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Is pathology necessary to predict mortality
among men with prostate-cancer?
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Abstract

Background: Statistical models developed using administrative databases are powerful and inexpensive tools for
predicting survival. Conversely, data abstraction from chart review is time-consuming and costly. Our aim was to
determine the incremental value of pathological data obtained from chart abstraction in addition to information
acquired from administrative databases in predicting all-cause and prostate cancer (PC)-specific mortality.

Methods: We identified a cohort of men with diabetes and PC utilizing population-based data from Ontario. We
used the c-statistic and net-reclassification improvement (NRI) to compare two Cox- proportional hazard models to
predict all-cause and PC-specific mortality. The first model consisted of covariates from administrative databases:
age, co-morbidity, year of cohort entry, socioeconomic status and rural residence. The second model included
Gleason grade and cancer volume in addition to all aforementioned variables.

Results: The cohort consisted of 4001 patients. The accuracy of the admin-data only model (c-statistic) to predict
5-year all-cause mortality was 0.7 (95% CI 0.69-0.71). For the extended model (including pathology information) it
was 0.74 (95% CI 0.73-0.75). This corresponded to a change in category of predicted probability of survival among
14.8% in the NRI analysis.
The accuracy of the admin-data model to predict 5-year PC specific mortality was 0.76 (95% CI 0.74-0.78). The
accuracy of the extended model was 0.85 (95% CI 0.83-0.87). Corresponding to a 28% change in the NRI analysis.

Conclusions: Pathology chart abstraction, improved the accuracy in predicting all-cause and PC-specific mortality.
The benefit is smaller for all-cause mortality, and larger for PC-specific mortality.
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Background
Administrative databases are often used to create models
to predict clinical outcomes, in particular survival [1-4].
Most cancers are fast growing, and once diagnosed have
an enormous impact on survival. Therefore, commonly,
models to predict survival among these subjects include
detailed oncologic information [5-7]. However, earlier
cancer diagnoses and advances in treatment have been
associated with reduced cancer mortality, such that in
2003 there were an estimated 10 million cancer survivors
in the United States [8]. Consequently, patients are living
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longer after a diagnosis of cancer to the point where exist-
ing comorbidities may have a substantial impact on their
overall survival.
Prostate cancer is the most common form of non skin

cancer diagnosed in men, with three quarters of cases
occurring in men aged 65 years and older [9,10]. Prostate
cancer is slow growing. Accordingly, death among pros-
tate cancer patients is more likely to be associated with
a subject’s comorbidities than prostate cancer itself
[11-13]. This is particularly true among patients with
diabetes [14,15].
Capturing information from pathology data is labor

intensive and expensive. Therefore, if the addition of
these pathology clinical variables to a predictive model
with variables attained solely from administrative data
does not enhance model performance, their inclusion
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should be avoided. The objective of this study was to
quantify the impact of adding Gleason grade and cancer
volume (obtained from chart review) to a predictive
model for mortality among a cohort of elderly men with
incident diabetes and prostate cancer. We further aimed
to distinguish all-cause mortality from prostate-cancer-
specific mortality. We hypothesized that pathology data
may have a great impact on disease-specific mortality,
but a smaller or even a null effect on all-cause mortality.

Methods
Overview
This cohort was used in a prior study to examine the
impact of diabetes on prostate cancer survival [16]. We
are therefore able to use it to determine the incremental
utility of pathological data, obtained from chart abstraction,
in addition to demographic and co-morbidity information,
acquired from administrative databases, in predicting
all-cause and prostate-cancer-specific mortality among
diabetic men with prostate cancer. The current study
was approved by the institutional review boards at
Sunnybrook and Princess Margret Hospital, University
Health Network, Toronto, Canada.

Data sources
The province of Ontario has a population of approxi-
mately 13 million. All residents are covered under a uni-
versal health insurance plan. Individuals aged 65 or older
are additionally eligible for prescription drug coverage.
We used a variety of electronic health data resources
linkable using an encrypted unique identifier. The On-
tario Cancer Registry (OCR) is a computerized database
of Ontario residents newly diagnosed with cancer (except
non-melanoma skin cancer), which is estimated to be
more than 95% complete [17]. The Ontario Diabetes
Database (ODD) - a validated, administrative data-
derived registry of diabetes cases in Ontario [18]. The
Ontario Health Insurance Plan (OHIP) database includes
claims paid to physicians, groups, laboratories, and out-of-
province providers [19]. The Canadian Institute for Health
Information (CIHI) Discharge Abstract Database (DAD)
contains records for each hospital stay [20]. The CIHI
National Ambulatory Care Reporting System (NACRS)
captures information on ambulatory care, including day
surgery, outpatient clinics, and emergency departments.
CIHI DAD, NACRS and OHIP were used to capture
comorbidities. The Registered Persons Data Base (RPDB)
contains demographics and vital status.

Study population and cohort definition
Our study cohort consisted of men aged 66 years or
older with incident diabetes and subsequent PC, identi-
fied using the following steps. First, we used the ODD to
identify all patients aged 66 years or older with incident
diabetes in Ontario between April 1, 1994 and March
31, 2008 (160,867 subjects). We then crossed referenced
with OCR to identify patients with incident PC after
diabetes diagnosis (ICD-9 code 185, and ICD-10 code
C61). We excluded patients diagnosed with PC prior to
diabetes and patients with non-prostate malignancies
(25,882 subjects). We then performed a detailed chart
review of all pathology reports available from OCR and
excluded patients without pathology data (855 subjects).
Cohort entry date was defined as date of PC diagnosis.
We followed up eligible individuals until they experi-
enced an event (PC-specific or all-cause mortality), or
among those who did not die, a last health services
contact in Ontario (for those who lost health contact
for at least 6 months) or March 31, 2009, whichever
came first.

Pathology chart abstraction
For the purpose of this study we performed a pathology
chart abstraction of all subjects with available pathology
reports at OCR. Chart abstraction was performed by an
expert Uro-Oncologist (DM). The variables abstracted
were Gleason grade (primary and secondary), volume of
tumor (in biopsy the volume was defined as number of
positive cores/ number of cores taken; in prostatectomy
specimens the volume as recorded by the pathologist),
PSA value at biopsy and procedure (i.e. prostate biopsy
or transurethral prostatectomy). These variables were
linked deterministically to our dataset using the unique
OCR identifier. Since only 1312 (28.6%) had a PSA value
recorded this variable was not included in the analysis.
For subjects with repeat biopsies during follow-up the

first biopsy was considered the “diagnostic biopsy”. Any
pathology report from an external consultant was docu-
mented and included in the analysis. Subjects who had a
transurethral prostatectomy and subsequently a prostate
biopsy were considered diagnosed by transurethral re-
section (TUR) but the Gleason score and tumor volume
were assigned based on prostate biopsy.

Outcome definitions
We measured 2 outcomes: (1). PC-specific mortality, which
was derived from the cause of death recorded in the OCR.
The cause of death variable in OCR has been validated in
several previous studies [21-23]. (2). All-cause mortality
was derived from death certificate data in RPDB. The date
of death for both outcomes was taken from the RPDB.

Covariates and statistical analysis
In this study we compared two nested Cox- proportional
hazard models to model the hazard of all-cause and pros-
tate cancer-specific mortality. The first model consisted of
covariates that were derived from administrative databases
including: age at prostate cancer diagnosis, Johns Hopkins



Table 1 Baseline cohort (n = 4001)

Age (years)at index date,
median (IQR)

75 (72-79)

Follow-up time (years), mean
(SD) before prostate cancer

2.9 (1.2-5.2)

Follow-up time (years), mean
(SD) from prostate cancer to
end of follow up

4.7 ( 2.7-7.3)

Gleason grade at presentation Low grade 1574 (39.3%)

Intermediate 1420 (35.4%)

High grade 1007 (25.2%)

Primary treatment Surgery 317 (7.9%)

Radiation 937 (33.2%)

Watchful waiting 1740 (43.5%)

ADT 1329 (46%)

Volume of prostate cancer High (>30%) 2245 (56%)

Low (≤30%) 1753 (44%)

TUR diagnosis n (%) 681 (18%)

Co morbidity sum of
ADGs n (%)

5 or less 1212 (30.3%)

6-9 1951 (49%)

10 or more 838 (20.7%)

*SES status n (%) 1 769 (20.3%)

2 838 (22.2%)

3 764 (20.2%)

4 693 (18.3%)

5 717 (19%)

Urban n (%) 545 (85.6%)

Prostate cancer specific
death n (%)

321 (8.5%)

Overall mortality n (%) 1395 (35%)
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Clinical Groups Case Mix system weighted sum of
Adjusted Diagnostic Group [24,25], year of cohort entry
(to adjust for temporal changes in the management of
diabetes and prostate cancer), socioeconomic status
(SES) and rural housing. Socioeconomic status and
housing status were assessed using the RPDB. The
RPDB uses information from Stats Canada and links
each individual postal code to an appropriate defined
neighborhood. Statistics Canada reports the median
income for each neighborhood, and ranks them into
quintiles (5 refer to the highest socioeconomic status
whereas quintile 1 is the lowest). The second model
included Gleason grade and cancer volume (obtained
from pathology abstraction) in addition to all afore-
mentioned variables. We used the c-statistic described
by Pencina et al. [26-28] as a measure of the accuracy
of the two models. We also used net-reclassification
improvement (NRI) as a measure of the utility of the
added pathology variables. Using the NRI method [26,29],
we first used the fitted model that used administrative data
only, to classify persons’ predicted probability of 5-year
mortality into low (less the 10%), intermediate (10-50%)
or high (more than 50%) risk. We chose these categories
as we believe they represent clinically meaningful cat-
egories; similar categories were used by others to asses
all-cause mortality among prostate cancer patients
[30]. Subsequently, we repeated the same classification
process using the extended model (i.e. with the addition of
Gleason grade and cancer volume). If the first model cate-
gorized the individual’s predicted risk of 5 year mortal-
ity to the intermediate category (10-50%), for example,
and the second model categorized the same individual
into the high category ( more than 50%), the new model
moves the predicted risk score ‘UP’. If, however, the
new model categorized the individual into the low risk
category, the model moves the predicted risk score
‘DOWN’. We repeated the same analysis for all-cause and
prostate-cancer specific mortality. The c-statistic and NRI
were calculated using a macro provided Chambless et al.
[31] and 95% CI were estimated using 200 bootstrap
samples. All analyses were conducted with SAS version
9.2 (SAS Institute).

Results and discussion
Overall, 4856 incident diabetic men older than 66 who
subsequently developed prostate cancer were identified.
Pathology reports were available for 4001 (82%) who
were included in the analysis. The median (IQR) age at
PC diagnosis was 75 (72–79) years (Table 1). During a
median (IQR) follow up of 4.7 (2.7-7.3) years, 1395
(35%) individuals died, with 321 patients dying of PC
(8.5%). At time of PC diagnosis, 1007 patients (25.2%)
had high grade (Gleason score ≥ 8) and 2245 (56%) had
high volume tumors (tumor volume ≥ 30%).
The multivariable models to predict all-cause mortality
are described in Tables 2 and 3 (Table 2- the model con-
sisting of variables derived from administrative data
only; Table 3- the model that included Gleason grade
and cancer volume in addition to variables derived from
administrative data). In both models age, year of cohort
entry, rural residence and comorbidities were independent
predictors of all-cause mortality. Higher Gleason grade
and cancer volume (Table 3) were also associated with
increased all-cause mortality, even after controlling for
the effect of other variables. The accuracy of the models
(i.e. c-statistic) to predict 5-year mortality were 0.7
(95% CI 0.69-0.71) and 0.74 (95% CI 0.73-0.75) for the
admin-data only and the extended model (including
pathology information), respectively. This corresponded
to an incremental increase of 0.04 (95% CI 0.03-0.05) in
the c-statistic.
Using the NRI method, we first used the model based

on administrative data only, to classify persons’ predicted
probability of 5-year mortality into low (less the 10%),



Table 2 Administrative data only model to predict
all-cause mortality

HR 95% CI p

Age 1.113 (1.102-1.123) <0.0001

Year of cohort entry 0.952 (0.937-0.967) <0.0001

Rural 1.28 (1.12-1.47) 0.0003

Co morbidity ADGs Low Ref

Intermediate 1.3 (1.14-1.5) <0.0001

High 1.64 (1.45-1.87) <0.0001

SES status 1 Ref

2 0.941 (0.81-1.1) 0.43

3 0.94 (0.8-1.1) 0.42

4 0.78 (0.66-0.92) 0.004

5 0.87 (0.75-1.0) 0.11

Model c statistic to predict 5 year all-cause mortality: 0.7 (95% CI 0.69-0.71).
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intermediate (10-50%) or high (more than 50%) risk. The
risk category of predicted probability of 5-year mortality
did not change in 85.2% of patient when the extended
model was applied (Table 4). Among the 214 (5.3%) sub-
jects with low predicted probability of 5-year mortality, the
extended model reclassified 31 (14.5%) subjects to a higher
risk group (Table 4). Among the 353 (8.8%) patients with a
high predicted probability of 5-year mortality, the extended
model moved 122 (34.6%) patients to a lower risk group.
Of the 3432 patients classified to 10-50% risk, the extended
model moved 221 (6.4%) to the lower risk group and 219
(6.4%) to the higher risk group.
Table 3 Extended model with pathology to predict
all-cause mortality

HR 95% CI p

Age 1.1 (1.093-1.15) <0.0001

Year of cohort entry 0.95 (0.93-0.96) <0.0001

Rural 1.29 (1.13-1.48) 0.0002

Co morbidity ADGs Low ref

Intermediate 1.31 (1.15-1.51) <0.0001

High 1.65 (1.45-1.89) <0.0001

SES status 1 ref

2 0.94 (0.81-1.1) 0.43

3 0.99 (0.85-1.17) 0.93

4 0.78 (0.66-0.92) 0.004

5 0.85 (0.72-0.99) 0.05

Gleason grade Low ref

Intermediate 1.16 (1.01-1.3) 0.04

High 2.3 (1.97-2.64) <0.0001

Volume of prostate cancer Low (≤30%) ref

High ( >30%) 1.14 (1.01-1.29) 0.036

Model c statistic to predict 5 year all-cause mortality: 0.74 (95% CI 0.730-0.76).
The multivariable models to predict prostate-cancer
specific mortality are described in Tables 5 and 6
(Table 5- the model consisting of variable derived from
administrative data only; Table 6- the model that in-
cluded Gleason grade and cancer volume in addition to
the variables in the administrative data model). Higher
Gleason grade and cancer volume were important pre-
dictors of prostate cancer specific mortality. The accur-
acy of the models (i.e. c-statistic) to predict 5-year
mortality were 0.76 (95% CI 0.74-0.78) and 0.85 (95% CI
0.83-0.87) for the admin-data only and the extended
model (including pathology information), respectively.
This corresponded to an incremental increase of 0.09
(95% CI 0.07-1.1) in the c-statistic.
Using the NRI method, we first used the model based

on administrative data only, to classify persons’ pre-
dicted probability of 5-year mortality into low (less the
10%), intermediate (10-50%) or high (more than 50%)
risk. The risk category of predicted probability of 5-year
prostate cancer specific mortality of 928 subjects (28%)
in our cohort changed when the extended model was
applied (Table 7). Among the 2981 subjects with low
predicted probability of 5-year prostate cancer specific
mortality (less than 10%), the extended model reclassi-
fied 378 (14.5%) to a higher risk group (Table 7). Among
the 28 patients with a high predicted probability of
5-year prostate cancer specific mortality (more than
50%), the extended model moved 18 (64.3%) of to a lower
risk group. Of the 990 patients classified to 10-50% risk
the extended model moved 469 (47.4%) to the lower risk
group and 58 (5.9%) to the higher risk group.
Using data from 4001 elderly male diabetic patients

who subsequently developed prostate cancer, we dem-
onstrated that pathology data obtained by chart abstrac-
tion improved the accuracy in predicting all-cause and
prostate-cancer specific mortality. The benefit in pre-
dicting all-cause mortality was modest, evident by only
a 0.04 difference in the c-statistic, and by the fact that
the extended model (with Gleason grade and cancer
volume) changed the risk category of predicted prob-
ability of survival for 14.8% of the men in our cohort. In
contrast to this, pathology data modified the accuracy
in predicting prostate cancer specific mortality consid-
erably. The extended model demonstrated a c-statistic
of 0.85 (95% CI 0.83-0.87) compared to 0.76 (95% CI
0.74-0.78) when only administrative data was used. Fur-
thermore, the extended model changed the risk category
of predicted probability of 5 years survival for 28% of the
men in our cohort.
Most predictive models in prostate cancer rely on clin-

ical data such as PSA, Gleason grade, cancer volume and
stage [32-34]. Detailed clinical information is often
missing in large administrative data, and therefore these
models have limited use among policy makers and



Table 4 Net reclassification improvement

Basic model
risk levels

Extended model risk level

Less than 10% 10-50% More than 50% All

n % n % n % n %

Less than 10% 183 85.5 31 14.5 0 0 214 5.3

10-50% 221 6.4 2992 87.2 219 6.4 3432 85.8

More than 50% 0 0 122 34.6 231 65.4 353 8.8

This table depicts the classification differences between the extended model (with pathology) to the model without pathology. Using a cut-off of less than 10%
risk of 5 year all cause mortality. The extended model reclassified 31 of 214 (14.5%) to a higher risk group (between 10-50% risk). Using a cutoff of more than 50%
the extended model moved 122 (34.6%) of 353 patients to a lower risk group. Of the 3432 patients classified to 10-50% risk the extended model moved 221
(6.4%) to the lower risk group and 219 (6.4%) to the higher risk group.

Table 6 Extended model with pathology to predict
prostate cancer specific mortality

HR 95% CI p

Age 1.084 (1.06-1.106) <0.0001
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health service researchers. Deriving missing data from
administrative database can be accomplished in several
methods. One could abstract a random sample of medical
records and use that abstraction to develop an algorithm
to infer the data [35]. However this rarely applies to
pathology. There is no unified clinical pathway that may
identify Gleason grade or volume of tumor. For example
two patients with a similar Gleason grade and stage may
receive different treatments, and vice versa patients with
different pathology may receive similar treatment. Though
less efficient, we believe that chart review is the most
reliable method for pathology data gathering.
In this study we demonstrated that the value of chart re-

view and detailed pathology data depends on the research
question and the accuracy threshold that is acceptable.
Changes in NRI risk categories correspond to change in
sensitivity at the higher threshold plus change in sensitivity
at the lower threshold (personal communication Michael
Pencina). For example, if 10% accuracy is needed then
chart abstraction is required regardless of outcome. How-
ever, in a study were 20% accuracy is acceptable, we dem-
onstrated that chart review is needed only for the outcome
of prostate cancer mortality; and not for all-cause mortality.
Table 5 Administrative data only model to predict
prostate cancer specific mortality

HR 95% CI p

Age 1.104 (1.08-1.13) <0.0001

Year of cohort entry 0.815 (0.79-0.84) <0.0001

Rural 1.29 (0.97- 1.97) 0.0747

Co morbidity ADGs Low Ref

Intermediate 1.26( 0.95-1.67) 0.106

High 1.38 (1.04-1.82) 0.021

SES status 1 Ref

2 0.86 (0.62-1.2) 0.38

3 1.003 (0.72-1.39) 0.98

4 0.81 (0.56-1.16) 0.24

5 0.93 (0.66-1.3) 0.68

Model c statistic to predict 5 year prostate cancer specific mortality: 0.76
(95% CI 0.74-0.78).
In our study, we reviewed over 5000 pathology reports-
if one assumes a trained chart abstractor (that costs
approximately $25 an hour) can review a report in 10 -
minutes, the total time dedicated to chart review was
840 hours. The total cost associated with this endeavor
was $21,000. This may not be feasible for a larger cohort.
Two key aspects of prediction model performance are

discrimination and calibration [36]. Discrimination refers to
the ability of a prediction model to distinguish between pa-
tients. A typical measure of discrimination is the c-statistic;
the c-statistic provides the probability that, for a randomly
selected pair of subjects, the model gives a higher probabil-
ity to the subject who had the event, or who had the shorter
survival time. However, one limitation of the c-statistic
is that a strong risk predictor may have limited impact
[31,36]. Furthermore, the c-statistic is difficult to interpret
clinically. Therefore, in our study we used NRI to assess the
difference in calibration between the models. Calibration
Year of cohort entry 0.806 (0.78-0.83) <0.0001

Rural 1.31 (0.99-1.74) 0.054

Co morbidity ADGs Low Ref

Intermediate 1.33 (1.004-1.77) 0.047

High 1.49 (1.1-1.97) 0.0043

SES status 1 Ref

2 0.846 (0.60-1.18) 0.32

3 1.2 (0.87-1.68) 0.26

4 0.85 (0.59-1.21) 0.36

5 0.88 (0.63-1.25) 0.49

Gleason grade Low Ref

Intermediate 1.66 (1.14-2.4) 0.0076

High 5.97 (4.2-8.47) <0.0001

Volume of prostate cancer Low (≤30%) Ref

High ( >30%) 1.62 (1.23-2.33) 0.0012

Model c statistic to predict 5 year prostate cancer mortality: 0.85 (95% CI
0.83-0.87).



Table 7 Net reclassification improvement

Basic model
risk levels

Extended model risk level

Less than 10% 10-50% More than 50% All

n % n % n % n %

Less than 10% 2603 87.3 378 12.68 0 0 2981 74.54

10-50% 469 47.37 463 46.77 58 5.9 990 24.76

More than 50% 0 0 18 64.3 10 35.7 28 0.7

This table depicts the classification differences between the extended model (with pathology) to the model without pathology. Using a cut-off of less than 10%
risk of 5 year prostate-cancer specific mortality. The extended model reclassified 378 of 2981 (12.68%) to a higher risk group (between 10-50% risk). Using a cutoff
of more than 50% the extended model moved 18 (64.3.6%) of 28 patients to a lower risk group. Of the 990 patients classified to 10-50% risk the extended model
moved 469 (47.37%) to the lower risk group and 58 (5.9%) to the higher risk group.
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measures whether predicted probabilities agree with
observed proportions. Reclassification can directly com-
pare the clinical impact of two models by determining
how many individuals would be reclassified into clinic-
ally relevant risk strata. Adding Gleason grade and
cancer volume to the prediction model for all-cause
mortality moved approximately 15% of subjects- how-
ever adding the same variables moved approximately
30% of subjects in the model predicting prostate-cancer
specific mortality. There are many other tests that may
be used to measure predictive accuracy such as calibra-
tion plots, decision curves, and integrated discrimin-
ation improvement [37-40]. Since the objective of our
study was to establish the importance of pathological data
and not form the ideal prediction model we did not utilize
all these measures.
In our NRI analysis we used several cut-offs to assess re-

classification. We considered the 5-year probability of
mortality as low (less the 10%), intermediate (10-50%) or
high (more than 50%) risk. Although risk is a continuum,
clinicians ultimately have to make binary choices, such as
whether or not to treat a subject. This entails consider-
ation of how high a risk is “high enough” to necessitate
action. A risk cut-point depends on the relationship be-
tween the harms of an event and the harms of needless
treatment. We therefore set our cut-points to be clinically
relevant. Although the intermediate risk category range is
rather large (10-50% risk), these patients are often grouped
together and treatment decisions are made at the ex-
tremes. Since we aim to assess the utility of adding clinical
variables to a prediction model, we believe that these cat-
egories are sufficient.
There are several limitations to our study. First, our

population was older, diabetic, and had worse Gleason
grade distribution than the general population of PC
patients, thus generalizability to a contemporary PC cohort
is tempered. It is possible that among a younger cohort
pathology may have a greater impact on both all-cause
mortality and prostate cancer-specific mortality. However,
nearly three quarters of men with prostate cancer are aged
65 and older at the time of diagnosis and most of these
patients have other comorbidities such as hypertension,
ischemic heart disease, diabetes, etc. [9,13,15] Restricting
our cohort to incident diabetics who subsequently develop
prostate cancer served to create a more homogeneous
cohort and minimize the possibility for misclassification of
comorbidities a common problem with administrative
data [41,42]. Second, we did not include treatment (such
as radiation or surgery) in our predictive models. Since
these variables are post baseline (i.e. they occur after the
diagnosis) they need to be modeled as time-dependent
covariants. If they are not modeled appropriately that
introduces immortal bias, since in order to receive a
treatment one obviously needs to survive until that time.
Since there is no known way of calculating the c-statistic
or NRI for Cox proportional models with time dependent
covariates we have decided not to include them in our
model. Furthermore, since treatment would have been
included in both the administrative data and the
extended models, their exclusion should not have changed
our results. Finally, we lack data on severity of diabetes,
body mass index, and prostate cancer stage even in the
model including pathology. Further studies are needed to
address the impact of adding these variables.

Conclusions
Administrative data are relatively inexpensive to obtain.
In contrast, abstracting clinical data from patients’ medical
records is expensive, time consuming and labor intensive.
The current study demonstrates that the additional cost
associated with the use of detailed clinical data may not be
justified for an outcome of all-cause mortality, but is more
important to study prostate-cancer specific mortality.
This information is useful to inform administrative health
researchers and policy-makers about the proper allocation
of funding resources.
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