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Abstract

Macaques are a commonly used model for studying immunity to human viruses, including

for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether

macaque antibody responses resemble the response in humans. To answer this question,

we employed a phage-based deep mutational scanning approach (Phage-DMS) to compare

which linear epitopes are targeted on the SARS-CoV-2 Spike protein in convalescent

humans, convalescent (re-infected) rhesus macaques, mRNA-vaccinated humans, and

repRNA-vaccinated pigtail macaques. We also used Phage-DMS to determine antibody

escape pathways within each epitope, enabling a granular comparison of antibody binding

specificities at the locus level. Overall, we identified some common epitope targets in both

macaques and humans, including in the fusion peptide (FP) and stem helix-heptad repeat 2

(SH-H) regions. Differences between groups included a response to epitopes in the N-termi-

nal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated

macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in conva-

lescent macaques but not convalescent humans. There was also considerable variability in

the escape pathways among individuals within each group. Sera from convalescent

macaques showed the least variability in escape overall and converged on a common

response with vaccinated humans in the SH-H epitope region, suggesting highly similar anti-

bodies were elicited. Collectively, these findings suggest that the antibody response to

SARS-CoV-2 in macaques shares many features with humans, but with substantial

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010155 April 11, 2022 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Willcox AC, Sung K, Garrett ME, Galloway

JG, Erasmus JH, Logue JK, et al. (2022) Detailed

analysis of antibody responses to SARS-CoV-2

vaccination and infection in macaques. PLoS

Pathog 18(4): e1010155. https://doi.org/10.1371/

journal.ppat.1010155

Editor: Shin-Ru Shih, Chang Gung University,

TAIWAN

Received: November 30, 2021

Accepted: March 21, 2022

Published: April 11, 2022

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All data files and the

code required to run the analysis are located in the

following github repository: https://github.com/

matsengrp/phage-dms-nhp-analysis.

Funding: This work was supported by NIH grants

R01 AI138709 (awarded to J.O.) and R01

AI146028 (awarded to F.A.M. IV). Macaque studies

were supported by NIH/ORIP center grant P51

OD010425-51 (WaNPRC, PI Sullivan, D.H.F. Co-I),

a supplement to the NIH/NIAID Centers for

Excellence for Influenza Research and Surveillance

https://orcid.org/0000-0001-6037-6841
https://orcid.org/0000-0002-0239-9444
https://doi.org/10.1371/journal.ppat.1010155
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1010155&domain=pdf&date_stamp=2022-04-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1010155&domain=pdf&date_stamp=2022-04-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1010155&domain=pdf&date_stamp=2022-04-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1010155&domain=pdf&date_stamp=2022-04-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1010155&domain=pdf&date_stamp=2022-04-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1010155&domain=pdf&date_stamp=2022-04-21
https://doi.org/10.1371/journal.ppat.1010155
https://doi.org/10.1371/journal.ppat.1010155
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/matsengrp/phage-dms-nhp-analysis
https://github.com/matsengrp/phage-dms-nhp-analysis


differences in the recognition of certain epitopes and considerable individual variability in

antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to

major epitopes in both humans and macaques. Differences in macaque species and expo-

sure type may also contribute to these findings.

Author summary

Non-human primates, including macaques, are considered the best animal model for

studying infectious diseases that infect humans. Vaccine candidates for SARS-CoV-2 are

first tested in macaques to assess immune responses prior to advancing to human trials,

and macaques are also used to model the human immune response to SARS-CoV-2 infec-

tion. However, there may be differences in how macaque and human antibodies recognize

the SARS-CoV-2 entry protein, Spike. Here we characterized the locations on Spike that

are recognized by antibodies from vaccinated or infected macaques and humans. We also

made mutations to the viral sequence and assessed how these affected antibody binding,

enabling a comparison of antibody binding requirements between macaques and humans

at a very precise level. We found that macaques and humans share some responses, but

also recognize distinct regions of Spike. We also found that in general, antibodies from

different individuals had unique responses to viral mutations, regardless of species. These

results will yield a better understanding of how macaque data can be used to inform

human immunity to SARS-CoV-2.

Introduction

The COVID-19 pandemic has created a pressing need to understand immunity to SARS-CoV-

2, both in the setting of vaccination and infection. This has prompted numerous studies in

non-human primates (NHPs), which are considered the most relevant animal model for study-

ing many infectious diseases of humans. Various NHP models have been employed to study

the immunogenicity and protective efficacy of SARS-CoV-2 vaccine candidates, with most

studies using macaque species including rhesus macaques (Macaca mulatta) [1–23], cynomol-

gus macaques (Macaca fascicularis) [8,24–32], and pigtail macaques (Macaca nemestrina)

[22,33–35]. Some of these models have also been used to study infection and re-infection [35–

39]. In the NHP model, studies typically measure virus neutralizing antibody responses to vac-

cination or infection. However, no study has investigated the fine binding specificities of both

neutralizing and non-neutralizing SARS-CoV-2 antibodies in macaques and how they com-

pare to the human responses they are meant to model.

Coronaviruses such as SARS-CoV-2 enter host cells using their Spike glycoprotein, which is

composed of trimeric S1 and S2 subunits. Receptor-binding S1 homotrimers protrude out

from the surface of the virion like a crown, giving this family of viruses its name, while the

fusion-mediating S2 trimers anchor the protein to the viral membrane. On S1, the receptor-

binding domain (RBD) of SARS-CoV-2 Spike protein binds to angiotensin-converting enzyme

2 (ACE2) on host cells [40,41]. For subsequent membrane fusion to occur, the Spike protein

must be cleaved by host cell proteases at the S1/S2 boundary and at an S2’ site located just

upstream of the fusion peptide (FP) of S2 [42], leading to substantial conformational changes

that likely unmask new epitopes of S2 to immune cells [43].

Antibodies to SARS-CoV-2 Spike protein are especially interesting as a potential correlate

of protection, as they have the capacity to block infection and kill infected cells [44–47]. There
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has understandably been great interest in studying neutralizing antibodies against the RBD,

given that such antibodies can directly block interaction with host cells. While RBD-directed

antibodies indeed contribute disproportionately to neutralization [48], the majority of the

anti-Spike plasma IgG response in convalescent individuals is directed to epitopes outside of

the RBD [49,50]. RBD-directed antibodies are also less likely to maintain activity against future

viral strains, given the increasing number of variants of concern that harbor mutations in the

RBD and have reduced sensitivity to neutralization by immune plasma [51]. Additionally,

growing evidence from studies in humans and animal models indicates that non-neutralizing

antibodies play a role in protection [52–54].

Previous studies have used Phage-DMS [55], a tool that combines phage display of linear

epitopes with deep mutational scanning, to interrogate the fine binding specificities and escape

profiles of binding antibodies against all domains of Spike in infected and vaccinated humans

[56,57]. These studies have shown that infection-induced human polyclonal antibodies consis-

tently bind linear epitopes in the FP and stem helix-heptad repeat 2 (SH-H) epitope regions,

with patient-to-patient variability in escape profiles [56]. Comparatively, mRNA vaccination

induces a broader antibody response across Spike protein with more consistent escape profiles

[57].

In this study, we built on this foundation by using Phage-DMS to study the binding and

escape profiles of antibodies in repRNA-vaccinated pigtail macaques and convalescent (re-

infected) rhesus macaques in comparison to mRNA-vaccinated humans and convalescent

humans. Our data reveal broad overlap in some major epitopes targeted by both macaques

and humans, though neither vaccinated nor convalescent macaques perfectly model the

human response. We also find considerable variability in individuals’ antibody escape path-

ways in most epitope regions in both macaques and humans. The broadest responses were

seen in vaccinated humans and re-infected rhesus macaques, groups that also share more con-

cordant escape profiles. These results have implications for the interpretation of COVID-19

macaque research studies.

Results

Four groups were included in this study: vaccinated pigtail macaques, vaccinated humans,

convalescent (re-infected) rhesus macaques, and convalescent humans (Table 1). The vacci-

nated macaques received a replicating mRNA (repRNA) vaccine encoding the full-length wild-

type (not pre-fusion stabilized) SARS-CoV-2 A.1 lineage Spike protein formulated with a

cationic nanocarrier [35,58]. The vaccine was delivered as a prime-only 25μg (n = 3) or 250μg

(n = 6) dose or prime-boost 50μg dose (n = 2), with plasma collected 42 days after the first

dose (n = 9) or 14 days after the second dose (n = 2). The vaccinated humans received two

Table 1. Details of samples used in the current study.

Group Number of

samples

Age range

(years)

Treatment Time of sample collection

Vaccinated pigtail

macaques

11 3 ½-6 repRNA vaccine encoding full-length SARS-CoV-2

Spikea
42 days post 1st dose (prime-only, n = 9) or 14

days post 2nd dose (prime-boost, n = 2)

Vaccinated humans 15 18–55 100μg mRNA vaccine encoding full-length pre-fusion

stabilized SARS-CoV-2 Spike (Moderna)

36 days post 1st dose

Convalescent rhesus

macaques

12 2 ½-5 Infected twice with SARS-CoV-2 six weeks aparta 56 days post 1st infection (14 days post 2nd

infection)

Convalescent humans 12 28–52 Naturally infected once with SARS-CoV-2 (mild disease) Median 67 (IQR 62, 70) days post symptom onset

aWithin each group of macaques, subgroups received slightly different treatments (described in S1 Table).

https://doi.org/10.1371/journal.ppat.1010155.t001
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doses of the 100μg Moderna mRNA-1273 vaccine encoding the pre-fusion stabilized full-

length SARS-CoV-2 A.1 lineage Spike protein and formulated with a lipid nanoparticle.

Serum was collected from human vaccinees 36 days after the first dose (7 days after the second

dose). The convalescent macaques were depleted of CD4+ T cells, CD8+ T cells, CD4+ and

CD8+ T cells, or neither as part of a previous study. They were infected twice with SARS-CoV-

2, with infections spaced six weeks apart and serum collected 56 days after the first infection

(14 days after the second infection). The T cell depleted animals were not excluded based on a

detailed analysis of the humoral response in these macaques, which suggested that neither

CD4+ nor CD8+ T cells were critical for the development of anamnestic antibody responses,

neutralizing antibodies, or protection from re-infection [39]. The convalescent humans were

naturally infected once with SARS-CoV-2 and exhibited mild disease, with a median of 67

days between symptom onset and sample collection. Details of individual participants are

available in S1 Table.

Enrichment of wildtype peptides

To compare which regions of Spike protein are recognized by human and macaque antibodies,

we examined the enrichment of wildtype peptides by antibodies from each individual (Fig

1A). Broadly speaking, binding was observed in the NTD, CTD, FP, and stem helix-HR2 epi-

tope regions as reported previously in human studies [56,57]. Epitope regions (shown as differ-

ent colors on Fig 1) were defined as previously [57]: NTD, amino acid 285–305; FP, 805–835;

stem helix-HR2 (SH-H), 1135–1170. For the CTD, the bounds of epitope regions were

expanded and altered from previous studies based on macaque antibodies recognizing a wider

area than previously seen in humans: CTD-N’, 526–593; CTD-C’, 594–685 (S1A Fig). Several

additional epitopes that flank previously-defined regions were also identified in this analysis:

pre-FP, 777–804; post-FP, 836–855 (S1B Fig); and HR2, 1171–1204 (S1C Fig). Specific epitope

regions can be visualized on the structure of a Spike protein monomer in Fig 1B. In addition

Fig 1. Enrichment of wildtype peptides. (A) The x axis indicates each peptide’s location along SARS-CoV-2 Spike protein, and each entry on the y axis is

an individual sample. All enrichment values over 20 are plotted as 20 to better show the lower range of the data. Above the heatmap, domains of Spike are

shown with grey boxes, with the S1/S2 and S2’ cleavage sites indicated with arrows. The epitope regions defined in the current study are shown as colored

boxes (from left to right: NTD in red, CTD-N’ in green, CTD-C’ in cyan, pre-FP in pink, FP in black, post-FP in orange, SH-H in purple, and HR2 in blue).

(B) Defined epitope regions shown on a structure of one monomer of SARS-CoV-2 Spike in the pre-fusion conformation (PDB 6XR8 [ref 95]). The amino

acid loci spanned by each epitope are listed. The HR2 epitope (AA 1171–1204) could not be resolved on the structure and is not shown.

https://doi.org/10.1371/journal.ppat.1010155.g001
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to these defined regions, we noted that one convalescent rhesus macaque appeared to weakly

recognize an epitope at the beginning of the S2 subunit (amino acid 686–710, Fig 1A).

In general, we did not detect responses in the RBD because many epitopes in this region are

known to be conformational, and Phage-DMS only has the power to detect epitopes that

include linear sequences. Epitopes in the RBD have been extensively detailed elsewhere

[59,60]. However, we did detect strong binding to an RBD epitope in some vaccinated pigtail

macaques (Fig 1A). This same region was enriched in samples from before vaccination in four

of the five pigtail macaques with baseline samples available (S2 Fig). Pre-infection serum from

the twelve rhesus macaques did not show such a consistent response, though a few individuals

did show strong enrichment of certain peptides (S2 Fig). Because these responses were present

prior to vaccination with SARS-CoV-2 Spike or infection with SARS-CoV-2, we did not inves-

tigate them further as part of this study. These findings are likely the result of prior exposure to

a different coronavirus, as has been documented for human infections.

To quantify differences in the epitopes targeted by different groups, the enrichment of wild-

type peptides was summed across each epitope region for every individual. Because the main

research question is whether responses in macaques model those in humans, two comparisons

were performed: vaccinated macaques vs. vaccinated humans and convalescent macaques vs.

convalescent humans (Fig 2).

In concordance with a qualitative assessment of the enrichment heatmap in Fig 1A, vacci-

nated humans preferentially recognized the following epitope regions compared to vaccinated

macaques: NTD (Mann-Whitney p� 0.01), CTD-C’ (p� 0.0001), and FP (p� 0.05) (Fig 2A).

Meanwhile, convalescent macaques recognized the following epitope regions more than con-

valescent humans: CTD-N’ (p� 0.01), pre-FP (p� 0.001), and post-FP (p� 0.01) (Fig 2B).

All groups consistently recognized the SH-H epitope region (Fig 2). While vaccination

appeared to induce a stronger response against HR2 than infection (Fig 1A), there were no sig-

nificant differences in response driven by species (Fig 2). Within each group of macaques (vac-

cinated and convalescent), subgroups received slightly different treatments (S1 Table), so

similar analyses were performed comparing these subgroups; no comparisons were significant

at a threshold of p = 0.05 (Kruskal-Wallis test, S3 Fig).

Fig 2. Differences in enrichment of wildtype peptides by group. For each individual, wildtype enrichment values were summed for all peptides within each

epitope region. Boxplots summarize the data for all individuals in each sample group. The box represents median and interquartile range (IQR), the lower

whisker represents the lowest data point above Q1-1.5IQR, and the upper whisker represents the highest data point below Q3+1.5IQR. (A) compares

vaccinated pigtail macaques to vaccinated humans, while (B) compares convalescent rhesus macaques to convalescent humans. Multiple Mann-Whitney U

tests were performed, with p values corrected for the number of comparisons in each plot (8) using the Bonferroni-Dunn method. ����, p� 0.0001; ���,

p� 0.001; ��, p� 0.01; �, p� 0.05.

https://doi.org/10.1371/journal.ppat.1010155.g002
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Taken together, these findings indicate: 1) vaccinated humans were the only group to con-

sistently recognize peptides from both the NTD and CTD-C’ epitope regions, which are in

close physical proximity to one another (Fig 1B); 2) convalescent humans had a limited

response to the CTD-N’; 3) compared to other groups, convalescent macaques had a notably

more robust response to regions upstream and downstream of the main FP epitope region; 4)

vaccinated macaques did not recognize the FP as strongly as other groups; and 5) vaccination

seemed to induce a stronger response against HR2 than infection in both macaques and

humans. These findings may also be explained by other differences between the vaccinated

and convalescent groups, including the number, dose, and type of exposures.

Defining and comparing escape pathways

To assess differences in the binding characteristics of human and macaque antibodies on a

more granular level, we next examined the mutations in Spike that reduced antibody binding

in each epitope region of interest. Because the antibody escape pathways for vaccinated

humans have been described previously [57], we did not examine the NTD and CTD-C’,

which are exclusively recognized by this group. Instead, we focused on comparing escape pro-

files between groups in the following epitope regions: CTD-N’, FP, and SH-H. We first repre-

sent the data as scaled differential selection values in logo plot form, as commonly shown in

previous studies. Importantly, scaled differential selection is highly correlated with peptide

binding as measured by competition ELISA [55]. To summarize the data represented by the

logo plots by group, summed differential selection values across each epitope region were also

calculated. This metric represents the overall magnitude of escape at each locus regardless of

the specific amino acid substitution, with negative values indicating a decrease in binding

compared to the wildtype amino acid, and positive values indicating enhanced binding (see

“Materials and Methods”). Finally, escape similarity scores were calculated between pairs of

individuals to quantify similarity in escape profiles (see “Materials and Methods” and S4 Fig).

CTD-N’

Vaccinated macaques, vaccinated humans, and convalescent macaques recognized peptides in

the CTD-N’ (AA 526–593), whereas convalescent humans generally did not (Fig 2B). Within

this epitope region, the individual escape profiles showed notable variability both within and

between groups (S5 Fig). For example, across all groups, some individuals showed relatively

high sensitivity to mutations between sites 558–567, while others had a response focused more

downstream around AA 577–586. There was also substantial variability in which loci in the

CTD-N’ had the highest relative magnitude of escape, and sometimes even in the directionality

of scaled differential selection at a given locus. For example, some individuals had antibodies

that bound mutated peptides better than wildtype at AA 555 (e.g., convalescent macaque 353)

while others exhibited reduced binding to mutated peptides (e.g., convalescent macaque 358).

The same was true for site 560 (e.g., vaccinated humans M24 and M26 exhibited improved

and disrupted binding to mutated peptides, respectively).

To summarize the trends observed in the individual findings, we calculated summed differen-

tial selection values for each individual at each site and generated boxplots by group (Fig 3A). In

addition to the aforementioned regions of escape common to all groups, convalescent macaques

also showed considerable escape between AA 529–535, with vaccinated macaques also showing a

less consistent response in this area (Figs 3A and S5). The complexity and variability of the escape

pathways also prompted us to quantify the similarity in escape between and within groups. Escape

similarity scores largely corresponded to areas of high magnitude of escape. Sites with low-magni-

tude summed differential selection values indicate loci where mutations have no notable impact,
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and therefore those escape profiles reflect fluctuations in peptide enrichments due to noise, which

drives a lower escape similarity score at those sites (Fig 3A, lower panel). At some sites (e.g., 560,

as described above), low scores were also the result of some samples showing negative differential

selection and others showing positive differential selection, a comparison that was assigned the

highest cost in our escape similarity score algorithm.

To test the similarity of escape profiles across the CTD-N’ epitope region, escape similarity

scores were aggregated across the region and computed both within and between groups.

These are shown as boxplots, with each point representing a pairwise comparison between

individual samples (Fig 3B). For example, every vaccinated macaque was compared to every

other vaccinated macaque (a within-group comparison) and to every vaccinated human (a

between-group comparison). We included a comparison of convalescent macaques and vacci-

nated humans, given visual similarities between their patterns of escape (Fig 3A). Convalescent

macaques showed the highest within-group similarity in escape profiles, meaning their escape

profiles were more consistent than those of the vaccinated macaques or vaccinated humans

(Fig 3B). Between-group escape similarity scores were on par with the within-group scores for

the vaccinated macaques and humans, indicating that although there was substantial variabil-

ity in individual profiles, this was not driven by sample groups.

FP

Escape profiles were examined in the FP epitope region (AA 805–835) for the three groups

that showed significant wildtype enrichment in this area: vaccinated humans, convalescent

Fig 3. Comparison of escape profiles in the CTD-N’. (A) The top three panels show boxplots depicting the summed differential selection values of all

individuals in a group at each locus, with each data point representing a different individual. The box represents median and interquartile range (IQR), the

lower whisker represents the lowest data point above Q1-1.5IQR, and the upper whisker represents the highest data point below Q3+1.5IQR. Negative values

represent sites where the binding interaction between antibody and peptide was weakened when peptides were mutated, whereas positive values represent

enhanced binding. The bottom panel shows the mean escape similarity score for all pairwise comparisons between samples in each group, calculated at every

locus. See S4 Fig for a description of the escape similarity score algorithm. (B) Within- and between-group region-wide escape similarity scores, with each point

representing a pairwise comparison between two samples. The box represents median and interquartile range (IQR), the lower whisker represents the lowest

data point above Q1-1.5IQR, and the upper whisker represents the highest data point below Q3+1.5IQR. The contribution of a site’s score to the total escape

similarity score is weighted based on its relative contribution to the summed differential selection values across the region. P values are not computed due to

lack of independence between data points.

https://doi.org/10.1371/journal.ppat.1010155.g003
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macaques, and convalescent humans. As in the CTD-N’, overall there was variability in indi-

vidual escape profiles, though the convalescent macaques showed a more consistent pattern of

escape than other groups (S6 Fig). Within the FP, most sites of escape fell between AA 811–

825 for all groups (Fig 4A). The convalescent macaques again exhibited the highest escape sim-

ilarity scores (Fig 4B). The median within-group escape similarity scores in the FP were on par

with those in the CTD-N’ (Fig 3B), indicating approximately equal variability in antibody

escape in these epitope regions. The between-group escape similarity scores were generally

similar to each other and to the human within-group scores (Fig 4B).

SH-H

All four groups consistently recognized peptides spanning the SH-H epitope region (AA

1135–1170). Major sites of escape were located between AA 1145–1158 for all groups (Fig 5A).

The individual logo plots in the SH-H suggested a consistent response among vaccinated

humans and convalescent macaques, with more variability in the remaining groups (S7 Fig).

This finding is supported by the within-group escape similarity scores for those groups trend-

ing higher across the epitope region (Figs 5A lower panel and 5B). The median epitope region-

wide escape similarity scores for vaccinated humans and convalescent macaques were also

higher in the SH-H than in the CTD-N’ or FP, confirming a more concordant response. The

median between-group escape similarity score for vaccinated humans and convalescent

macaques was on par with their median within-group scores, indicating that the escape profile

of a vaccinated human looks as similar to that of a convalescent macaque as it does to another

vaccinated human (Fig 5B). The similarity between these two groups was higher than the simi-

larity between convalescent macaques and humans, as well as between vaccinated macaques

and humans (Fig 5B). Despite this overall trend, two vaccinated humans had more unique

escape profiles (S7 Fig, M26 and M19) and are responsible for a cluster of lower-similarity out-

lier points (Fig 5B, “Vaccinated Humans” and “Conv. Mac. vs. Vacc. Hum.”).

The pairwise comparison between participant 352 (a convalescent macaque) and M21 (a

vaccinated human) generated an escape similarity score closest to the median for all

Fig 4. Comparison of escape profiles in the fusion peptide (FP). (A) and (B) Data are shown as described in Fig 3.

https://doi.org/10.1371/journal.ppat.1010155.g004
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comparisons between these groups. Logo plots for these individuals are shown in Fig 5C as a rep-

resentative example of the striking between-group similarity. The most consistent sites of escape

for both groups were AAs 1148, 1152, 1155, and 1156 (Figs 5A and S7). While some differences

exist, there was not nearly as much variability as in the CTD-N’ (S5 Fig) and FP (S6 Fig).

Other epitope regions

In addition to the epitope regions described above, the convalescent macaques strongly recog-

nized the pre-FP and post-FP, which were not targeted by human antibody responses (S8 Fig).

Escape profiles in the pre-FP appeared highly consistent among individual macaques, with

major sites of escape at AAs 795, 798, 800, and 802. Profiles were more variable in the post-FP,

likely due in part to low enrichment of wildtype peptides in this epitope region for some indi-

viduals (S8 Fig).

Comparison of vaccinated humans and convalescent macaques

It was notable that the vaccinated humans and convalescent macaques showed the most simi-

larity in escape profiles across all epitope regions, most strikingly in the SH-H. Thus, we also

asked whether they showed similarity in the epitopes they targeted by comparing the enrich-

ment of wildtype peptides in these groups in each epitope region (S9 Fig). Vaccinated humans

recognized the following epitope regions more strongly than convalescent macaques: NTD

(Mann-Whitney p� 0.0001), CTD-C’ (p� 0.0001), and HR2 (p� 0.001). Convalescent

macaques preferentially recognized the pre-FP (p� 0.0001) and post-FP (p� 0.001) epitope

regions. This suggests some diversity in the epitopes targeted, but similarity of antibody escape

patterns within epitopes targeted by both groups.

Fig 5. Comparison of escape profiles in the stem helix-HR2 region (SH-H). (A) and (B) Data are shown as described in Fig 3. (C) Logo plots for participant

352 (a convalescent macaque) and M21 (a vaccinated human) showing the effect of specific mutations on antibody binding at each site. The comparison

between these samples had an escape similarity score closest to the median value for all pairwise convalescent macaque vs. vaccinated human comparisons and

thus can be considered representative of the similarity between these groups. The 352 –M21 comparison is shown in red on (B).

https://doi.org/10.1371/journal.ppat.1010155.g005
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Discussion

In this study, we aimed to assess whether the antibody binding specificities to SARS-CoV-2

Spike in macaques are a useful model for the human response. Our results indicate important

similarities between macaques and humans; for example, both have antibodies that recognize

major epitopes in the CTD, FP, and SH-H. However, many differences are also apparent, with

some groups showing responses to unique epitopes, such as two physically proximal epitopes

in the NTD and CTD that are recognized by antibodies from vaccinated humans but not

macaques. Additionally, epitope regions flanking the FP were recognized by antibodies from

convalescent macaques, while antibodies from convalescent humans did not recognize the

flanking regions but showed a strong response within the FP itself. We found considerable

diversity in the pathways of escape between individuals, and this was not specific to either

macaques or humans, suggesting a diverse repertoire of antibodies that can respond to the

major epitopes in both groups. Overall, these results suggest that macaques and humans share

recognition of certain major epitopes. The differences that exist could be due to species

(macaque vs. human), but could also be influenced by differences in the specific type and num-

ber of exposures to antigen in each group.

Other studies have characterized human monoclonal antibodies against some of the epi-

topes we report here, many of them with neutralizing or other activities. As previously

reported by our group [57], we found that antibodies from vaccinated humans bound peptides

spanning a 30 amino acid segment at the C-terminus of the NTD. Interestingly, most if not all

neutralizing human mAbs targeting the SARS-CoV-2 NTD to date have been shown to target a

single supersite on the “tip” of Spike, distinct from the epitope we detected at the C-terminus

[49,61–67]. An NTD mAb with Fc effector function [54], as well as several NTD mAbs that

enhance infection in vitro [62,68], also bind sites upstream of the C-terminal epitope. Therefore,

future studies are warranted to investigate the function of antibodies binding the new NTD epi-

tope detected by Phage-DMS. In the CTD, we detected broad antibody binding, with vaccinated

macaques, vaccinated humans, and convalescent macaques enriching peptides in the CTD-N’

epitope region, and vaccinated humans also recognizing peptides spanning the remainder of

this domain (CTD-C’). Polyclonal antibodies targeting sites within the CTD-N’ and CTD-C’

have been isolated from human sera and shown to have neutralizing activity [69]. Interestingly,

the neutralizing epitope on the CTD-C’ (AA 625–636) [69] is physically adjacent to the NTD

epitope we describe (AA 285–305), raising the possibility that a conformational epitope extend-

ing to the NTD is recognized by neutralizing antibodies from vaccinated humans. Depleting

human serum of FP-binding antibodies reduced its neutralization capacity [70]; these antibod-

ies are of high interest, both due to their potential to block membrane fusion, and given the

high sequence conservation among the FPs of diverse coronaviruses [71,72]. We found that

convalescent rhesus macaque sera strongly recognized the pre- and post-FP epitope regions,

but to our knowledge, functional antibodies against these regions have not been previously

described. Finally, the SH-H epitope region we describe is in the stem helix, a region known to

be highly conserved across coronaviruses. Broadly neutralizing [73–75] stem helix antibodies

have been isolated and suggest an avenue for rational design of a pan-coronavirus vaccine.

Interestingly, a mAb raised against the MERS-CoV stem region protected mice against

SARS-CoV-2 challenge, despite having no neutralizing activity against SARS-CoV-2 in vitro

[76]. The detection of broad antibody binding across Spike supports the continued investigation

of non-RBD epitopes, which remain understudied. Some of the epitopes we describe may also

be the target of non-neutralizing Fc-effector antibodies [77], and/or antibodies that enhance

infection via Fc-independent [68] or Fc-dependent [78] mechanisms. This latter concept may

be important in the pathogenesis of COVID-19, though this remains speculative.
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Previous work elucidated that pathways of antibody escape to SARS-CoV-2 Spike protein can

be quite variable in convalescent humans, with vaccination inducing a more consistent response

[57]. In the current study, we found considerable variability in escape profiles in the FP and

CTD-N’ in both macaques and humans, though the convalescent rhesus macaques had more con-

cordant escape profiles than other groups. Variability in escape patterns suggests that a diversity of

antibodies are targeting these epitopes. Intra-species germline diversity in immunoglobulin genes

may help explain why individuals with similar exposures often mount distinct responses [79,80].

On the other hand, escape profiles were more consistent in the SH-H, where the responses of con-

valescent macaques and vaccinated humans appeared to converge. This conservation of response

suggests that highly similar antibodies are dominating the antibody repertoire against this epitope.

Convergent antibody responses to SARS-CoV-2 have been reported within human populations

[81–83], and our findings here suggest that antibodies from different species may also be able to

converge on the same “public” antibody repertoires in a functional sense, despite genetic differ-

ences. While a shared escape profile among individuals could suggest that viral escape mutations

are more likely to emerge on a population level, another factor to consider is the effect of the muta-

tions on viral fitness. Key domains of the S2 subunit (such as the SH-H epitope) have essential

functions and high sequence conservation, suggesting a low tolerance for mutation and thus for

escape. Indeed, previous work determined that sites of escape identified by Phage-DMS are not

typically mutated at a high frequency in circulating strains of SARS-CoV-2 [56].

While our focus was on understanding how macaques and humans respond to a similar

exposure (i.e., vaccination or infection), we also noted similarities in response between re-

infected macaques and vaccinated humans. These groups both exhibited the broadest recogni-

tion across Spike, although the epitope regions they targeted were somewhat different. As

described above, these groups also had highly similar antibody escape profiles in the SH-H.

The vaccinated humans and re-infected macaques both received two exposures to high doses

of antigen. It is plausible that re-exposure directed initially diverse antibodies to converge on a

more focused response in both scenarios. While it is known that vaccination and infection

induce distinct humoral responses against Spike [57,84,85], our data suggest that a second

exposure may generate antibodies that better match the vaccine-induced response.

This study had several limitations. Because the Phage-DMS library displays peptides 31AA

in length, discontinuous or conformational epitopes are not readily detected using this

method. Additionally, epitopes that may normally be glycosylated are exposed for antibody

binding in Phage-DMS. There also are known germline-encoded differences in the properties

of immunoglobulin subclasses and Fc receptors between macaques and humans, leading to

differences in antibody function that cannot be assayed using Phage-DMS [86]. Additionally,

our sample set includes variables that limit our ability to draw conclusions about species-spe-

cific (macaque vs. human) differences in antibody response. The vaccinated macaques and

humans both received RNA vaccines encoding full-length Spike protein, but there were differ-

ences in vaccine technology, including: 1) the use of mRNA in the human vaccine vs. repRNA

in the macaque vaccine, 2) the stabilization of Spike in its pre-fusion state in the human vac-

cine, 3) the dosage and number of doses delivered, and 4) the formulation used to deliver the

RNA. Despite these differences, we found commonalities in some of the epitopes targeted by

antibodies from both groups. The convalescent rhesus macaques also underwent T cell deple-

tion as part of another study, which may have altered the epitope specifity of their antibodies,

although we did not find significant differences between depleted and control animals in our

analysis (S3 Fig). Additionally, the convalescent rhesus macaques were experimentally infected

twice with high titers of virus, compared to the convalescent humans who were naturally

infected once. This important discrepancy could be the reason why the response in re-infected

macaques aligned more closely with vaccinated humans than convalescent humans. Studies of
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re-infected humans would help address this possibility. Finally, we found pre-existing antibody

responses in both groups of macaques. Many of our human samples also likely contain cross-

reactive antibodies from prior endemic coronavirus infections. These pre-existing responses

are difficult to control for but may have influenced our results.

Our findings suggest that while vaccinated and convalescent macaques and humans share

recognition of some major epitopes, each group has a unique antibody binding profile. Anti-

body escape profiles suggest a diversity of individual responses to most epitopes. Important

avenues for future study include comparing macaque and human responses to the RBD and

evaluating species differences in antibody function. Continued investigation of immunogenic

epitopes in conserved regions of Spike is also warranted to inform the development of immu-

nity that is more robust in the face of viral escape.

Materials and methods

Ethics statement

For the vaccinated pigtail macaques, all procedures were approved by the University of Wash-

ington’s Institutional Animal Care and Use Committee (IACUC) (IACUC #4266–14). For the

convalescent rhesus macaques, all procedures were performed in accordance with Animal

Study Proposal RML 2020-046-E approved by the IACUC of Rocky Mountain Laboratories

(National Institutes of Health). For the vaccinated humans, all participants provided written

informed consent. Because samples were de-identified, this study was approved by the Fred

Hutchinson Cancer Research Center Institutional Review Board as non-human subjects

research. For the convalescent humans, electronic informed consent was obtained for all par-

ticipants. This research was approved by the University of Washington Institutional Review

Board (IRB number STUDY00000959).

Samples

Vaccinated pigtail macaques. Plasma was collected from 11 pigtail macaques immunized

with a replicating RNA (repRNA) vaccine expressing full-length SARS-CoV-2 Spike protein.

A subset of these animals was previously described [35]. All animals were housed at the Wash-

ington National Primate Research Center (WaNPRC), an accredited facility of the American

Association for the Accreditation of Laboratory Animal Care International (AAALAC). Indi-

vidual macaques received the vaccine by intramuscular injection in either a Lipid InOrganic

Nanoparticle (LION) [35] or a Nanostructured Lipid Carrier (NLC) [58] formulation, deliv-

ered in a single priming dose of 25μg (n = 3) or 250μg (n = 6) or in a prime-boost regimen

with 50μg doses spaced 4 weeks apart (n = 2). All samples were collected 6 weeks post-prime

immunization. A subset of these animals also previously received an experimental hepatitis B

vaccine as part of another study (n = 5).

Convalescent rhesus macaques. Serum was collected from 12 rhesus macaques housed at

the Rocky Mountain Laboratories (National Institutes of Health [NIH]), 14 days after the sec-

ond of two SARS-CoV-2 infections spaced 42 days apart. The SARS-CoV-2 isolate used for

infection was nCoV-WA1-2020 (MN985325.1), which was provided by the Centers for Disease

Control and Prevention and propagated as described previously [39]. This isolate came from a

COVID-19 patient in Washington state in January 2020 and therefore represents an ancestral

strain, prior to the emergence of variants. Prior to infection, macaques were variably depleted

of CD4+ T cells, CD8+ T cells, CD4+ and CD8+ T cells, or neither, as part of another study.

Details of macaque treatment and regulatory approvals are as published previously [39].

Vaccinated humans. We obtained serum from 15 individuals who received two 100μg

doses of the Moderna mRNA-1273 vaccine as part of a phase I clinical trial (NCT04283461)
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[87]. Phage-DMS results from these samples were reported previously [57]. Only samples

from individuals aged 18–55 years were included in the current study to better match the

young age range of the macaques.

Convalescent humans. Plasma was collected from 12 individuals post-mild COVID-19

illness as part of the Hospitalized or Ambulatory Adults with Respiratory Viral Infections

(HAARVI) study in Seattle, WA. The date of symptom onset for these individuals ranged from

February—March 2020, representing infections with early circulating strains of SARS-CoV-2.

Phage-DMS results from these samples were reported previously [56,57]. Again, the sample set

was restricted to only include individuals aged 18–55 years to better match other sample

groups.

All plasma and sera were heat inactivated at 56˚C for 1 hour prior to use. Full details of all

samples are available in Tables 1 and S1.

Phage-DMS, Illumina library preparation and deep sequencing

The experimental protocol was performed exactly as described previously [56]. Briefly, an oli-

gonucleotide pool was synthesized that contains sequences coding for peptides of 31 amino

acids that tile along the length of the Wuhan-Hu-1 Spike protein sequence [88] in 1 amino

acid increments. For each peptide with the wildtype sequence, 19 variations were included that

have a single mutation at the middle amino acid, resulting in a total library size of 24,820

unique sequences. The oligonucleotide pool was cloned into T7 phage, followed by amplifica-

tion of the phage library; this step was performed twice independently to generate biological

duplicate phage libraries. The phage library was incubated with a serum or plasma sample,

then bound antibody-phage complexes were immunoprecipitated using Protein A and Protein

G Dynabeads (Invitrogen). Bound phage were lysed, and DNA was amplified by PCR and

cleaned prior to sequencing on an Illumina MiSeq or HiSeq 2500 with single end reads.

Demultiplexing and read alignment were also performed as described previously [57].

Replicate curation

Biological replicates were analyzed in parallel to assess reproducibility of results. For simplicity,

results from only one biological replicate are shown and described, with the same figures gen-

erated with the second biological replicate available to view online at https://github.com/

matsengrp/phage-dms-nhp-analysis. Within each biological replicate, “in-line” technical repli-

cates were run for some samples. In these cases, the technical replicate with the highest

mapped read count was selected for analysis.

Wildtype enrichment and defining epitope regions

The enrichment of wildtype peptides was calculated as described previously to quantify the

proportion of each peptide in an antibody-selected sample relative to the proportion of that

peptide in the input phage library [55]. On enrichment plots, the locus of each peptide is

defined by its middle amino acid. Enrichment values of wildtype peptides were summed across

epitope regions of interest for statistical comparisons between groups (“Summed WT enrich-

ment” on figures).

Escape profile comparison

The effect of a mutation on antibody-peptide binding was quantified as “differential selection,”

which is the log fold change in the enrichment of a mutation-containing peptide compared to

the wildtype peptide. This number is multiplied by the average of the wildtype peptide
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enrichments at that site and its two adjacent sites to get a “scaled differential selection” value,

as described previously [57]. The enrichment values of the adjacent wildtype peptides are

included in this calculation to make the analysis less susceptible to noise. Negative differential

selection values represent reduced binding compared to wildtype, while positive differential

selection values indicate that the mutation enhanced binding. “Summed differential selection”

is the sum of the 19 scaled differential selection values for all mutations at a site, and gives a

sense of the overall magnitude of escape at that site.

The comparison of two escape profiles is quantified by an escape similarity score computed

in the framework of an optimal transport problem [89]; this algorithm was described in detail

at https://matsengrp.github.io/phippery/esc-prof.html. An overview of the method is shown in

S4 Fig. Escape profiles are commonly portrayed as logo plots using scaled differential selection

values (S4A Fig). At each site, escape data in logo plot form can instead be represented as

binned distributions, with each mutation making some contribution to the total amount of

escape at that site based on its scaled differential selection value (S4B Fig). For each site, an

optimal transport problem computes the most efficient way to transform one individual’s

escape distribution into that of a different individual (S4C Fig). The cost to “exchange” amino

acid contributions between profiles is based on the similarity between the amino acids being

exchanged, as defined by the BLOSUM62 matrix [90]. More “movement” between dissimilar

amino acids drives up the total cost of the transport; therefore, a higher cost indicates less simi-

lar profiles. Escape similarity scores are the inverse of the total cost of transforming one profile

into another. Scores were calculated between pairwise combinations of individuals to compare

escape profile variability within and between sample groups.

Protein structure

The structure of a SARS-CoV-2 Spike glycoprotein monomer in the closed state (PDB 6XR8)

was examined to visualize epitope regions [91]. Coloring was added using UCSF ChimeraX-

1.2.5, developed by the Resource for Biocomputing, Visualization, and Informatics at the Uni-

versity of California, San Francisco, with support from National Institutes of Health

R01-GM129325 and the Office of Cyber Infrastructure and Computational Biology, National

Institute of Allergy and Infectious Diseases [92].

Statistical analysis and plotting

For comparison of summed wildtype enrichment values across an epitope region between sample

groups (Figs 2 and S9), multiple Mann-Whitney U tests were performed, with p values corrected

for the number of comparisons in each plot using the Bonferroni-Dunn method. Asterisks repre-

sent the following corrected p values: ����, p� 0.0001; ���, p� 0.001; ��, p� 0.01; �, p� 0.05.

For comparison of summed wildtype enrichment values between macaque sub-groups (S3 Fig), a

Kruskal-Wallis test was used with a significance threshold of p = 0.05.

Boxplots are used to summarize summed wildtype enrichment values, summed differential

selection values, and similarity scores within a sample group. For all boxplots, the

box represents the median and interquartile range (IQR), the lower whisker represents the

lowest data point above Q1-1.5IQR, and the upper whisker represents the highest data point

below Q3+1.5IQR.

Code and software

All analyses were performed in RStudio version 1.3.1093, Python version 3.6.12, GraphPad

Prism version 9.0.1, and the phip-flow and phippery software suite (https://matsengrp.github.

io/phippery/). The phip-flow tools perform read alignment using Bowtie2 [93] in a Nextflow
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[94] pipeline script. The escape profile comparisons are done with phippery in Python 3.6.12

and depend on the NumPy [95], pandas [96, 97], xarray [98], POT [99], and biopython [100]

packages.

Supporting information

S1 Table. Metadata for samples used in this study.

(XLSX)

S1 Fig. Enrichment of wildtype peptides varies by group in newly defined epitope regions.

The locus numbers are shown on the x axis, and each individual is represented in a different

color. (A) Wildtype enrichment by group from AA 526–685, spanning the CTD-N’ and

CTD-C’ epitopes. (B) Wildtype enrichment by group from AA 777–855, spanning the pre-FP,

FP, and post-FP epitopes. (C) Wildtype enrichment by group from AA 1135–1204, spanning

the SH-H and HR2 epitopes.

(TIF)

S2 Fig. Enrichment of wildtype peptides in baseline macaque samples compared to post-

vaccination or post-infection samples. The x axis indicates each peptide’s location along

SARS-CoV-2 Spike protein, and each entry on the y axis is an individual sample. Sample

groups are indicated on the left. The same macaques that contributed baseline samples also

contributed post-vaccination or post-infection samples. All enrichment values over 20 are

plotted as 20 to better show the lower range of the data. Above the heatmap, domains of Spike

are shown with grey boxes, with the S1/S2 and S2’ cleavage sites indicated with arrows. The

epitope regions defined in the current study are shown as colored boxes (from left to right:

NTD in red, CTD-N’ in green, CTD-C’ in cyan, pre-FP in pink, FP in black, post-FP in orange,

SH-H in purple, and HR2 in blue).

(TIF)

S3 Fig. Differences in enrichment of wildtype peptides by macaque subgroups. Wildtype

enrichment values were summed for all peptides within each region of Spike that showed

enrichment. Each point represents an individual macaque. No significant differences were

found by Kruskal-Wallis test at a threshold of p = 0.05. LION: Lipid InOrganic Nanoparticle;

NLC: Nanostructured Lipid Carrier.

(TIF)

S4 Fig. Use of optimal transport to quantify similarity between amino acid escape profiles.

(A) Profile 1 and 2 show example logo plots for two samples across the same region. Negative

scaled differential selection values represent mutations that reduce antibody binding. Amino

acids of the same color indicate similar chemistry (e.g., green = polar). (B) At each location (in

this example, the boxed site in panel A), the profiles are represented as binned distributions

where each bin corresponds to the contribution to escape for an amino acid substitution. (C)

The optimal transport solution to transform one profile to the other is computed, where the

cost to "exchange" an amino acid contribution in Profile 1 to an amino acid contribution in

Profile 2 is derived from the BLOSUM62 matrix. For the purposes of the schematic, the num-

ber of dollar signs associated with each line denotes the relative cost of each move (i.e., more

dollar signs = more costly = moving between amino acids that are less similar). (D) To quantify

similarity between profiles, an escape similarity score is calculated as the inverse of the total

cost to perform the transformation. For more details, see https://matsengrp.github.io/

phippery/esc-prof.html. Created with BioRender.com.

(TIF)
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S5 Fig. Logo plots for all vaccinated macaques, vaccinated humans, and convalescent

macaques in the CTD-N’ epitope region.

(PNG)

S6 Fig. Logo plots for all vaccinated humans, convalescent macaques, and convalescent

humans in the FP epitope region.

(PNG)

S7 Fig. Logo plots for all vaccinated macaques, vaccinated humans, convalescent

macaques, and convalescent humans in the SH-H epitope region.

(PNG)

S8 Fig. Logo plots for all convalescent macaques in the pre-FP and post-FP epitope regions.

(PNG)

S9 Fig. Differences in enrichment of wildtype peptides in vaccinated humans and conva-

lescent macaques. As in Fig 2, wildtype enrichment values were summed for each individual

for all peptides within each epitope region of Spike. The box represents median and interquar-

tile range (IQR), the lower whisker represents the lowest data point above Q1-1.5IQR, and the

upper whisker represents the highest data point below Q3+1.5IQR. Multiple Mann-Whitney

U tests were performed, with p values corrected for the number of comparisons (8) using the

Bonferroni-Dunn method. ����, p� 0.0001; ���, p� 0.001; ��, p� 0.01; �, p� 0.05.

(TIF)
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