syncope and family history was noted in one proband. All of
them had broad T wave on ECG and 65% experienced cardiac events
during or after some form of exercise in LQT1 group. In the LQT2

http://triad.fsm.it/cardmoc/
http://triad.fsm.it/cardmoc/
http://www.genomed.org/lovd2/home.php?action=switch_db
http://www.genomed.org/lovd2/home.php?action=switch_db
http://www.genomed.org/lovd2/home.php?action=switch_db
http://www.mutationtaster.org
http://www.mutationtaster.org
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org/www/SIFT_enst_submit.html
http://sift.jcvi.org/www/SIFT_enst_submit.html
http://fathmm.biocompute.org.uk
http://folding.biofold.org/i-mutant/i-mutant2.0.html
http://provean.jcvi.org/seq_submit.php
http://bioinf.cs.ucl.ac.uk/psipred/
http://raptorx.uchicago.edu/StructurePrediction
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http://web.expasy.oreg/protparam
http://www.fruitfly.org/seq_tools/splice.html
http://www.fruitfly.org/seq_tools/splice.html
http://bioinf.uni-greifswald.de/augustus/predictions/
http://bioinf.uni-greifswald.de/augustus/predictions/
http://genome.crg.es/software/geneid/
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http://www.genes.mit.edu/GENSCAN.html
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http://www.cbs.dtu.dk/services/NetGene2/
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http://www.mutationtaster.org
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http://www.ncbi.nlm.nih.gov/projects/SNP
http://browser.1000genomes.org/index.html
http://evs.gs.washington.edu/EVS


Fig. 2. Work flow for clinical and molecular characterization of patients with LQTS. EPV: estimated predicted value.
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patient, events occurred with emotion and sleep. Sudden noises
also acted as a trigger for cardiac events in this proband. As
compared to LQT3 cohort, where one of them was asymptomatic
and the second proband had syncopal events during sleep. These
results are summarized in Table S2. Statistical analysis reported no
significant difference between age of onset, diagnosis, QTc interval
or clinical symptoms in LQT1, LQT2 and LQT3.
4.3.2. AD RWS, AR RWS and JLNS mutation positive patient groups
Majority of patients in all three groups were males (88%). The

mean age of onset was comparatively clinically earlier in AR RWS
cohort (1.29 yrs) as compared to AD RWS (3.35 yrs) and JLNS
(2.3 yrs) whereas the mean age of diagnosis was earlier in AD RWS
(5.36 yrs) as compared to AR RWS (10.2 yrs) (p 0.034, significant by
Kruskal Wallis) and JLNS (9.3 yrs). The mean QTc was higher in JLNS
(551 ± 61) as compared to AD RWS (532 ± 30) and AR RWS
(506 ± 8). Syncope was observed in AR RWS and JLNS patients
whereas there was an equal distribution of patients with syncope
and seizures in AD RWS cohort. All patients with AD RWS had
family history whereas only 80% of patients in other two cohorts
were noted with it. These results are summarized in Table S2. There
was no significant difference between age of onset, QTc interval or
any clinical symptoms in this group.
4.4. Pathogenicity

Among the 20 different mutations identified in patients with
LQT1, LQT2 and LQT3, 11 mutations are known pathogenic as sug-
gested by literature (Table 1). The eight novel mutations in KCNQ1
in this cohort were studied for their pathogenicity by PSIpred,
BDGP, AUGUSTUS, GENSCAN and GeneID (Unpublished results).
Here, we evaluate the same using additional softwares (Table 2).
Mutation (p.R1897Q) in SCN5A was novel and is first described in
this study. These novel mutations were absent in 200 control alleles



Table 1
List of identified mutations.

Patients cDNA change Protein
change

Mutation
type

Zygosity Exon Affected
domain

Syndrome References

KCNQ1
Patient 1 c.557G > A#

SCV000240217
p.G186D# Missense Homozygous 3 S2e-S3 JLN1 Vyas et al. (Unpublished results)

Patient 2 c.569G > A
SCV000240225;
rs120074178

p.R190Q Missense Homozygous 3 S2eS3 JLN1 Kapplinger et al., 2009;
Vyas et al. (Unpublished results)

Patient 3 c.502G > A
SCV000240226; rs179489

p.G168R Missense Homozygous 3 S2eS3 JLN1 Marquez et al., 2006;
Vyas et al. (Unpublished results)

Patient 4 c.1051T > C#

SCV000240218
p.F351L# Missense Compound

Heterozygous
8 S6 JLN1 Vyas et al. (Unpublished results)

c.443delA#

SCV000240219
p.Y148Lfs*89# Deletion 2 S1 JLN1 Vyas et al. (Unpublished results)

Patient 5 c.1733-1G > C#

SCV000240220
Splice site Homozygous 15 C-ter JLN1 Vyas et al. (Unpublished results)

Patient 6 c.535G > A
SCV000240227;
rs199473394

p.G179S Missense Homozygous 3 S2eS3 AR LQT1 Splawski et al., 2000;
Vyas et al. (Unpublished results)

Patient 7 c.758C > G#

SCV000240221
p.S253C# Missense Homozygous 5 S4eS5 AR LQT1 Vyas et al. (Unpublished results)

Patient 8 c.1480dupG#

SCV000240222
p.E494Gfs*21# Insertion Homozygous 11 C-ter AR LQT1 Vyas et al. (Unpublished results)

Patient 9 c.1686-2A > G#

SCV000240223
Splice site Compound

Heterozygous
13 C-ter AR LQT1 Vyas et al. (Unpublished results)

c.1597C > T
SCV000240228;
rs199472793

p.R533W Missense 13 C-ter AR LQT1 Chouabe et al., 2005;
Vyas et al. (Unpublished results)

Patient 10 c.1762A > T#

SCV000240224
p.I588F# Missense Compound

Heterozygous
15 C-ter AR LQT1 Vyas et al. (Unpublished results)

c.1051T > C#

SCV000240218
p.F351L# Missense 8 S6 AR LQT1 Vyas et al. (Unpublished results)

Patient 11 c.828_830delCTC
SCV000255629

p.S277del Deletion Heterozygous 6 S5 LQT1 Napolitano et al., 2005; Present study

Patient 12 c.1703G > C
rs199472806;
SCV000255628

p.G568A Missense Heterozygous 14 C-ter LQT1 Chen et al., 2005; Present study

Patient 13 c.824_826delTCT
rs397508126;
SCV000255626

p.F275del Deletion Heterozygous 6 S5 LQT1 Aizawa et al., 2007; Present study

Patient 14 c.1032G > A
rs1800171; SCV000255625

p.A344A Splice site Heterozygous 7 S6 LQT1 Struijk et al., 2006; Present study

Patient 15 c.557G > A#

SCV000240217
p.G186D# Missense Heterozygous 3 S2eS3 LQT1 Present study

Patient 16 c.1051T > C#

SCV000240218
p.F351L# Missense Heterozygous 8 S6 LQT1 Present study

Patient 17 c.524_535dupTCTGGTCCGCC
SCV000255627

p.G179Sfs*267 Duplication Heterozygous 3 S2eS3 LQT1 Lupoglazoff et al., 2004; Present study

KCNH2
Patient 1 c.1920C > A

SCV000240231
p.F640L Missense Heterozygous 7 S6 LQT2 Van Langen et al., 2003; Present study

SCN5A
Patient 1 c.1231G > A

SCV000240230; rs72549410
p.V411M Missense Heterozygous 10 D1eS6 LQT3 Tester et al., 2005; Present study

Patient 2 c.5690G > A#

SCV000240229;
rs199472970

p.R1897Q# Missense Heterozygous 27 C-ter LQT3 Present study

N-ter: N-terminal; C-ter: C-terminal; #: Novel.

B. Vyas et al. / Indian Pacing and Electrophysiology Journal 16 (2016) 8e1812
and public exomes/genomes. Two novel splice site variations in
KCNQ1were evaluated by NetGene2 and a change in the number of
acceptor sites was predicted as elaborated below. Wild type allele
showed the presence of three acceptor sites at position (87, 151 and
198), while the mutant type (c.1682-2A > G) had only two acceptor
sites (87, 198). Similarly, the other splice site mutation (c.1733-
1G > C) also showed the absence of the most probable acceptor
sites (168,170,174,185) as compared towild typewith five acceptor
sites (163, 168, 170, 174, 185).

Secondary and 3D structure modeling by RaptorX and PSIpred
predicted a change in the number of helixes, beta sheets and loops
in all secondary structures of mutant proteins as compared to the
wild type KCNQ1 and SCN5A causing a change in the conformation
of the protein (Fig. 4a and b). For the splice site changes in KCNQ1,
the sequence predicted by GENSCAN was used as a template for
RaptorX. PSIpred software also predicted the R1897Q mutation in
SCN5A to cause changes in the secondary structure of the protein
(Fig. 4c), which in turn is likely to affect the quaternary structure
and/or function.
4.5. Family screening and genotypeephenotype correlation

Screening of parents identified mutations in 17/20 families
(85%) as described in Table S3. One proband had a de-novo



Fig. 3. Localization of LQT1 mutations in KCNQ1 channel protein subunit domains. Mutated amino acids are shown as follows: missense mutations: square; splice site: circle;
deletion: triangle and insertion/duplication: diamond. Missense mutations are represented in red and radical mutations in yellow.
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mutation; one proband was adopted and for the third proband,
family members were not available for screening. In these 17
families, 26 parents were identified to be heterozygous carriers of
which 24 (92%) parents were asymptomatic. Of the ten siblings
screened, eight were identified with mutations (80%) of which five
were asymptomatic (62%). Three had biallelic mutations similar to
the probands and they were symptomatic with syncope and/or
seizures. Two other siblings of the recessive cohort were hetero-
zygous for the familial mutations and had isolated prolonged QTc.
Three siblings of probands with dominant inheritance who were
asymptomatic with prolonged QTc were identified with heterozy-
gous mutations.

5. Discussion

Till date, majority of reports published on Indian patients with
LQTS are of clinical nature, with only few single case reports on
molecular studies [18e22]. The present study is the first to assess
the spectrum of mutations in KCNQ1, KCNH2 and SCN5A responsible
for causing LQT1, LQT2 and LQT3, respectively in an Asian Indian
cohort. In this study, 1) Mutations were identified in 20 of 30 pa-
tients with LQTS (17 in KCNQ1, 1 in KCNH2 and 2 in SCN5A), 2)
Among the 20 mutations, nine were novel mutations (8 in KCNQ1
and 1 in SCN5A) and predicted to be pathogenic by bioinformatics
softwares, 3) Molecular modeling was performed for these muta-
tions that predicted a change in the conformation of the protein, 4)
Family screening identified mutations in 92% of asymptomatic
parents and 62% of asymptomatic siblings.

5.1. Patient characterization

The specific T wave pattern observed in LQT1, LQT2 and LQT3
provides the possibility of effectively anticipating the probable
gene involved in the pathogenesis of the syndrome [3]. KCNQ1 and
KCNH2 encode the a-subunit of IKs and IKr, respectively, of the
delayed rectifier potassium currents and SCN5A encodes a-subunit
of the voltage gated sodium currents. A decrease in the outward
potassium currents or an increase in the inward sodium currents
causes a delay of repolarization of cardiac action potential leading
to a specific T wavemorphology observed in patients with different
types of LQTS [23]. This specific ECG morphology was observed in
all mutation positive patients with the respective type of LQTS
(broad T wave: LQT1, notched T wave: LQT2 and delayed T wave:
LQT3). For the patients negative for mutations in the respective
common genes, there is a possibility of other genetic and acquired
factors that are known to influence ventricular repolarization and
manifest with a similar ECG pattern [8]. Gene specific triggers were
observed in 11 (65%) of 17 patients with LQT1 (physical exertion), in
one patient with LQT2 (sound, emotion) and one of two in patients
with LQT3 (sleep). There was an overlap of sleep as a trigger in one
LQT1 and one LQT2 patient, but majority of their events occurred
with their specific triggers. Though triggers are important for
classification, studies have shown their overlap [12]. In this study of
670 LQTS patients, majority of LQT1 patients (62%) experienced
events during exercise, emotion (26%) and rest/sleep (3%). Whereas
in LQT2 cohort, majority had events during emotion (43%), sleep
(29%) and exercise (13%). Similarly, in LQT3 group, majority had
events during sleep (39%), emotion (19%) and exercise (13%). In the
remaining patients described in this study, triggers were unknown
or were other than the three described above.
5.2. Molecular characterization

In the current study, mutations were identified in 20 (67%) of 30
probands suspected to have LQTS. LQT1 formed the largest cohort
with mutations identified in 17 (57%) of 30 patients. LQT1 is re-
ported to have the highest frequency of approximately 30e35%
among the common subtypes, while LQT2 accounts for 25e30% and
LQT3 for 5e10% [24].

In the cohort of 20 patients positive for mutations, 20 different
mutations were identified. Heterozygousmutations were identified
in 10 (50%) of 20 patients; 7 (35%) in KCNQ1, one in KCNH2 and two
in SCN5A. In a study of 903 LQTS Caucasian patients with mutations
identified, 91% had heterozygous mutations of which 42% were in
KCNQ1, 32% in KCNH2 and 13% in SCN5A [6]. Across worldwide
studies, autosomal dominant form of LQT syndrome with hetero-
zygous mutation is described to be more common with a preva-
lence of 1:2000 in all ethnicities while JLNS is extremely rare and
identified in autosomal recessive pattern with homozygous or
compound heterozygous mutations in less than 1 per 4 million
[2,3]. In the present study, biallelic mutations were present in 10
(50%) of 20 patients; seven patients (7/20; 35%) were homozygous
and three patients (3/20; 15%) were compound heterozygous for
mutations in KCNQ1. The high rate of homozygous mutations in the
absence of high consanguinity (2/9; 22%) in the biallelic group, is
possibly due to the endogamous marriages within the same caste
or community as previously reported in this population [25,26].
However the cohort size is small and the findings need to be sub-
stantiated in a larger sample size.



Table 2
In-silico analysis of novel mutations.

Gene/
Protein

Coding
substitution

Protein
consequence

Family
segregation

Mutation
taster

Polyphen2 SIFT FATHMM I-
Mutant3

PROVEAN ProtParam
(II)

Conservation
PhyloP/
PhastCons

MAF
(dbSNP, 1000G,
EVS)

Other

KCNQ1 557G > A G186D Yes 0.999,
Disease
Causing

1.000,
Probably
Damaging

0,
Damaging

�4.58,
Damaging

Decrease,
7

Deleterious,
�6.188

41.44 5.346/1 Absent in all PSIpred e structure alt.,
RaptorX

1051T > C F351L Yes 0.999,
Disease
Causing

0.978,
Probably
Damaging

0.03,
Damaging

�4.40,
Damaging

Decrease,
6

Deleterious,
�5.704

41.24 4.003/1 Absent in all PSIpred e

structure alt.,
RaptorX

443delA Y148Lfs*89 Yes 1.000,
Disease
Causing

e e e e e e e Absent in all

1732-1G > C e Yes 1.000,
Disease
Causing

e e e e e e e Absent in all BDGP, AUGUSTUS,
GeneID, GENSCAN,
NetGene2

758C > G S253C N/A 0.999,
Disease
Causing

1.000
Probably
Damaging

0,
Damaging

�5.16,
Damaging

Decrease,
5

Deleterious,
�4.860

41.13 5.221/1 Absent in all PSIpred e

structure alt.,
RaptorX

1480dupG E494Gfs*21 Yes 1.000,
Disease
Causing

e e e e e e e Absent in all

1686-2A > G e Yes 1.000,
Disease
Causing

e e e e e e e Absent in all BDGP, AUGUSTUS,
GeneID, GENSCAN,
NetGene2

1762A > T I588F Yes 0.999,
Disease
Causing

0.992,
Probably
Damaging

0,
Damaging

�6.46,
Damaging

Decrease,
8

Deleterious,
�2.939

41.42 1.682/0.978 Absent in all PSIpred e

structure alt.,
RaptorX

SCN5A 5690G > A R1897Q Yes 0.999,
Disease
Causing

0.982,
Probably
Damaging

0.08,
Tolerated

�3.82,
Damaging

Decrease,
7

Deleterious,
�2.576

45.99 4.159/1 Absent in all PSIpred

SIFT: Intolerant or deleterious: <_0.05; Mutation Taster & Polyphen2: probability; FATHMM: scores <0, unfavorable situation, damaging; I-Mutant3: stability, decrease (�0.5 < Kcal/mol), increase (0.5 > Kcal/mol), neutral
(�0.5 < _ Kcal/mol), RI; PROVEAN: Deleterious, <�2.5; ProtParam: Instability index (II) >wild-type protein (KCNQ1:41.24; SCN5A:46.21), instable; Conservation (PhyloP/PhastCons): values between �14 and þ6, positive scores
for sites predicted to be conserved and negative scores predicted to be fast evolving sites/values from 0 (most probably not conserved) to 1 (most probably conserved); PSIpred: structure alteration (alt.) N/A, not available, IP,
incomplete penetrance.
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Fig. 4. In-silico analysis for prediction of molecular structures. a. Secondary structure (H: helix, E: Beta sheet, C: loop) and 3D model of wild type and mutant KCNQ1 protein. b.
Secondary structure (H: helix, E: Beta sheet, C: loop) and 3D model of wild type and mutant SCN5A protein. c. Secondary structure of SCN5A wild type and mutant protein. The
altered residue (p.R1897Q) is shaded in red while the changes in the secondary have been highlighted in green.



Fig. 4. Continued
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5.3. Mutation characterization

In KCNQ1, 11 mutations (65%) were located in or between
transmembrane domains (S1eS6) and six (35%) were in C-terminal
region of the protein (Fig. 3). The transmembrane mutations are
associated with the longer QTc and higher frequency of cardiac
events as compared to C-terminal mutations [27,28]. Similar find-
ings were observed in this study with the mean QTc values of pa-
tients with transmembrane mutations was 536 ± 44.23 and C-
terminal mutations was 510 ± 12.36. In KCNH2, the one mutation
identified was in the transmembrane S6 domain. Missense muta-
tions in this domain have been associated with higher QTc interval
and increased risk of SCD [29], as was observed in our patient (QTc
650 ms) with a history of SCD in her son. In patients with LQT3, one
mutationwas located in the transmembrane region and the second
in the C-terminal domain of SCN5A. There is a lack of clear asso-
ciation between the locations of mutation in this gene with risk
associated of cardiac events in LQT3 patients. In present study, in
patients with LQT3, a transmembrane mutation was associated
with a higher QTc and syncope, as compared to the patient with C-
terminal mutation and isolated fetal bradycardia. Hence, genoty-
peephenotype correlation can help in stratifying the clinical course
of the disorder in patients with LQT1, LQT2 and LQT3 [2,12,27].

In the current study, nine (45%) of 20 mutations were novel
variants (KCNQ1: 8 and SCN5A: 1). Evenwith the advance in genetic
testing, establishing the pathogenicity of the identified rare varia-
tion can be difficult. These alterations are known as “Variants of
Unknown Significance” (VUS) as their association with disease
phenotype is unclear. In such scenarios, one has to rely on family
segregation studies, absence of variant in public databases, absence
of the variant in population specific control population and bioin-
formatics analysis [3]. All novel mutations in the present study
were absent in public exomes/genomes and in our control popu-
lation. Segregation studies identified eight of nine novel mutations
in probands to be inherited from their parents. One proband was
adopted and hence, parental screening was not performed. Ac-
cording to the criteria listed in previous studies for LQTS, frameshift
and splice site mutations are known as “radical mutation” and
considered probably pathogenic with an estimated predicted value
(EPV) of 99% [3]. For the missense variations, the location is of great
significance in determining the pathogenicity [27e29]. Mutations
in the transmembrane and C-terminal regions of KCNQ1 and SCN5A
protein are considered to be probably/possibly pathogenic with an
EPV of 94% and 75%, respectively [3]. In addition to this, we have
used several prediction tools (Table 2) to confirm the pathogenicity
of our novel variants. Molecular modeling using Raptor X and
PSIpred further suggested the pathogenic role of these variants as
changes were seen in the secondary structure (helix, beta-sheets
and coils), which might change the conformation and have an ef-
fect on the normal function of the protein (Fig. 3) (Unpublished
results).

5.4. Family screening

LQT syndromes are known to present with incomplete pene-
trance and variable expressivity that suggests that family members
with the same LQTS causing mutation can display variable clinical
coursewith some being severely affected to somewith no history of
symptoms in lifetime [3]. In this study, 26 parents were heterozy-
gous among 17 (94%) of 18 families studied. Of these, 24 (92%)
parents were asymptomatic. Similarly, eight of ten siblings
screened were identified with mutations (80%) of which five were
asymptomatic (62%). These asymptomatic mutation carriers could
have been easily missed if they were not genotyped. Although ECG
testing is the first line test for LQT diagnosis, studies have shown
that about 10e40% of genotype e positive individuals have QTc
values with normal range and are known to have “concealed LQTS”
[30,31]. Although these individuals have a reduced risk of life
threatening cardiac events (4%) compared to those with patients
with symptoms (15%), they still have an >10 fold higher risk than
genotype negative relatives (0.4%) [3]. Hence, family screening is
very important in Long QT syndromes and can aid in preventing life
threatening events in at-risk asymptomatic members.

6. Conclusions

Based on the results of this study, a personalized molecular
analysis model for affordable diagnostic approach of patients with
Long QT syndromes for Asian Indian population is suggested. The
morphology of Twave pattern observed on the ECG can guide in the
selection of the candidate gene for molecular testing as observed in
the majority of mutation positive patients (67%) in this study.
Secondly, presence of hotspots or common mutations in the gene
can aid in shorter time for testing. In this study, 29% of the iden-
tified mutations in KCNQ1 were in exon 3 and we also identified
two common missense mutations (G186D, F351L). These common
mutations are novel and may be specific to our population, as they
have not yet been reported. If negative, other exons of the specific
gene can be sequenced. If a patient is negative for mutations in the
most probable candidate gene, screening of other LQTS suscepti-
bility genes (LQT2, LQT3, LQT 4e15 (accounting for <5%)) can be
done [3]. This step-by-step mutation analysis will help in identifi-
cation of mutations at a reasonable cost, with limited resources and
in a shorter time frame, which will benefit the patient and at-risk
family members.
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