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High‑throughput materials 
screening algorithm based 
on first‑principles density 
functional theory and artificial 
neural network for high‑entropy 
alloys
Meena Rittiruam1,2,3, Jakapob Noppakhun1,2,3, Sorawee Setasuban1,2,4, 
Nuttanon Aumnongpho1,2,3, Attachai Sriwattana1,2,4, Suphawich Boonchuay1,2,4, 
Tinnakorn Saelee1,2,4, Chanthip Wangphon1,2,4, Annop Ektarawong5,6, 
Patchanee Chammingkwan7, Toshiaki Taniike7, Supareak Praserthdam1,2* & 
Piyasan Praserthdam2

This work introduced the high-throughput phase prediction of PtPd-based high-entropy alloys via the 
algorithm based on a combined Korringa-Kohn-Rostoker coherent potential approximation (KKR-
CPA) and artificial neural network (ANN) technique. As the first step, the KKR-CPA was employed 
to generate 2,720 data of formation energy and lattice parameters in the framework of the first-
principles density functional theory. Following the data generation, 15 features were selected 
and verified for all HEA systems in each phase (FCC and BCC) via ANN. The algorithm exhibited 
high accuracy for all four prediction models on 36,556 data from 9139 HEA systems with 137,085 
features, verified by R2 closed to unity and the mean relative error (MRE) within 5%. From this dataset 
comprising 5002 and 4137 systems of FCC and BCC phases, it can be realized based on the highest 
tendency of HEA phase formation that (1) Sc, Co, Cu, Zn, Y, Ru, Cd, Os, Ir, Hg, Al, Si, P, As, and Tl favor 
FCC phase, (2) Hf, Ga, In, Sn, Pb, and Bi favor BCC phase, and (3) Ti, V, Cr, Mn, Fe, Ni, Zr, Nb, Mo, Tc, 
Rh, Ag, Ta, W, Re, Au, Ge, and Sb can be found in both FCC and BCC phases with comparable tendency, 
where all predictions are in good agreement with the data from the literature. Thus, the combination 
of KKR-CPA and ANN can reduce the computational cost for the screening of PtPd-based HEA and 
accurately predict the structure, i.e., FCC, BCC, etc.

High-entropy alloys (HEAs) are classified by configurational entropy of mixing ( �S)1, in which the criteria are 
�S ≥ 1.36R and �S ≥ 1.50R for tetra and penta-metallic alloys2, respectively. This material has been employed 
in various applications due to its promising properties, especially catalytic3–8 and mechanical properties9–12. 
Nowadays, discovering new formulae of HEA via experimental techniques requires a high cost of chemicals 
and characterization13, where the phase and atomic composition are challenges for HEA materials14. Hence, the 
prediction of the possible phase formation based on computational techniques plays a crucial role in reducing 
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HEA screening costs. It was demonstrated that a system with high �S in a multi-component alloy tended to form 
a single-phase HEA, implying that the system would be less likely to segregate15.

During these several years, machine learning (ML) techniques have been employed to predict structural 
properties and discover unknown materials16. However, a large amount of data is required for ML to predict 
such properties accurately. This will be the main obstacle if one would like to screen the materials based on 
experimental techniques. Complementing the experimental data if it is not enough; one should employ the first-
principles techniques, e.g., density functional theory (DFT), to help generating enough training data for accurate 
ML prediction17,18. This coupling of ML and DFT can tremendously reduce the cost of materials discovery com-
pared to the complete experimental materials screening, where only the expensive screening via high-throughput 
experimentation would be enough for ML19. Therefore, various researchers employed the ML-based method 
to explore new HEA in recent years, as Kaufmann and Vecchio20 reported, which employed the random forest 
technique to predict the single and multiple phases of binary, ternary, quaternary, and quinary alloys. They found 
that all predicted results agreed well with the validation from experimental data and the CALPHAD program. 
Moreover, Jin et al.21 exhibit the coupled DFT-ML technique to screen the phases of multi-component alloys. 
The training dataset of binary alloys was generated by DFT random alloy method, known as the Korringa-
Kohn-Rostoker coherent potential approximation (KKR-CPA). As a result, their prediction accuracy was up to 
80.56% for multi-component alloys and, interestingly, up to 84.20% for HEA materials21. Apart from such an 
algorithm, numerous techniques, i.e., the gradient boosting model, trained with 1,807 datasets, demonstrated 
high accuracy of 96.41% for predicting single-phase and non-single-phase refractory HEAs (RHEAs)22. Other 
methods also exhibit high accuracy prediction, e.g., a combined ML and CALPHAD technique, an artificial neu-
ral network technique (ANN) coupled with experimental data9,10,12,23–28. In addition to phase formation of HEAs, 
machine learning was recently employed to predict the mechanical properties of HEA bulk materials, including 
microhardness10,27, yield strength12,23, dislocation density12, elastic modulus29, Young’s modulus30, hardness11,31, 
and elastic constant32. These shed light on the ML-based high-throughput screening of HEA materials.

As in the aspect of the use of HEA as catalytic materials, the PtPd-based HEAs are among high potential can-
didates that can be utilized in CO2 and CO reduction reaction7,8, oxygen evolution reaction33, oxygen reduction 
reaction34, and hydrogen evolution reaction35. However, from the literature, it was found that most experimental 
works involving PtPd-based HEAs focused mainly on the report of limited formulae of HEA in terms of novel 
synthesis and characterization techniques26,36–43. Therefore, a gigantic set of possible HEA formulae is required 
to understand and utilize their promising properties fully. Hence, a firm protocol for screening HEA properties, 
such as their phase and electronic properties, must be studied and established. The phases and structural proper-
ties should be the first screening stage, in which bulk HEAs’ thermodynamic stability can be extracted through 
the formation energy ( �Ef  ) at the ground-state configuration at 0 K1. Regarding such calculations, Miedema’s 
scheme model44 is one of the simple and fast methods used to obtain �Ef  , where the experimental technique 
must be used to obtain the individual energy for a monometallic component first. Yet, apart from the energy 
term, the structural information of a specific phase of alloys or compounds cannot be determined. To overcome 
such a problem, the periodic DFT was employed to determine both the �Ef  and the structural information of a 
system is reported being successfully utilized in binary systems45. Nevertheless, to design the HEA, many possible 
atomic configurations have to be guessed and verified through thermodynamically optimized structures. The 
routine calculation via DFT alone would be intensive, although all information can be obtained. Also, suppose 
a combined DFT-ML technique is to be used for HEA discovery. In that case a huge configurational space must 
be generated to accurately determine the most favorable atomic configuration at a given operating temperature, 
pressure, and chemical composition. Thus, to reduce the computational cost, even more, we propose the com-
bined KKR-CPA with ML technique for a rapid and low-cost HEA materials screening46–49. This method was 
proven by Jin et al.21 to be a successful tool for the property prediction of multi-metallic alloys. So far, such a 
method has not been applied to HEA screening. The KKR method employed is based on Green’s function method 
of multiple scattering theory to calculate the Green’s function of a system without knowing its eigenvalue of 
DFT50–52. Whereas the CPA method solves the problem of atomic configuration through the effective medium 
with the weighted average of Green’s function.

Accordingly, the CPA method is the most suitable for the multi-component system, such as the penta-metallic 
HEA comprising five metals: A, B, C, D, and E, as illustrated in Fig. 1. The CPA assumes the potential of each 
element ( PA , PB , PC , PD,PE ) without the effect of the local environment, where the atomic component is placed in 

Figure 1.   The coherent potential approximation (CPA) for the penta-metallic high-entropy alloy (HEA) 
recreated from Tian et al.53.
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the system in the effective medium ( ̃P)53. P̃ is determined selfconsistently with including all single site scattering 
events due to the respective atoms placed in the effective medium. It was previously reported that the KKR-CPA 
results were comparable to those obtained from a combined DFT and SQS (special quasi-random supercell) 
technique54. The validation of the KKR-CPA method for multi-component alloys is extensively explained in 
Sect. 1 of the Supporting Information based on the Akai-KKR software. Tables S1 and S2 demonstrate that the 
Akai-KKR package can indicate the stable phase for FCC and BCC alloys with a good agreement with available 
literature54–65.

This work presents the ML prediction on the thermodynamically stable PtPd-based HEAs via �Ef  . The 
protocol is illustrated in Fig. 2. HEA formulae in focus are the Pt0.2Pd0.2X0.2Y0.2Z0.2 with X, Y, and Z being the 
components from a pool of 39 elements, i.e., Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, 
Cd, Hf, Ta, W, Re, Os, Ir, Au, Hg, Al, Si, P, Ga, Ge, As, In, Sn, Sb, Tl, Pb, and Bi, where X  = Y  = Z. The training 
and test datasets of lattice parameters (a) and �Ef  are obtained from the calculated results of 680 FCC and BCC 
HEA systems, constructed from 17 out of 39 elements mentioned above. The details of the DFT calculation and 
ML prediction model can be found in Sect. 2 of the Supporting Information. Consequently, the a(FCC), a(BCC), 
�Ef (FCC), and �Ef (BCC) of 9,139 HEAs (39 elements) are predicted via machine learning. The relative stability 
between FCC and BCC for a given HEA is obtained from the formation energy evaluated with respect to their 
constituent elements. Besides, 36,556 predicted data of 9139 HEAs with a total of 137,085 features are published 
on our public online database, as shown in Fig. 2. Finally, the screening rules for FCC and BCC-phase PtPd-
based HEA are discussed and proposed.

Theoretical methods
DFT calculation.  The �Ef  of PtPd-based HEAs can be calculated as Eq. (1).

where EHEA
total (PtPdXYZ) is the total energy for the HEA system, and Eelement

total  is the total energy for each element 
calculated from the natural form, e.g., FCC Pt, BCC Mn, HCP Co, etc., The ci is the element concentration.

The total energies and lattice parameters of FCC and BCC PtPdXYZ HEAs were calculated using the Green’s 
function method implemented in Akai-KKR (Machikaneyama) package51,52. The KKR-CPA was employed for 
calculating the electronic structure of the random alloy system comprising n components. The crystal potential 
was approximated by using the muffin-tin potential with the atomic-sphere approximation. The Perdew–Wang-
91 generalized gradient approximation (GGA91)66 was used for an exchange–correlation functional. The self-
consistent calculation was performed using the criteria of 8 × 8 × 8k-point mesh in the first Brillouin-zone. The 
electron density was calculated from the imaginary part of the Green’s function evaluated on the complex energy 
contour whose width is 1.0 Ry from the Fermi energy. The iteration was performed until the difference between 
input and output potential becomes 10–6. The maximum angular momentum for the expansion of Green’s func-
tion was set to 2. The scalar relativistic approximation (SRA) was used for the relativistic treatment.

Machine learning.  The 2,720 data of a and �Hf  were collected from the DFT calculation of FCC and BCC 
PtPdXYZ HEAs (X  = Y  = Z = Cr, Fe, Co, Ni, Cu, Zr, Mo, Ru, Rh, Ag, W, Os, Ir, Au, In, Sn, Bi) including 680 data 
of each FCC and BCC HEA for making each ML prediction model viz., a(FCC), a(BCC), �Hf (FCC), and �Hf

(BCC). Fifteen features from the physical and chemical properties of each element, including valence electron 
count (VEC), atomic mass ( M ), atomic radius ( ratomic ), atomic size difference ( δ ), Pauling electronegativity ( χ ), 
electronegativity difference ( �χ ), electron affinity ( EA ), density ( ρ ), molar volume ( Vmol ), melting point ( Tmel ), 

(1)�Ef = EHEA
total (PtPdXYZ)−

∑

i

(ciE
element
total ),

Figure 2.   Our workflow based on first-principles density functional theory (DFT) and machine learning (ML) 
for the prediction of lattice parameter (a) and formation energy ( �Hf  ) of HEA systems involving the utilization 
of our public database at http://​www.​hcu.​cecc.​eng.​chula.​ac.​th/​hea-​datab​ase.

http://www.hcu.cecc.eng.chula.ac.th/hea-database
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enthalpy of atomization �Hf ,atom , ionic radius ( rionic ), Van der Waals radius ( rVdW ), crystal radius ( rcrystal ), and 
first ionization energy ( IE1 ), were considered to be the descriptor of HEAs for making ML. The δ and �χ were 
made using Eqs. (2) and (3). Other features can be built as Eq. (4).

where ri , χi , and ci are the ratomic , χ , and concentration of element i . Weight-averaged features, r and χ  can be 
calculated using Eq. (4). The Pearson correlation coefficient of the features for �Ef (FCC) is illustrated in Fig. 3. 
The results for �Hf (BCC), a(FCC), and a(BCC) are shown in Figs. S1–S3. �Ef (FCC) and �Ef (BCC) demon-
strated a weak relationship with the features. The a(FCC) and a(BCC) showed strong relation with VEC, Vmol , 
rionic , and rVdW . However, the overview of correlation between features and �Ef  (and a) displayed both weak and 
strong values. Hence, the artificial neural network (ANN) was chosen for the supervised ML method because it 
can accomplish the complex and nonlinear features of the ML prediction model12,67. The 680 data were randomly 
split into 70% for the training set (476 data) and 30% for the test set (204 data points). The ANN consisted of 
four hidden layers, where each hidden layer contained thirteen. The Levenberg–Marquardt backpropagation68 
was employed to train all models. The mean relative error (MRE) loop was used to improve the performance of 
prediction models, which can be calculated by Eq. (5).

where the MRE cutoff is set to 5%. The prediction accuracy was also evaluated by the mean square error (MSE), 
mean absolute error (MAE), and coefficient of determination ( R2 ) as illustrated in Eqs. (6)–(8).

(2)δ = 100

√√√√
n∑

i=1

ci(1−
ri

r
)
2

,

(3)�χ =

√√√√
n∑

i=1

ci(χi − χ)2,

(4)Feature =

n∑

i=1

ci(Feature)i ,

(5)MRE =
1

n

n∑

i=1

|
xi − xi,predicted

xi
| × 100%,

Figure 3.   Matrix representation of Pearson correlation coefficient of features. The formation energy 
corresponds to �Ef (FCC) of HEAs.
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Results and discussion
DFT results.  Figure S4 shows distribution data of DFT-calculated results of a(FCC), a(BCC), �Ef (FCC), 
and �Ef (BCC), while Fig. 4 chooses the more plausible phase. Each calculated HEA was classified into FCC 
or BCC phase by considering the �Ef  to investigate the stable structure in thermodynamics54,69. For example, 
the DFT-calculated �Ef  of PtPdCrFeCo HEA that is −2.6953 kJ/mol f.u. for FCC and −2.4593 kJ/mol f.u. for 
BCC indicates that FCC is thermodynamically favored over BCC due to the lowest �Ef  . Figure 4 shows the data 
distribution, retaining only the thermodynamically stable phase for each HEA. As a result, 680 HEAs include 
431 FCC (~ 63%) and 249 BCC phase (~ 37%). Based on Hess’s law70, the positive and negative values of �Ef  can 
be denoted to endothermic (Endo) and exothermic (Exo) reaction, respectively, composing 220 Endo (and 211 
Exo) for FCC and 129 Endo (and 120 Exo) for BCC phases. This DFT-calculated data demonstrates the ratio of 
Endo:Exo close to 50%:50%, which is suitably balanced for creating ML prediction models. Both Endo and Exo 
HEAs were analyzed in terms of components. Figure 5 reveals the distribution of each element counted from 
Endo and Exo HEAs. Also, color-mapping was employed to separate the data group. The high concentration of 
each data is ordered as follows: blue, light blue, cyan, green, yellow, orange, and red. It was found that the Exo 
FCC HEAs have Co and Ru as the most frequent element (Fig. 5a). Similarly, Zr is a good candidate in Exo BCC 
HEAs (Fig. 5b). For Endo HEAs, Cr, Fe, Ni, Cu, Mo, Rh, Ag, W, Os, Ir, and Au hinder forming in the FCC phase, 
while Sn and Bi are the remarkable elements in the BCC phase.

It is noted that the KKR-CPA uses Green’s function method to calculate the electronic structure of alloys. In 
the KKR-CPA, the configuration average of the electronic structure is calculated50–52, hence, there is no detail of 
atomic configuration in the KKR-CPA method. Thus optimized lattice constant should be regarded as average 
lattice constant. Figure 4a, b reveal the histogram of a(FCC) and a(BCC). The lattice parameter of most FCC 
HEAs is distributed in 7.3–7.5 Bohr, while that of BCC HEAs shows a large distribution from 6.0 to 6.5 Bohr.

(6)MSE =
1

n

n∑

i=1

(xi − xi,predicted)
2,

(7)MAE =
1

n

n∑

i=1

∣∣xi − xi,predicted
∣∣,

(8)R2 =

∑
(xi,predicted − x)2

∑(
xi,predicted − x

)2
+

∑(
xi − xi,predicted

)2 .

Figure 4.   Distribution of the formation energy and lattice parameter given by DFT: (a) a(FCC), (b) a(BCC), (c) 
�Ef (FCC), and (d) �Ef (BCC).
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ML‑prediction models.  The regression results are illustrated in Fig. 6, where DFT-calculated results were 
regressed through ANN. The MRE is 0.0237%, 0.0129%, 3.5554%, and 4.7429% for a(FCC), a(BCC), �Ef (FCC), 
and �Ef (BCC) prediction model, respectively. In the training results, the MSE and MAE values were close to 
zero and the R2 equal to 1 in all the cases, indicating that the ANN with the MRE-loop can improve the accu-
racy of the training. This also helped increase the accuracy of testing, which can be confirmed by 0.99 of R2 . 
Figure 6e, g revealed the error values in the testing were ± 0.5 kJ/mol*f.u. for �Ef (FCC) and ± 1.0 kJ/mol*f.u. for 
�Ef (BCC). The error values of a (Fig. 6f, h) were close to zero and seemed more accurate than the �Ef  because 
of the strong correlation with features (see Figs. S2 and S3).

The built ML models are employed to predict the 9,139 HEAs as the formulae of Pt0.2Pd0.2X0.2Y0.2Z0.2 (X  = Y 
 = Z), where X, Y, and Z are considered from 39 elements: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, 
Ru, Rh, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Au, Hg, Al, Si, P, Ga, Ge, As, In, Sn, Sb, Tl, Pb, and Bi. The ML-predicted 
results of a(FCC), a(BCC), �Ef (FCC), and �Ef (BCC) without distinguishing the phase are shown in Fig. S5. The 

Figure 5.   Distribution of elements counted from �Ef  of PtPdXYZ HEAs (X  = Y  = Z = Cr, Fe, Co, Ni, Cu, Zr, 
Mo, Ru, Rh, Ag, W, Os, Ir, Au, In, Sn, Bi) through DFT-calculated results, including (a) FCC exothermic cases, 
(b) BCC exothermic cases, (c) FCC endothermic cases, and (d) BCC endothermic cases. The color classification 
in each group is based on the frequency of the system found to have either FCC Exo, BCC Exo, FCC Endo, or 
BCC Endo.

Figure 6.   ML-predicted results compared with DFT-calculated data for (a) �Ef (FCC), (b) �Ef (BCC), (c) a
(FCC), and (d) a(BCC). Error distribution in the testing is shown in (e)–(h).
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thermodynamically stable phase of 9,139 HEAs is illustrated in Fig. 7. Figure 7a,b reveal enlarged distribution: 
7.4–8.0 Bohr for a(FCC) and 5.9–6.5 Bohr for a(BCC) due to the variety of atomic radius of elements. Similarly, 
�Ef  is distributed between about −25.0 kJ/mol f.u. and + 10.0 kJ/mol f.u. for both FCC and BCC. The number 
of FCC and BCC HEAs is 5002 and 4137, respectively. The number of Exo HEAs is 4140 for FCC and 3567 for 
BCC phase, more than the Endo HEAs, 862 for FCC and 570 for BCC phase.

To understand the role of each element involving Endo and Exo forms, Fig. 8 illustrates the element distribu-
tion obtained from 9139 PtPdXYZ HEAs (X  = Y  = Z = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, 
Ru, Rh, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Au, Hg, Al, Si, P, Ga, Ge, As, In, Sn, Sb, Tl, Pb, Bi). Overall, all elements of 
choice except Tl and Pb are found to form Endo HEAs as the ratio FCC:BCC of 50%:50%. Co, Zr, Zn, Al, Ga, 
Si, Ge, P, and As are hardly involved in Endo HEAs, contrary to Tl, which favors forming the FCC Endo HEAs 
(Fig. 8c). For the Exo HEAs, the green bar in the FCC phase and the cyan bar in the BCC phase indicate high 
distribution. In Exo FCC HEAs (Fig. 8a), Co, Zn, Y, Hg, P, and As can be totaled more than 400 HEAs, followed 
by Sc, Ti, V, Cu, Zr, Nb, Ru, Ag, Cd, Ta, Os, Ir, Si, Ge, and Sb counted by more than 300 HEAs (yellow bar). For 
the Exo BCC HEAs shown in Fig. 8b, the elements found in more than 300 HEAs are Ti, V, Mn, Y, Zr, Nb, Tc, 
Hf, Ta, Si, Ga, Ge, In, Sn, and Bi. Among these, Ga, the only element that naturally forms as an orthorhombic 
structure, plays a significant role in the BCC phase found in more than 500 Exo HEAs (the cyan bar in Fig. 8b). 
The phase of HEAs is summarized in Fig. 9. Among these data, 15 and 6 elements favor forming FCC and BCC, 
respectively, while the others almost count both FCC and BCC phases.

The literature on PtPd-based HEAs is hardly found because they are new group materials. Based on the 
available data, the phase classification using �Ef  is demonstrated in Table 1. PtPd-based HEAs of five principal 
elements reported in the literature showed the predominance of the FCC phase. The �Ef  values given by ANN 
models predicted the thermodynamic propensity of the FCC formation of these PtPd-based HEAs, thus agree-
ing with the available experimental data. In addition to FCC HEAs, BCC HEAs experimentally reported in 
literature such as CrFeCoNiAl56,58, MnFeNiSiGa56, NbMoTaW54,62,63, VNbMoTaW54,62,63, TiVCrFeCoNiCuAl64, 
TiZrNbHfTa61,65, and TiZrNbMo58 were employed to validate the KKR-CPA method (Tables S1 and S2). In this 
case, calculated �Ef  values successfully categorized the correct phase.

The prediction on the HEAs containing untrained elements such as Sc, Ti, V, Mn, Zn, Y, Nb, Tc, Cd, Hf, Ta, 
Re, Hg, Al, Si, P, Ga, Ge, As, Sb, Te, and Pb was tested by the calculated �Ef  and a of PtPdCrXY, PtPdNiSnX, and 
PtPdXYZ. This aims to examine whether these prediction models are accurate. Because the DFT calculation of 
9,139 HEAs includes 36,556 data for �Ef (FCC), �Ef (BCC), a(FCC), and a(BCC), the selected HEAs composing 
untrain elements are used to reduce computational time. The formulae PtPdNiSnX, PtPdCrXY, and PtPdXYZ are 
represented the HEAs containing one, two, and three untrained elements. The elements X and Y in PtPdNiSnX 
and PtPdCrXY are Sc, Ti, V, Mn, Zn, Y, Nb, Tc, Cd, Hf, Ta, Re, Hg, Al, Si, P, Ga, Ge, As, Sb, Te, Pb. The elements 
X, Y, and Z in PtPdXYZ are Sc, Ti, V, Mn,Zn, Al, Si, Sb. The 309 HEAs for validation are implemented in Table S3. 
The regression plot between DFT-calculation and ML-prediction is illustrated in Fig. 10a,b. The MAE, MSE, 
and R2 are listed in Table 2. Although the MSE and MAE of the untrained data (Table 2) are higher than that of 
the trained data (Fig. 6a,c), the R2 of all �Ef  from the untrained data is still as high as 0.99. The predicted �Ef  
of the selected HEAs has an error ± 4 and ± 3 kJ mol–1 f.u.–1 for FCC and BCC prediction model, respectively 
(Fig. 10c,d). Figure 10b shows the regression plot of a that seems less accuracy. Figure 10e,f indicate the error 

Figure 7.   Distribution of ML-predicted results for (a) a(FCC), (b) a(BCC), (c) �Ef (FCC), and (d) �Ef (BCC).
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value of predicted a less than ± 0.4 Å. This error in a is in an acceptable range for the bulk structure, although the 
R2 of untrained a is less than that of the trained a (Fig. 6b,d). In addition to the R2, the MSE and MAE values as 
well as the error value in the prediction should be considered when evaluating the performance of prediction. As 
a result, the MSE and MAE of untrained a are in the same range of that the trained a (Fig. 6b,d). Although there 
are some errors found on the prediction of selected HEAs, the performance of prediction models is accepted.

Conclusion
A combination of DFT and ANN was employed to predict the possible formulae of penta-metallic high-entropy 
alloys. The formation energy and lattice parameter of each system were determined via the KKR-CPA method. 
The ANN was employed to construct the prediction models and speed up the material screening. The training-
to-testing data are 70%:30%, derived from DFT-calculated data of 680 HEAs from 17 elements. 15 features were 
used in such an algorithm are VEC, M , ratomic , δ , χ , �χ , Eea , ρ , Vmol , Tmel , �Hf ,atom , rionic , rVdW , rcrystal , and IE1 . 
The built models possessed high accuracy in the testing, accompanied with the R2 values close to unity and MRE 
within 5%. Based on the prediction models, 9,139 PtPd-based HEA systems created from a pool of 39 elements 
were classified into 5,002 FCC and 4,137 BCC systems; the HEA screening rules can be summarized as follows.

Figure 8.   Distribution of elements counted from �Ef  of PtPdXYZ HEAs (X  = Y  = Z = Sc, Ti, V, Cr, Mn, Fe, 
Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Au, Hg, Al, Si, P, Ga, Ge, As, In, Sn, 
Sb, Tl, Pb, Bi) through ML-predicted results: (a) FCC exothermic cases, (b) BCC exothermic cases, (c) FCC 
endothermic cases, and (d) BCC endothermic cases. The color classification in each group is based on the 
frequency of the system found to have either FCC Exo, BCC Exo, FCC Endo, or BCC Endo.

Figure 9.   Predicted role of individual elements in the HEA formation energy and phase.
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Table 1.   Phase classification of PtPd-based HEAs by �Ef  (in kJ mol–1 f.u.–1) with a (in Å) validated with 
literature data.

HEAs �Ef  (FCC) a (FCC) �Ef  (BCC) a (BCC) Lowest �Ef Predicted phase References

PtPdFeCoNi −2.6973 3.6713 −2.4330 2.9140 −2.6973 FCC FCC26,36

a = 3.7336

PtPdFeCoIr −2.6859 3.7440 −2.376 2.9715 −2.6859 FCC FCC37

PtPdFeRhIr 0.2036 3.8130 0.4338 3.0264 0.2036 FCC FCC38

a = 3.83438

PtPdCoNiCu −2.6009 3.6831 −2.3553 2.9233 −2.6009 FCC FCC39

PtPdCuAgAu 0.0882 3.9351 0.1317 3.1233 0.0882 FCC FCC7,8,33

a = 3.9367

PtPdRuRhIr −5.2674 3.8669 −4.9991 3.0692 −5.2674 FCC
FCC34,35,42,43

a = 3.856035

a = 3.8236

a = 3.84 – 3.9642

PtPdRuAgIr −5.0594 3.9276 −4.9444 3.1173 −5.0594 FCC FCC34,41

PtPdRuRhAu −5.2834 3.9165 −5.1907 3.1085 −5.2834 FCC FCC40

Figure 10.   Validation of PtPdCrXY, PtPdNiSnX, and PtPdXYZ HEAs including regression plots of (a) 
formation energy, (b) lattice parameters, (c) error of formation energy in FCC data, (d) error of formation 
energy in BCC data, (e) error of lattice parameters in FCC data, (f) error of lattice parameters in BCC data.

Table 2.   MSE, MAE, and R2 of formation energy ( �Ef  ) and lattice parameters (a) for the predicted 
PtPdCrXY, PtPdNiSnX, and PtPdXYZ. 

�Ef  (FCC) a (FCC) �Ef  (BCC) a (BCC)

MSE 1.31 0.009(2) 0.58 0.011(5)

MAE 1.31 0.005(4) 0.58 0.000(2)

R2 0.98(1) 0.86(7) 0.98(7) 0.75(9)
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	 i.	 HEAs with the component of Sc, Co, Cu, Zn, Y, Ru, Cd, Os, Ir, Hg, Al, Si, P, As, and Tl have a high tendency 
to form in the FCC phase.

	 ii.	 HEAs with the component Hf, Ga, In, Sn, Pb, and Bi have a high tendency to form in the BCC phase.
	 iii.	 Ti, V, Cr, Mn, Fe, Ni, Zr, Nb, Mo, Tc, Rh, Ag, Ta, W, Re, Au, Ge, and Sb have a comparable tendency to 

form in either FCC or BCC phase.

These screening rules applied in this work provide the fundamental for the discovery of bulk HEA, where 
the development of algorithms for the screening of HEA in terms of stable surface configuration is the outlook 
for future work.

Data availability
The authors declare that relevant data are within the manuscript.
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