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ABSTRACT

Motivation: Development and progression of solid tumors can be

attributed to a process of mutations, which typically includes changes

in the number of copies of genes or genomic regions. Although com-

parisons of cells within single tumors show extensive heterogeneity,

recurring features of their evolutionary process may be discerned by

comparing multiple regions or cells of a tumor. A useful source of data

for studying likely progression of individual tumors is fluorescence

in situ hybridization (FISH), which allows one to count copy numbers

of several genes in hundreds of single cells. Novel algorithms for in-

terpreting such data phylogenetically are needed, however, to recon-

struct likely evolutionary trajectories from states of single cells and

facilitate analysis of tumor evolution.

Results: In this article, we develop phylogenetic methods to infer likely

models of tumor progression using FISH copy number data and apply

them to a study of FISH data from two cancer types. Statistical ana-

lyses of topological characteristics of the tree-based model provide

insights into likely tumor progression pathways consistent with the

prior literature. Furthermore, tree statistics from the resulting phyloge-

nies can be used as features for prediction methods. This results in

improved accuracy, relative to unstructured gene copy number data,

at predicting tumor state and future metastasis.

Availability: Source code for software that does FISH tree building

(FISHtrees) and the data on cervical and breast cancer examined here

are available at ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees.

Contact: sachowdh@andrew.cmu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Recent studies of genetic variation in solid tumors have revealed

massive intratumor heterogeneity in the spectrum of genomic

changes within single tumors (Gerlinger et al., 2012;

Heselmeyer-Haddad et al., 2012; Navin et al., 2010, 2011).
These observations suggest the importance of understanding

cell-to-cell variability, but profiling large numbers of single

cells and building coherent models of their evolution remain

challenging problems. Fluoresence in situ hybridization (FISH)
is a technique that can be used to count the copy number of

DNA probes for specific genes or chromosomal regions that

has proven useful in studying cancer. Gene gains and losses are
common in solid tumors, and FISH provides a practical and

reliable method for monitoring such changes in large numbers

of individual cells from single tumors (Heselmeyer-Haddad et al.,

2002; Janocko et al., 2001). FISH is even more useful when one

uses multiple colors to monitor multiple genes simultaneously

(Heselmeyer-Haddad et al., 2012; Martins et al., 2012; Wangsa

et al., 2009). In this article, we developed new methods to model

and analyze the progression of copy number changes, as mea-

sured by multi-color FISH. Our methods include analysis of

multiple samples from the same patient, typically from different

cancer stages.

We applied the new methods to published data on cervical

cancer with four gene probes (Wangsa et al., 2009) and breast

cancer with eight gene probes (Heselmeyer-Haddad et al., 2012).

The data for each sample are presented as a matrix, where each

column is one of the probes and each row is a ‘cell count pattern’

of four probe counts, such as 2,3,4,1 (or eight counts for breast

cancer), and the number of cells matching that pattern. A normal

cell has the count pattern of all 2’s. Both datasets include paired

samples from an earlier stage and a later stage in the same

patient.
It is of interest to study cervical and breast cancer, as we do,

because the number of cases of cervical cancer and breast cancer

diagnosed early has increased owing to Pap smears and mam-

mograms, respectively. Early diagnosis is important because

lymph node metastasis is one of the best predictors of poor out-

come (Buckley et al., 1988; Elledge and McGuire, 1993).

Paradoxically, it has been shown statistically that early diagnosis

of breast cancer has not led to a substantial decrease in deaths

because most of the cancers diagnosed early would not progress

to be life-threatening if left untreated (Bleyer and Welch, 2012).

These are large-scale studies that do not address the benefits of

early detection in individual cases. Therefore, a consistent ex-

planation of these findings is that earlier detection could be of

clinical value if there were a better understanding of tumor evo-

lution to help identify the early-stage cancers likely to progress to

dangerous forms.
The problem of modeling tumor progression has been studied

by a variety of techniques and using different kinds of tumor

data (Beerenwinkel et al., 2005; Cheng et al., 2012; Desper

et al., 1999; Gerstung et al., 2009; Greenman et al., 2012;

Martins et al., 2012; Pennington et al., 2007; Shlush et al.,

2012; Subramanian et al., 2012; von Heydebreck et al., 2004;

Xu et al., 2012). Several of these methods used techniques

from the area of phylogenetics (reviewed by Attolini and

Michor, 2009) because of the insight that tumor genomes*To whom correspondence should be addressed.
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evolve (Cahill et al., 1999; Nowell et al., 1976). Most prior studies

have used either comparative genome hybridization or sequen-

cing of cell populations, which have the advantage that one can

do genome-wide analysis, but the disadvantage that the input

data are explicitly or implicitly averaged over many cells of the

same tumor. Other data types can offer distinct advantages, such

as the microsatellite data used by Shlush et al. (2012), which can

allow some inference of useful population genetic parameters

generally difficult to assess with tumor data.
FISH is the only currently available reliable technique that

allows measurements on enough individual cells to model the

evolution of substantial intratumor heterogeneity. The disadvan-

tage of FISH is that it uses only a small number of preselected

markers. Only two of the previous studies analyzed FISH data

(Martins et al., 2012; Pennington et al., 2007). These studies were

limited either to two probes (Pennington et al., 2007) or to three

probes and coarsely distinguishing only loss (copy number52),

neutral (copy number 2) and gain (copy number42) (Martins

et al., 2012).

We address a need for new methods capable of handling the

larger numbers of cells and probes in recent FISH datasets. More

specifically, we aim to develop a theoretical foundation for effi-

cient handling of large copy number datasets. Toward this goal,

we develop theory and algorithms for a model of tumor progres-

sion driven by gains and losses associated with FISH probes. Our

methods handle in principle any number of probes and any range

of copy numbers 0 through MAX_COPY (default 9). The use of

MAX_COPY limits the combinatorial search and hence running

time of our methods on inputs where the measured copy num-

bers exceed this limit. The work is intended to establish a frame-

work capable of giving useful tree inferences on state-of-the-art

FISH data, which might be extended in future work to handle

even harder problem instances and more realistic models of

tumor evolution.
Our contributions include the following:

(1) Reducing a model of the problem of modeling progression

of FISH probe cell count patterns to the Rectilinear

Steiner Minimum Tree (RSMT) problem and thus bring-

ing prior theory on the RSMT problem to bear on the

FISH phylogeny problem.

(2) Design and implementation of an exponential-time exact

method and a polynomial-time heuristic method to con-

struct trees modeling the progression of cell count

patterns.

(3) Mathematical proof and software implementation of a

new inequality that speeds up the RSMT-based

computation.

(4) Definition and evaluation of new test statistics based on

the trees computed by our methods. These test statistics

give novel insight into the selective pressures in tumor pro-

gression, compared with test statistics derived from the cell

count patterns alone.

(5) Definition and evaluation of ‘features’ based on the tree

structures that can be used with machine learning to clas-

sify the tumors. For example, we show improved effective-

ness at distinguishing the cervical tumors that metastasize

from those that do not.

2 METHODS

In this section, we describe a set of algorithms to identify a most parsi-

monious tree of copy number changes consistent with a dataset on

cell-level tumor copy-number heterogeneity. We first describe an expo-

nential-time exact algorithm. We next propose a set of valid inequalities

to reduce the running time of the algorithm. We then propose a heuristic

approach that returns an approximate solution in polynomial time. Both

the exact and heuristic methods are implemented in the Cþþ software

package FISHtrees (ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees).

2.1 Datasets

The cervical cancer (CC) dataset contains genomic copy numbers of the

four oncogenes LAMP3 (Kanao et al., 2005), PROX1 (Wigle and Oliver,

1999), PRKAA1 (Huang et al., 2006) and CCND1 (Fu et al., 2004) on

samples from 16 lymph node-positive and 15 lymph node-negative pa-

tients (Wangsa et al., 2009). For the lymph node-positive patients, this

dataset contains a sample from the primary tumor and another from the

metastasis, making the total number of samples 47. The number of cells

per sample ranges from 223 to 250, after filtering to remove cells that

likely had cut nuclei and those in the process of division, as described

previously (Heselmeyer-Haddad et al., 2012). The breast cancer (BC)

dataset contains copy numbers of five oncogenes, typically, but not

always, gained—COX-2 (Howe et al., 2001), MYC (Wolfer and

Ramaswamy, 2011), CCND1 (Fu et al., 2004), HER-2 (Tan and Yu,

2007) and ZNF217 (Nonet et al., 2001)—and three tumor suppressor

genes, typically lost—DBC2 (Hamaguchi et al., 2002), CDH1

(Birchmeier and Behrens, 1994) and p53 (Vousden and Lane, 2007)—

from 26 paired samples, one from the ductal carcinoma in situ (DCIS)

and one from an invasive ductal carcinoma (IDC), from 13 patients. The

number of interphase cells ranges from 76 to 220. The FISH protocol

filters out cells that are in the process of DNA replication using the fact

that these cells have recognizable FISH probe doublets (Wangsa et al.,

2009).

2.2 RSMT problem

For each patient sample, each cell assayed will have some non-negative

integer number of copies of each probe. If we consider measurements on d

probes in c cell count patterns for a given patient, then that patient’s in-

formation can be represented by a two-dimensional array D with c rows

and dþ 1 columns where entry D(i, j), for j¼ 1, d, represents the copy

number of gene j in sample pattern i, and column dþ 1 has the number

of cells with this count pattern. All counts aboveMAX_COPYare reduced

to that value. Each row ofD can be treated as a point in Rd. Our goal is to

explain the observed data via a phylogenetic tree of single gene duplication

and loss events. We use the L1, or rectilinear distance metric for inferring

the Steiner nodes inRd. If we are given a set S of points inRd, andwe build

a Steiner tree T spanning S, then for any particular edge e, joining points

x¼ (x1,x2 , . . . ,xd) and y¼ (y1,y2 , . . . , yd), the rectilinear distance w(e) is

defined by w(e)¼ jx1� y1j þ jx2� y2j þ � � � þ jxd� ydj. The problem of

identifying a minimum weight tree including all the observed points and,

as needed, unobserved Steiner nodes with the rectilinearmetric is known as

the RSMT problem (Hanan, 1966; Snyder, 1992).

The RSMT problem is NP-complete (Garey and Johnson, 1977) and

thus does not have an efficient exact algorithm. One potential advantage

of reducing to Steiner trees is that there are high-quality implementations

of sophisticated branch-and-cut methods that solve large instances to

optimality (Koch and Martin, 1998; Polzin and Daneshman, 2001). To

keep our implementation free and self-contained, we implemented a sim-

pler domain-specific method for our instances of RSMT. We developed

an inefficient exact algorithm and a heuristic algorithm based on the

median-joining algorithm for maximum parsimony phylogenetics

(Bandelt et al., 1999) adapted for RSMT using theoretical results from

Hanan (1966) and Snyder (1992).
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2.3 Exact algorithm for the RSMT problem

An exact algorithm for the RSMT problem in two dimensions was first

proposed by Hanan (1966). Hanan’s theorem implies that if we draw lines

parallel to the two axes through each of the points in S, then there exists

an RSMT of S whose Steiner nodes will be located at the intersections of

those lines, a two-dimensional grid known as the Hanan grid that iden-

tifies a finite set of positions where the Steiner nodes might be found.

Snyder (1992) generalized Hanan’s theorem to any dimension d. To for-

mally present Snyder’s theorem, assume S is a set of points in a d dimen-

sional space Rd and that x1,x2 , . . . ,xd are the coordinate axes of R
d. Let

P¼ (p1, p2 , . . . ,pd) be a point belonging to S. There are d hyperplanes

orthogonal to the coordinate axes that contain P. Suppose N(P, i) is one

of those hyperplanes that is orthogonal to the axis xi. Hanan’s grid in d

dimensional space is formed by taking the union of all N(P, i) for all

points P and all dimensions i. Formally, the Hanan grid H(S) in d

dimensions is defined as,

H Sð Þ ¼ [NðP, iÞ8P 2 S and 1 � i � d

For each subset of the form {N(P1, 1), N(P2, 2) , . . . ,N(Pd, d)}, there is

a point at which the d hyperplanes intersect. If the set of all of these

intersection points are denoted as IH(S), then the generalized Hanan’s

theorem, proposed and proved by Snyder is the following:

THEOREM 1. (Snyder 1992) For a given set of points S�Rd, there exists

an RSMT T of S, such that if Q is a Steiner point of T, then Q2 IH(S).

According to Theorem 1, the possible Steiner nodes are the intersection

points of the Hanan grid H(S). For each possible number of Steiner

nodes k, Algorithm 1 enumerates all subsets of k potential Steiner

nodes from those allowed by the generalized Hanan’s theorem. For

each such subset, the algorithm constructs a minimum spanning tree

(MST) using the observed data points and those k specific Steiner

nodes. The minimum cost tree over all such subsets and all possible

values of k is returned as the optimal tree. This method is guaranteed

to find an optimal solution to the RSMT problem. More efficient

approaches, such as that proposed in Dreyfus and Wagner (1971),

cannot be used in our case, as they assume that all the terminal nodes

must be leaf nodes in the Steiner tree, while in tumor progression trees, a

terminal node can be a parent node of other terminal nodes. Below, we

show that the Algorithm 1 run time is at worst exponential in the number

of potential Steiner nodes and the size of the probe set.

THEOREM 2. The time complexity of Algorithm 1 is exponential in the

number of potential Steiner nodes.

PROOF. If MAX_COPYþ 1¼m, then, by Theorem 1, the total number

of possible Steiner nodes to be considered is s¼md. To find the exact

solution, we consider each possible subset of the inferred Steiner nodes

and build a minimum spanning tree on the set of terminals and subset of

Steiner nodes under consideration. The total number of subsets of a set

with cardinality n is 2n. We implemented Prim’s algorithm for MST and

its complexity is O(nlogn). So, the total running time of Algorithm 1 is

O(2snlogn).

Algorithm 1 Exact algorithm for generating RSMT

Input: A point set S

Output: Steiner tree including the set of inferred Steiner nodes and weight

of the Steiner tree

Infer Steiner node set Q using generalized Hanan’s theorem

Identify MST on S and let min_weight¼weight(MST(S))

for k in 1 . . . jQj do

Enumerate all size-k subsets T of Q

for each element Tk of T do

Identify MST on {S[Tk} and

Let current_mst_weight¼weight(MST({S[Tk}))

if(current_mst_weight5min_weight) then

min_weight¼ current_mst_weight

steiner_tree¼MST({S[Tk})

Output steiner_tree and min_weight

2.4 Pruning Steiner node subsets

Because the time complexity of Algorithm 1 depends on the number of

calls made to the MST routine, we can reduce its runtime by checking

beforehand if a call to that procedure cannot lead to a solution of lower

cost than current_mst_weight. We propose a lower bound on the weight

of the MST, and we add checks in every for loop in Algorithm 1 to test

whether the lower bound is higher than the minimum weight MST gen-

erated so far. If so, then we do not generate the MST.

THEOREM 3. Suppose we would like to build an MST on a graph that has

n nodes, of which nodes 1 , . . . , r might have degree 1 in an MST and

hence be eligible to be its root, while nodes rþ 1 , . . . ,n are required to

have degree41 in the MST and hence are not eligible to be its root. By

construction, a Steiner node in the graph must have degree41 in the

MST because otherwise, its inclusion cannot reduce the weight of the

MST.

Assume, the weight matrix of the graph is

w11w12w13 . . .w1n

w21w22w23 . . .w2n

. . . . . .

wn1wn2wn3 . . .wnn

Then,

W MST nð Þð Þ � w1 þ w2 þ � � � þ wnð Þ � sup w1,w2, . . .wrð Þ . . . ð1Þ

where W(MST(n)) is the total weight of the MST with n nodes and

wi¼ inf(wi1,wi2 , . . . ,wi(i� 1), wi(iþ 1) , . . .win). Here, for a list L, sup(L) and

inf(L) denote the lowest upper bound and greatest lower bound of L,

respectively.

PROOF. We define the difference on the right hand side of the inequality

(claim) as Q(n). For each non-root node v, define p[v] to be the weight of

the edge connecting v to its parent in the MST, and define p[root]¼ 0. We

can readily see that p[v]�wv. p[v] cannot be smaller than wv as edges do

not get split in the MST-building process. For a graph with n nodes,

W(MST(n))¼ p[1]þ p[2]þ . . .þ p[n]. If we assume node 1 is the root

node, then W(MST(n))¼ p[2]þ p[3]þ � � � � � � þ p[n]. We divide into two

cases depending on the value of sup(w1,w2,w3 , . . .. . . ,wr).

If sup(w1,w2,w3 , . . .. . . ,wr)¼w1, then

Q(n)¼w1þw2þw3þ � � � � � � þwn�w1¼w2þw3þ� � � � � � þwn

Since wv� p[v] for any node v, we have,

Q(n)¼ w2þw3þ � � � � � � þwn � p[2]þ p[3]þ � � � � � � þ p[n]¼

W(MST(n)).

On the other hand, if w0 ¼ sup(w1,w2,w3 , . . .. . . ,wr)4w1, then,

Q(n)¼w1þw2þw3þ � � � � � � þwn�w05w2þw3þ � � � � � � þwn

� p[2]þ p[3]þ � � � � � � þ p[n]¼W(MST(n))

So, W(MST(n))� (w1þw2þ � � � � � � þwn)� sup(w1,w2 , . . . ,wr).

Distinguishing between the potential Steiner nodes and the non-Steiner

nodes in (1) makes the claim more complicated, but leads to a direct

simplification of the algorithm. Fewer calls to the MST procedure are

made because the lower bound exceeds the current best MST weight more

often.

2.5 Heuristic algorithm for the RSMT problem

We also propose a heuristic method that can find a potentially subopti-

mal solution in polynomial time. Our proposed heuristic method uses the
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median joining principle of iteratively identifying Steiner nodes (known as

median nodes) that allow one to more parsimoniously link some triplet of

nodes, using the generalized Hanan theorem to enumerate possible me-

dians. The method, described in Algorithm 2, begins by constructing a

minimum spanning network, corresponding to the union of edges in all

minimum spanning trees. It then enumerates triplets of nodes (u, v,w)

such that at least two pairs of each triplet are connected in the network,

followed by enumerating possible median nodes, consisting of combin-

ations of coordinate values of u, v, and w. It then tests whether introdu-

cing the given possible median as a Steiner node reduces the cost of the

minimum spanning tree. If so, then the median node is added. The pro-

cess is continued until no additional cost-saving median node can be

added.

THEOREM 4. The time complexity of Algorithm 2 is polynomial in the

cardinality of the terminal set.

PROOF. The running time of the heuristic algorithm is dominated by the

number of triples that are considered during the Steiner node inference

process. The maximum number of triples considered for inferring the

Steiner node is n
3

� �
. If we are considering d probes, then the maximum

number of Steiner nodes is n
3

� �
3d, where d is the number of probes. So, the

total running time of the heuristic approach is O(3dn4logn).

Algorithm 2 Heuristic algorithm for generating RSMT

Input: A point set S

Output: Steiner tree including the set of inferred Steiner nodes and weight

of the Steiner tree

Calculate Minimum Spanning Network (MSN) on S using the approach

described in Bandelt et al. (1999)

Identify MST on S and let min_weight¼weight(MST(S))

Identify all 3-node subsets of MSN, T, where at least two pairs of nodes

out of the 3 nodes are connected

for each element Ti of T do

Identify candidate Steiner node set L by taking combination of the

values of coordinate axes of the points in Ti

for each element Li of L do

Identify MST on {S[Li} and

Let current_mst_weight¼weight(MST({S[Li}))

if current_mst_weight5min_weight then

min_weight¼ current_mst_weight

S¼S[Li

steiner_tree¼MST({S})

Output steiner_tree and min_weight

2.6 Experimental procedure

We began statistical analysis with a basic test of imbalance in tree topol-

ogies to determine whether differential evolutionary pressures in primary/

DCIS versus metastatic/IDC environments might be reflected in the trees.

To obtain sufficient counts and detect statistically significant trends, we

grouped cells into bins by subtrees based on the child of the root from

which each cell traces its ancestry. The root node represents a cell type

with a copy number count of 2 for each gene probe (i.e., a healthy diploid

cell). Direct children of the root are those nodes distinguished by an

increase or decrease of one copy in a single probe. For example, for

four gene probes in the CC case, the copy number profiles of the eight

children of the root are (1, 2, 2, 2), (2, 1, 2, 2), (2, 2, 1, 2), (2, 2, 2, 1),

(3, 2, 2, 2), (2, 3, 2, 2), (2, 2, 3, 2) and (2, 2, 2, 3). We refer to all descendants

of one second level node as a ‘bin’. We counted the total number of cells

in that bin for each of the eight subtrees separately for the 16 pairs of

primary and metastasis samples. The resulting eight-dimensional vectors

for each primary–metastasis pair were compared by a �2 test to test the

null hypothesis of independence between bin counts and primary versus

metastasis labels.

To illustrate the difference between the dynamic views of relationships

among cell types offered by the trees relative to the static snapshot offered

by raw probe counts, we next examined two different measures of the net

mutational bias in the CC and BC trees: one based on imbalance of copy

numbers in cell counts and one on imbalance in tree edges. These statis-

tics provide two different views of the net evolutionary process of muta-

tion and selection. For the cell count data in CC/BC, we aggregated all

16/13 patients’ primary/DCIS and metastasis/IDC information separ-

ately, computing average difference in copy number of individual cells

relative to diploid, excluding the contribution of all-diploid cells. For tree-

based calculation of gene gain/loss, we measured the net gain or loss of

each gene by the number of tree edges showing gain minus those showing

loss over all trees generated by FISHtrees.

We also performed a series of experiments on the use of progression

tree statistics for classification tasks related to tumor progression and

prognosis. In each case, we examined the use of tree statistics as features

for prediction methods in comparison with prediction from features de-

rivable solely from raw cell counts. As feature sets, we used:

(1) Fractions of cells in the 8/16 subtrees rooted at children of the

diploid root: We defined tree-based features consisting of 8/16 fea-

tures corresponding to the fraction of cells in each of the subtrees

corresponding to immediate children of the diploid root.

(2) Fractions of edges exhibiting gain or loss of each gene: We used 8/

16 features corresponding to the fraction of total tree edges show-

ing gain or loss of each gene.

(3) Fractions of cells at each level from one to ten in the trees: We used

10 features corresponding to the fraction of cells at each level in the

tree from one to ten. The root (the node representing normal cells)

of the tree is assumed to be located at level one.

Fractional rather than absolute counts are used for each measure, so

that the sum of the values is normalized to be 1 and the test statistics are

not distorted by variability sample-to-sample in the number of cells.

These features were compared with four non-tree-based features:

(1) Mean gain or loss in each gene individually.

(2) Maximum copy number of each gene individually.

(3) Shannon index (Park et al., 2010), an information theoretic meas-

ure. For each gene G, each distinct combination of gene copy

numbers and cellular ploidy represents a species. If pi denotes the

frequency of species i among all tumors, then the Shannon indexH

for G is given by

H ¼ ��pilog2 pið Þ:

(4) Simpson index (Park et al., 2010), D¼�p2i .

We further performed simulation tests to evaluate the correctness of

the phylogenetic trees inferred by our algorithm in terms of the under-

lying tumor progression mechanism. Trees were simulated to approxi-

mate true FISH progression trees by expanding from an initial diploid

root node by selecting a Poisson number of children of each node (pos-

sibly with repetition) and expanding each node selected recursively until

the process terminates. To produce trees comparable with the real data,

we reject those with550 or4120 distinct cell types. Individual cells are

then chosen uniformly from the nodes in this topology until 250 cells are

sampled. Because the true and inferred trees may have different node sets,

we evaluate accuracy by a variant of the weighted matching metric of

(Lin et al., 2012), seeking a maximum matching of phylogenetic biparti-

tions between true and inferred trees with each bipartition weighted ac-

cording to the fraction of nodes it shares with its paired bipartition in the

other tree. The total agreement in nodes across all bipartitions provides a

fractional accuracy of the inference. Full details of the tree simulation and

scoring protocols are provided in the Supplementary Section S2.
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3 RESULTS

In this section, we present the results of experiments to evaluate

the utility of tumor phylogeny inference for understanding the

developmental processes of these tumor types. We also explore

the prognostic value of tumor phylogenies by using them to

derive features for classification experiments and comparing to

features that do not rely on tree inference. For these experiments,

we built tumor progression trees of the CC and BC data using

the ploidyless heuristic approach to phylogenetic inference

described in Methods.
Figure 1 shows representative examples of tumor progression

trees from the CC dataset. Figure 1A shows a tree inferred from

the primary tumor of patient 1 of the CC dataset. Figure 1B

shows the tree for the paired metastatic sample from patient 1.

The primary stage tree has more nodes and is more balanced and

broader in shape compared with the metastatic stage tree. The

distinct topologies of the trees may indicate the fact that cells

residing in primary and metastatic sites of the tumor face differ-

ent selective pressures. Supplementary Figures S4 and S5 show

examples of trees inferred from a DCIS sample and an IDC

sample of a patient with id 8 of the BC dataset. The complete

set of trees from the CC and BC patients is provided in

Supplementary Section S6.

3.1 Comparison of exact and heuristic algorithms

To evaluate the quality of the solution generated by the heuristic

algorithm, we generated tumor progression trees using both the

exact and the heuristic algorithms. We report a comparative

study of the two algorithms in Supplementary Table S1. For

each example run, we report the number of probes considered,

the total number of terminal nodes in the given dataset and a

comparison of the weights of the RSMTs generated by the exact

and heuristic approach. The heuristic approach returns an opti-

mal solution about 80% of the time. For the cases where the

heuristic solution is not optimal, the excess weight is very small.

From the runtime comparison of the two approaches, we see that

the heuristic approach returns a solution within 1 s every time.

The runtime of the exact approach varies from 1 s to 1966 s.

When the number of probes is higher than 5, the total running

time of the exact approach becomes impractical. The heuristic

algorithm can return a solution in51min even when using all

eight probes in the BC dataset (data not shown).

In Supplementary Table S1, we also report the percentage of

total calls to the MST generation routine in Algorithm 1 that are

avoided as a result of the inequality we proposed in Theorem 3.

For 75% of the examples, the lower bound in Inequality (1)

exceeds the current best MST weight 490% of the time. As

most of the entries in Inequality (1) are computed just once

and used throughout, this results in a huge decrease in the run-

time of the exact approach.

3.2 Statistical analyses of tumor phylogenies

3.2.1 Cervical cancer primary versus metastatic samples We first

examined cervical cancers, looking at paired primary tumor and

metastasis samples. Table 1 in Figure 2A reports P-values for �2

tests on all 16 pairs of patients. For each patient, the �2 tests

compare two 8-element vectors, one for the primary tumor and

one for the metastasis, in which element i is the number of des-

cendants of the ith child of the root. All P-values in this and

other tests are corrected for multiple testing. In Figure 2A, all 16

P-values are statistically significant. The same is true for an

analogous �2 test of DCIS versus IDC in 13 BC patients in

Figure 2B. That these comparisons are significant indicates sig-

nificant imbalance between tree geometries of the two tumor

stages. It may suggest that distinct evolutionary pressures act

on growth in the primary tumor versus the metastasis.
There is, however, high variability from patient-to-patient in

the nature of the imbalance. Supplementary Table S2 shows cell

counts for the bins associated with gain of the four genes, with

the largest bin of each tree highlighted. The bin accounting for

Gain of LAMP3 is the most frequent dominant bin in both pri-

mary and metastatic samples. This bin is also the only dominant

bin across multiple pairs of primary and metastatic samples. This

finding is consistent with the ubiquitous gain of LAMP3 in CC

reported in Wangsa et al. (2009). We also performed �2 tests on
individual bins in each pair of primary and metastasis samples

using 2� 2 contingency tables. Table 3 in Figure 2C reports the

total number of patients for which each bin representing gene

gains or losses shows significant association with tumor stage.

The results suggest a net trend toward LAMP3 and PRKAA1

gains, with again a significant difference between primary and

metastasis. We infer from these results that LAMP3 has a dom-

inant role both in initiation and development of different stages

of CC.

Figure 3 shows the results of cell-count and tree-edge-based

analysis of gene gain/loss statistics. Cell counts (Fig. 3A) and

edge counts (Fig. 3B) show similar trends in the gain and loss

of the marker genes except for two cases. In the first case, cell

counts show no net gain or loss of PROX1 in metastasis, while

edge counts show a gain. The latter result is supported by the

literature (Wangsa et al., 2009) associating gain of PROX1 with

metastasis. Likewise, the two measures suggest opposite trends

with respect to PRKAA1 in metastasis, with cell counts suggest-

ing net loss but edge counts net gain. Again, net gain has been

previously associated with progression to metastasis (Wangsa

et al., 2009). These results suggest that quantifying progression

via evolutionary events, as enabled by the trees, provides a

clearer view of the selective pressure than does quantification

by cell counts.

3.2.2 Analysis of breast cancer DCIS versus IDC samples We

performed a comparable statistical analysis on the paired BC

DCIS and IDC samples to understand how the evolutionary

process varies between early stages and late stages of tumor de-

velopment. The BC dataset includes copy number counts for

eight gene probes, yielding 16 potential children of the diploid

root node representing single copy number gain and loss of in-

dividual gene probes. We again treated the subtrees rooted at

each of these 16 children as bins and counted the total number of

cells in each bin for each DCIS and IDC tree. We then performed

a �2 test using the 16� 2 contingency table defined by each

DCIS/IDC pair. The results of the �2 tests are presented in

Table 2 in Figure 2B. As with the CC data, the table consistently

shows significant P-values, which again may indicate differences

in the evolutionary processes at different stages of tumor

development.
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We report bin counts for gain of oncogenes and loss of tumor

suppressor genes in Supplementary Table S3. Examination of in-

dividual bin counts shows that the precise biases tend to differ

from patient to patient, with the most frequent dominant bins

being loss of the two tumor suppressor genes DBC2 and CDH1.

Table 4 in Figure 2D shows the number of times each of the

bins representing gain of oncogenes or loss of tumor suppressor

genes shows statistical significance for individual �2 tests on each

pair of DCIS and IDC trees. This table again shows bias toward

loss of the two tumor suppressor genes DBC2 and CDH1. Loss

of DBC2 and CDH1 is part of a dominant imbalance clone re-

ported in Heselmeyer-Haddad et al. (2012) where it is inferred

that cells with this imbalance clone have a growth advantage in

DCIS and IDC. Our analysis supports this argument.

Fig. 1. Phylogenetic trees showing progression of (A) primary and (B) metastasis stage cervical cancer in patient 1. The trees are built from single cell-

copy number data using the ploidyless heuristic approach implemented in FISHtrees. Each node in the trees represents a copy number profile of the four

gene probes LAMP3, PROX1, PRKAA1 and CCND1, respectively. Nodes with solid borders represent cells present in the collected sample, while nodes

with dotted borders represent inferred Steiner nodes. Green and red edges model gene gain and gene loss, respectively. The weight value on each edge

connecting two nodes x and y is the rectilinear distance between the states of x and y. The weight on each node describes the fraction of cells in the

sample with the particular copy number profile modeled by that node; Steiner nodes are assigned weight 0
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We next calculated gain/loss statistics based on raw cell count

data and based on tree edges, as we did with the CC data. We

present the results in Figure panels 3C and D, respectively. The

trends are qualitatively generally consistent between cell count

and tree-based statistics. With two exceptions, oncogenes are

amplified and tumor suppressor genes lost in DCIS and IDC

by both measures. One exception is the tumor suppressor gene

p53, which shows amplification rather than the expected loss

when analyzed by cell count statistics (Fig. 3C) but not with

tree statistics (Fig. 3D). The difference may reflect an occasional

amplification of p53 concurrent with the rest of chromosome 17

due to aneuploidy. The other exception occurs with respect to the

oncogene ZNF217, which shows net gains by both statistics for

DCIS, but loss rather than gain in IDC for tree statistic. The

discrepancy appears to be due to one case, in which 90% of cells
in IDC show ZNF217 deletion. This unusual case might be due

to the loss of chromosome 20 (on which ZNF217 resides) in the
IDC stage of the tumor for that patient.

3.3 Use of tree statistics for classification

A key question in studying mathematical models of tumor pro-
gression is whether an understanding of tumor evolutionary

pathways will lead to improved prognostic or diagnostic capabil-
ities. We performed classification experiments on the CC dataset

to understand how features derived from progression trees can
help differentiate samples from different cancer stages. We used

support vector machines (SVM), as implemented in MATLAB,
with leave-one-out cross-validation (LOOCV). The performance

of each classifier was assessed by two measures: (i) Percentage of
samples correctly classified (Accuracy) and (ii) F measure, which

is the harmonic mean of precision and recall. We performed 500
rounds of bootstrapping and assessed mean Accuracy and F

measure as well as their standard deviations.

3.3.1 Classification of cervical cancer samples We performed
experiments exploring the predictive power added by the three

different types of tree-derived features. The three classification
experiments on the CC dataset are as follows:

(1) Distinguishing primary from metastatic samples using 16
paired primary and metastatic samples,

(2) Distinguishing primary from metastatic samples using 16

metastasizing and 15 non-metastasizing primary tumor
samples versus 16 metastatic samples, and

(3) Distinguishing 16 primary samples that later metastasized

from 15 primary samples that did not metastasize.

Figure 4 and Supplementary Figure S1 report performance of
the two feature sets for the SVM classifier in terms of mean

accuracy and mean F measure, along with confidence interval
of one standard deviation, respectively. By both measures, tree-

based statistics lead to improved classification accuracy in all
experiments. The best accuracy on the three tasks is achieved

using the tree-based level-count features, at 81.91% accuracy
for distinguishing primary tumors from their paired-metastasis

samples, 82.26% for distinguishing all primary tumors (metasta-
sizing and non-metastasizing) from the metastasis samples and

82.58% for distinguishing metastasizing versus non-metastasiz-
ing primary tumors. This result suggests that the qualitative ob-

servation that primary trees appear broader and deeper than
metastatic trees (Fig. 1) captures a robust quantitative property

of progression trees distinguishing primary from metastatic sam-
ples. Among the non-tree based features, Simpson index shows

the best classification performance, yielding average accuracies
of 76.94, 78.12 and 61.08% on the same tasks. Average and

maximum copy number counts show worse performance in all
three classification tasks.
Supplementary Figure S1 shows qualitatively similar perform-

ance by the F measure. The most striking difference between the
two measures is a much worse performance for the edge count

and cell count measures at distinguishing primary from meta-
static trees when assessed by F-measure. Bin count and tree

level features show similarly high performance by both measures.

Fig. 2. P-values from �2 tests comparing the number of descendants in

the (A) eight children of the root in the primary tumor tree versus the

metastasis tree in the same CC patient, (B) 16 children of the root in the

DCIS tree versus the IDC tree in the same BC patient. The total number

of (C) CC and (D) BC patients for which each bin for gain of oncogenes

or loss of tumor suppressor genes shows significance in individual 2� 2

�2 tests

Fig. 3. Increase and decrease in copy number count of LAMP3, PROX1,

PRKAA1 and CCND1 (A and B) across 16 CC patients and COX-2,

DBC2, MYC, CCND1, CDH1, p53, HER-2 and ZNF217 (C and D)

genes across 13 BC patients. Copy number count is calculated using (A

and C) average of cell count data and (B and D) net tree edge changes.

The units on the x-axis differ in the two adjacent subfigures due to the

different types of data used
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To follow up on the observation that tree topology seems to be

the most informative feature type, we examined how this feature

varies between primary and metastatic trees. Figure 5 shows the
distribution of the aggregated cell counts across different levels

of 31 primary stage and 16 metastatic stage tumor progression

trees. In the primary stage tumors, �70% of the cells are dis-

tributed in the first six tree levels, and the cell count decreases

gradually when level of the tree is increased. In contrast, for the

progression trees of metastatic stage tumors, the total cell count

shows an exponential decrease with more than half (53%) of the

cells located in the first two tree levels This topological difference

could reflect the fact that in the primary stage tumors, the clones

have more time to continue diversifying. An alternative hypoth-

esis is that the difference reflects stronger purifying selection for

clones that must evolve to be able to migrate to and survive

outside their native microenvironment. The BC study was de-

signed to include only patients in whom the diagnosis of IDC

and DCIS was concurrent (Heselmeyer-Haddad et al. 2012),

which has the effect of making the time of evolution for each

sample in a pair comparable, consistent with the hypothesis of

increased purifying selection in IDC. The data here, however, are

insufficient to reject either hypothesis.

3.3.2 Informative feature selection We applied feature selection
to identify the most informative features. We exhaustively enum-

erated subsets of features and tested the cross-validated predict-

ive accuracy of each. Figure 6 shows, for each classification

experiment and feature type, the optimal SVM prediction accur-

acy over all subsets. For the most challenging task, distinguishing

metastasizing from non-metastasizing samples based on the pri-

mary sample, accuracy peaks at 72% for Bin Counts, 87.1% for

Edge Counts and 77.4% for Tree Level topological features.

Interestingly, the best performance over all tests at identifying

metastasizing tumors (87.1% accuracy) comes from the Edge

Count features, despite poorer performance of Edge Count in

most tasks. Among the Bin Count features, LAMP3 was an in-

formative feature in all three tasks, reinforcing our statistical

result that LAMP3 is an important gene in CC progression.
In previous work on the same classification task, Wangsa et al.

reported sensitivity and specificity of 0.75 and 0.87 respectively,

with composite FISH markers using percentages of cells with

amplified signals for each individual marker, on the CC dataset,
but this was done without LOOCV (Wangsa et al., 2009). The

optimal feature set identified here improved substantially on the
robustness and sensitivity of that result while keeping equal
specificity.

We performed similar classification experiments for inform-
ative feature selection on the BC data to distinguish DCIS

from IDC samples. When we used all the features for classifying
the DCIS samples from IDC, Bin Count and Edge Count meas-
ures showed 50% accuracy and Tree Level topological features

showed 57% accuracy. Figure 6A shows that feature selection
improved accuracy to 80.7% for both Bin Count and Tree Level

feature subsets. The poor performance while using all features
might be owing to the high intra- or inter-tumor heterogeneity
(Heselmeyer-Haddad et al., 2012).

When we selected the most informative subsets, the feature
sets for BC DCIS versus IDC samples classification (Fig. 6B)
differed depending on whether the Bin Count or the Edge

Count measure was considered, although both agreed on the
selection of MYC. MYC was reported in Heselmeyer-Haddad

et al. (2012) to be a prognostic marker in the progression of
DCIS to IDC. Deletion of CDH1 was also reported in
Heselmeyer-Haddad et al. (2012), and was selected here in the

Edge Count case.

3.4 Simulation results

Because we cannot know the ground truth for real data with
certainty, we used simulated trees to test accuracy of tree infer-

ences. Comparison over 50 simulated trees shows a mean

Fig. 4. Accuracy of tree-based versus cell-based features in classification

tasks using an SVM classifier. Each chart shows accuracy of three tree-

based and four cell-based feature sets on the three defined prediction

tasks

Fig. 5. Distribution of cells across different levels of tumor progression

trees, counted for primary and metastatic trees separately

Fig. 6. (A) Classification performance for particular subsets of features

that show best prediction accuracy among all possible subsets on CC and

BC datasets. (B) Sets of gene probes that show best classification

accuracy
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accuracy of 92% with standard deviation 2.13% in correctly
inferring tree topologies. Supplementary Figures S2 and S3 pro-

vide more detailed results on the 50 simulated cases individually,
showing consistently high accuracy. There is, however, a slight

bias toward underestimating the true tree weight, as one would
expect for a parsimony measure.

4 CONCLUSIONS

We developed exact and heuristic algorithms for building tumor

progression trees using copy number information and applied our
methods to two different types of cancer. To reduce the complex-

ity of the exact algorithm, we further developed an inequality that
can prune up to 99%of the solution space, resulting in substantial

reduction in the runtime of the algorithm. The heuristic approach
returns potentially sub-optimal solutions in reasonable time for

datasets with large numbers of probes. These algorithms have
been implemented in a publicly available Cþþ software package,

FISHtrees. Copy number changes can evolve using additional
basic operations such as changing the entire ploidy by 1 or dou-

bling, and FISHtrees includes an implementation of another
method that allows these ‘operations’ (Pennington, et al., 2007).

Analyses of statistics developed using different features of the

tumor progression trees identify some important recurring mar-
kers of tumor progression and highlight the different selective

pressures at work on different stages of the tumor. Use of tree
statistics as features for classification further illustrates the im-

portance of models of the evolutionary process to predicting
future progression, a problem of importance to cancer treatment

and diagnosis. Further improvements in tree algorithms, analysis
of even larger andmore complex datasets, and investigation of the

resulting trees can be expected to yield further insight into both
recurring features of tumor evolution and the ways in which these

features vary patient-by-patient.

ACKNOWLEDGEMENTS

We thank Woei-Jyh Lee for implementing many parts of

FISHtrees; thanks to Darawalee Wangsa for collecting the CC

data; and thanks to Lissa Berroa Garcia, Amanda Bradley and
Clarymar Ortiz-Melendez for help in collecting BC data.

Funding: This research was supported in part by the Intramural

Research Program of the U.S. National Institutes of Health,
National Cancer Institute, and National Library of Medicine,

and by U.S. National Institutes of Health grants

1R01CA140214 (R.S. and S.A.C.) and 1R01AI076318 (R.S.).

Conflict of Interest: none declared.

REFERENCES

Attolini,C.S.-O. and Michor,F. (2009) Evolutionary theory of cancer. Ann. NY.

Acad. Sci., 1168, 23–51.

Bandelt,H.-J. et al. (1999) Median-joining networks for inferring intraspecific phy-

logenies. Mol. Biol. Evol., 16, 37–48.

Beerenwinkel,N. et al. (2005) Mtreemix: a software package for learning and using

mixture models of mutagenetic trees. Bioinformatics, 21, 2106–2107.

Birchmeier,W. and Behrens,J. (1994) Cadherin expression in carcinomas: role in the

formation of cell junctions and the prevention of invasiveness. Biochim. Biophys.

Acta, 1198, 11–26.

Bleyer,A. and Welch,G. (2012) Effects of three decades of screening mammography

on breast-cancer incidence. New Engl. J. Med., 367, 1998–2005.

Buckley,C.H. et al. (1988) Pathological prognostic indicators in cervical cancer with

particular reference to patients under the age of 40 years. Br. J. Obstet. Gyncol.,

9, 47–56.

Cahill,D.P. et al. (1999) Genetic instability and darwinian selection in tumours.

Trends Cell Biol., 9, M67–M60.

Cheng,Y.-K. et al. (2012) A mathematical methodology for determining the tem-

poral order of pathway alterations arising during gliomagenesis. PLoS Comput.

Biol., 8, e1002337.

Desper,R. et al. (1999) Inferring tree models of oncogenesis from comparative gen-

omic hybridization data. J. Comp. Biol., 6, 37–51.

Dreyfus,S.E. and Wagner,R.A. (1971) The Steiner problem in graphs. Networks, 1,

195–207.

Elledge,R.M. and McGuire,W.L. (1993) Prognostic factors and therapeutic deci-

sions in axillary node-negative breast cancer. Annu. Rev. Med., 44, 201–210.

Fu,M. et al. (2004) Minireview: Cyclin D1: normal and abnormal functions.

Endocrinology, 145, 5439–5447.

Garey,M.R. and Johnson,D.S. (1977) The rectilinear Steiner tree problem is NP-

complete. SIAM J. Appl. Math., 32, 826–834.

Gerlinger,M. et al. (2012) Intratumor heterogeneity and branched evolution re-

vealed by multiregion sequencing. New Engl. J. Med., 366, 883–892.

Gerstung,M. et al. (2009) Quantifying cancer progression with conjunctive Bayesian

networks. Bioinformatics, 25, 2809–2815.

Greenman,C.D. et al. (2012) Estimation of rearrangement phylogeny for cancer

genomes. Genome Res., 22, 346–361.

Hamaguchi,M. et al. (2002) DBC2, a candidate for a tumor suppressor gene

involved in breast cancer. Proc. Natl. Acad. Sci. USA, 99, 13647–13652.

Hanan,M. (1966) On Steiner’s problem with rectilinear distance. SIAM J. Appl.

Math., 14, 255–265.

Heselmeyer-Haddad,K. et al. (2002) Detection of chromosomal aneuploidies and

gene copy number changes in fine needle aspirates is a specific, sensitive, and

objective genetic test for the diagnosis of breast cancer. Cancer Res., 62,

2365–2369.

Heselmeyer-Haddad,K. et al. (2012) Single-cell genetic analysis of ductal carcinoma

in situ and invasive breast cancer reveals enormous tumor heterogeneity, yet

conserved genomic imbalances and gain of MYC during progression. Am. J.

Pathol., 181, 1807–1822.

Howe,L.R. et al. (2001) Cyclooxygenase-2: a target for the prevention and treatment

of breast cancer. Endocr. Relat. Cancer, 8, 97–114.

Huang,F.Y. et al. (2006) Semi-quantitative fluorescent PCR analysis identifies

PRKAA1 on chromosome 5 as a potential candidate cancer gene of cervical

cancer. Gynecol. Oncol., 103, 219–225.

Janocko,L.E. et al. (2001) Distinctive patterns of Her-2/neu c-myc, and cyclin D1

gene amplification by fluorescence in situ hybridization in primary breast can-

cers. Cytometry, 46, 136–149.

Kanao,H. et al. (2005) Overexpression of LAMP3/TSC403/DC-LAMP promotes

metastasis in uterine cervical cancer. Cancer Res., 65, 8640–8645.

Koch,T. and Martin,A. (1998) Solving Steiner tree problems in rgaphs to optimal-

ity. Networks, 32, 207–232.

Lin,Y. et al. (2012) A metric for phylogenetic trees based on matching. IEEE/ACM

Trans. Comput. Biol. Bioinform, 9, 1014–1022.

Martins,F.C. et al. (2012) Evolutionary pathways in BRCA1-associated breast

tumors. Cancer Discov., 2, 503–511.

Navin,N. et al. (2010) Inferring tumor progression from genomic heterogeneity.

Genome Res., 20, 68–80.

Navin,N. et al. (2011) Tumour evolution inferred by single-cell sequencing. Nature,

472, 90–94.

Nonet,G.H. et al. (2001) The ZNF217 gene amplified in breast cancers promotes

immortalization of human mammary epithelial cells. Cancer Res., 61,

1250–1254.

Nowell,P.C. (1976) The clonal evolution of tumor cell populations. Science, 194,

23–28.

Park,S.Y. et al. (2010) Cellular and genetic diversity in the progression of in situ

human breast carcinomas to an invasive phenotype. J. Clin. Invest., 120, 636–644.

Pennington,G. et al. (2007) Reconstructing tumor phylogenies from heterogeneous

single-cell data. J. Bioinform. Comput. Biol., 5, 407–427.

Polzin,T. and Daneshmand,S.V. (2001) Improved algorithms for the Steiner prob-

lem in networks. Discrete Appl. Math., 112, 263–300.

Shlush,L.I. et al. (2012) Cell lineage analysis of acute leukemia relapse uncovers the

role of replication-rate heterogeneity and microsatellite instability. Blood, 120,

603–612.

Phylogenetic analysis of multiprobe FISH data

i197

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt205/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt205/-/DC1


Snyder,T.L. (1992) On the exact location of Steiner points in general dimension.

SIAM J. Comput., 21, 163–180.

Subramanian,A. et al. (2012) Inference of tumor phylogenies from genomic assays

on heterogeneous samples. J. Biomed. Biotech., 2012, 797812.

Tan,M. and Yu,D. (2007) Molecular mechanisms of erbB2-mediated breast cancer

chemoresistance. Adv. Exp. Med. Biol., 608, 119–129.

von Heydebreck,A. et al. (2004) Maximum likelihood estimation of oncogenetic tree

models. Biostatistics, 5, 545–556.

Vousden,K.H. and Lane,D.P. (2007) p53 in health and disease. Nat. Rev. Mol. Cell

Biol., 8, 275–273.

Wangsa,D. et al. (2009) FISH markers for detection of cervical lymph node metas-

tases. Am. J. Pathol., 175, 2637–2645.

Wigle,J.T. and Oliver,G. (1999) Prox1 function is required for the development of

the murine lymphatic system. Cell, 98, 769–778.

Wolfer,A. and Ramaswamy,S. (2011) MYC and metastasis. Cancer Res., 71,

2034–2037.

Xu,X. et al. (2012) Single-cell exome sequencing reveals single-nucleotide mutation

characteristics of a kidney tumor. Cell, 148, 886–895.

S.A.Chowdhury et al.

i198


